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Abstract

Hsu et al. (2009) recently proposed an ef-
ficient, accurate spectral learning algorithm
for Hidden Markov Models (HMMs). In this
paper we relax their assumptions and prove a
tighter finite-sample error bound for the case
of Reduced-Rank HMMs, i.e., HMMs with
low-rank transition matrices. Since rank-k
RR-HMMs are a larger class of models than
k-state HMMs while being equally efficient to
work with, this relaxation greatly increases
the learning algorithm’s scope. In addi-
tion, we generalize the algorithm and bounds
to models where multiple observations are
needed to disambiguate state, and to models
that emit multivariate real-valued observa-
tions. Finally we prove consistency for learn-
ing Predictive State Representations, an even
larger class of models. Experiments on syn-
thetic data and a toy video, as well as on diffi-
cult robot vision data, yield accurate models
that compare favorably with alternatives in
simulation quality and prediction accuracy.

1 Introduction and Related Work

Models of stochastic discrete-time dynamical systems
have important applications in a wide range of fields.
Hidden Markov Models (HMMs) (Rabiner, 1989) and
Linear Dynamical Systems (LDSs) (Kalman, 1960) are
two examples of latent variable models which assume
that sequential data points are noisy, incomplete ob-
servations of a latent state that evolves over time. The
distributional assumptions of HMMs and LDSs result
in important differences in the evolution of their be-
lief over time. The discrete state of HMMs is good for
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modeling systems with competitive inhibition: e.g., an
HMM can predict that our next observation will be ei-
ther image A or image B, while disallowing blends of
A and B. In an LDS, the joint predictive distribution
over observations is log-concave, and thus cannot rep-
resent competitive inhibition. However, LDSs model
smooth state evolution, which HMMs can only model
by discretizing the state space very finely. Ideally we
would like to model both competitive inhibition and
smooth evolution, but few models display both of these
properties. Those that do, e.g. Switching State Space
Models (Ghahramani & Hinton, 2000), typically rely
on on approximations for inference and learning.

HMMs are typically learned using Expectation-
Maximization (EM) (Rabiner, 1989), which is prone
to local optima, especially in large state spaces. On
the other hand, LDSs are often learned using Sub-
space Identification (Subspace ID) (Van Overschee &
De Moor, 1996). The latter is a spectral method: it
finds an approximate factorization of the estimated co-
variance between past and future observations. And, it
learns an observable representation, whose parameters
can be simply related to directly-measurable quanti-
ties. In part because of these qualities, subspace ID is
free of local optima and statistically consistent, though
(unlike EM) it does not typically find even a local op-
timum of the log-likelihood for finite sample sizes.

More recently, researchers have proposed two gen-
eralizations of HMMs: Observable Operator Models
(OOMs) (Jaeger, 2000) and Predictive State Repre-
sentations (PSRs) (Singh et al., 2004). These models
represent states as vectors of predicted probabilities
of future events (called tests or characteristic events)
conditioned on past events (called histories or indica-
tive events). This representation is observable, and so
we might hope to discover efficient, consistent spectral
learning algorithms for PSRs and OOMs. But, despite
much research in this area (summarized in Wingate
(2008)), there is still a lack of provably accurate learn-
ing algorithms that have been demonstrated to work
well in practice. (Since PSRs and OOMs are largely
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equivalent, we will refer to both as PSRs below.)

Recently, Hsu, Kakade and Zhang (HKZ for short)
proposed a spectral algorithm which learns observable
representations of HMMs (Hsu et al., 2009). The HKZ
algorithm is free of local optima and statistically con-
sistent, with a finite-sample bound on L1 error in joint
probability estimates. However, learning large-state-
space HMMs is still difficult: the number of parame-
ters grows prohibitively with the size of the state space.

In this paper, we extend the advantages of spectral
learning to a larger class of models. We propose a
variant of HMMs called Reduced-Rank HMMs (RR-
HMMs) (Section 2), which have a large implicit state
space but a low-rank transition matrix. RR-HMMs
admit a compact observable representation (Defini-
tion 1) whose dimensionality depends on the rank
rather than the state space size, allowing inference and
learning on rank-k RR-HMMs with arbitrarily large
state spaces in O(Nk2) time, where N > k is the
number of training samples. The large implicit state
space allows RR-HMMs to model smooth state tra-
jectories, and the compact representation allows effi-
cient learning. We generalize the HKZ spectral algo-
rithm and bounds to the RR-HMM, deriving tighter
bounds that depend on the rank and not the num-
ber of states (Section 3). Since rank-k RR-HMMs are
much more expressive than k-state HMMs, our gen-
eralization greatly increases the scope of the spectral
learning algorithm. Further, we prove that the spec-
tral method is statistically consistent for a class of un-
controlled PSRs (Section 3.3).

We also generalize spectral HMM learning in other im-
portant ways. HKZ assumes that single observations
are informative about the latent state (1-step observ-
ability) and that observations are discrete. In Sec-
tion 3.4 we describe and test a method for relaxing the
former by combining observations to make them more
informative. In Section 3.5 we show how to handle
high-dimensional real-valued observations with Kernel
Density Estimation (KDE) (Silverman, 1986).

Experiments (Section 4) show that our learning al-
gorithm can recover the underlying RR-HMM in a
variety of synthetic domains, and show that RR-
HMMs perform well compared to LDSs and HMMs
on difficult video simulation and prediction tasks. Fi-
nally, we demonstrate that RR-HMMs are able to
compactly model smooth evolution and competitive
inhibition, both in a clock pendulum video and in
real-world mobile robot vision data (see videos at
http://www.select.cs.cmu.edu/projects/RRHMM).

2 Reduced-Rank HMMs

Let ht ∈ 1, . . . ,m denote the discrete hidden state of
an HMM at time t, and xt ∈ 1, . . . , n denote the dis-
crete observation. Assume for now that m ≤ n (we
relax this assumption in Section 3.4). Let T ∈ Rm×m
be the state transition probability matrix with Tij =
Pr[ht+1 = i | ht = j]. Let O ∈ Rn×m be the observa-
tion probability matrix, with Oij = Pr[xt = i | ht = j].
Write Ox for the column of O corresponding to obser-
vation x, and diag(Ox) for a diagonal matrix with Ox
on the diagonal. Let ~π ∈ Rm be the initial state dis-
tribution, ~πi = Pr[h1 = i]. Let ~ht ∈ Rm denote the
system’s belief, i.e., the distribution over hidden states
at time t given all observations up to time t.

In addition to the standard HMM notation above, as-
sume T has rank k and let T = RS where R ∈ Rm×k
and S ∈ Rk×m. Assume also that the initial state
distribution lies in the low dimensional space, i.e.,
~π = R~πl for some vector ~πl ∈ Rk. As we show be-
low, these assumptions imply that the dynamics of
the system can be expressed in Rk rather than Rm.
We denote the k-dimensional projection of the hidden
state as ~lt, which is simply a vector of real numbers
rather than a stochastic vector. Figure 1(A) shows the
RR-HMM graphical model. Figure 1(B) illustrates the
matrices R, S and O, the spaces they act on (discrete
latent space, low-rank continuous latent space, and
observation space), and the random variables within
those spaces. By convention, we think of S as project-
ing ht to lt and R as propagating lt to ht+1.

To see how the probability of a sequence can be
computed using these parameters, define Ax =
RS diag(Ox), so that Ax ∈ Rm×m, and define Wx =
S diag(Ox)R, so that Wx ∈ Rk×k. With these defini-
tions, the joint probability of x1, ..., xt, can be written
using {Ax}, but also using {Wx} (Jaeger, 2000), as

Pr[x1, ..., xt] = ~1T
mAxt . . . Ax1~π = ~1T

mRWxt . . .Wx1~πl

The latter parametrization casts a rank-k RR-HMM
as a k-dimensional PSR or transformed PSR (Rosen-
crantz et al., 2004). Inference can be carried out in
O(Nk2) time in this representation. However, since
every HMM is trivially a PSR, this leads to the ques-
tion of how expressive rank-k RR-HMMs are in com-
parison to k-state full-rank HMMs.

2.1 How Expressive are RR-HMMs?
We give an example of an RR-HMM whose set of pos-
sible predictive distributions is easy to visualize and
describe. Our example has rank 3, 10 states, and 4
observations. The observation probabilities in each
state are of the form Oi = [ piqi piqi piqi piqi]T

for some 0 ≤ pi, qi ≤ 1, p = 1 − pi and q = 1 − qi.
That is, there are 4 discrete observations, factored as
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Figure 1: (A) RR-HMM graphical model. (B) RR-HMM parameters and the spaces and random variables they act on.
(C) Projection of sets of predictive distributions of a rank-3 RR-HMM and a 3-state HMM with similar parameters.

two binary components which are independent given
the state. T and pi, qi are chosen to place the ver-
tices of the set of possible predictive distributions
on evenly spaced points along a circle in (p, q)-space:
pi = [sin(2πi/m) + 1] /2, qi = [cos(2πi/m) + 1] /2 and

Tij = 1
2m

[
2 + sin 2πi

m · sin
2πj
m + cos 2πi

m · cos 2πj
m

]
In Figure 1(C) we plot the marginal probability of each
component of the observation, for all achievable values
of the latent state vector, for the m = 10 case. These
distributions are marginals of the rows of OTT . We
also plot the corresponding marginals for the m = 3
case, which is a full-rank 3-state HMM. In general,
for an m-state HMM of any rank, the set of possible
predictive distributions is a polyhedron with at most
m vertices. So, rank-k RR-HMMs (which can have
m � k states) can model sets of predictive distribu-
tions which k-state HMMs cannot. For more on PSR
expressivity, see Jaeger (2000) and Singh et al. (2004).

2.2 The Observable Representation
We define a representation of an RR-HMM based
only on observable quantities, which makes it easier
to learn. This idea is analogous to the HMM ob-
servable representation of HKZ. The observable rep-
resentation depends on the initial probability vector
~P1 ∈ Rn and on the covariance and “trivariance” ma-
trices P2,1 ∈ Rn×n and P3,x,1 ∈ Rn×n for x = 1 . . . n:

[~P1]i = Pr[x1 = i]
[P2,1]i,j = Pr[x2 = i, x1 = j]

[P3,x,1]i,j = Pr[x3 = i, x2 = x, x1 = j]

for i, j = 1, . . . , n. They can be expressed in terms of
RR-HMM parameters, e.g.

P2,1 = ORS diag(π)OT (1a)

P3,x,1 = ORWxS diag(π)OT (1b)

Note that P2,1 and P3,x,1 each have rank k because
of the factor R. The primary intuition is that the
distributions of tuples of observations reveal the low-
rank structure in the transition matrix, and hence can
be used to infer the observable parameters.

Definition 1 The observable representation of an
RR-HMM comprises the parameters b1, b∞, {Bx}nx=1:

~b1 = UT ~P1 (2a)
~b∞ = (PT

2,1U)+ ~P1 (2b)

Bx = (UTP3,x,1)(UTP2,1)+ x = 1, . . . , n (2c)

where U ∈ Rn×k is such that UTOR is invertible.
Note that the RR-HMM dimensionality is determined
by k, not m: b1 ∈ Rk, b∞ ∈ Rk and ∀x Bx ∈ Rk×k.
Though these definitions seem arbitrary, they relate
closely to the original RR-HMM parameters:

~b1 = (UTOR)πl = (UTO)π (3a)
~bT∞ = 1T

mR(UTOR)−1 (3b)

Bx = (UTOR)Wx(UTOR)−1 x = 1, . . . , n (3c)

Hence Bx is a similarity transform of the RR-HMM pa-
rameter matrix Wx = S diag(Ox)R, and~b1 and~b∞ are
the corresponding linear transformations of the initial
state distribution and the normalization vector. To il-
lustrate, we prove equation 3(c); proofs of 3(a–b) are
similar (Siddiqi et al., 2009).

Bx = UTP3,x,1(UTP2,1)+

= (UTOR)WxS diag(~π)OT(UTP2,1)+ (eq. 1(b))

= (UTOR)Wx(UTOR)−1(UTOR)S diag(~π)OT(UTP2,1)+

= (UTOR)Wx(UTOR)−1(UTP2,1)(UTP2,1)+ (eq. 1(a))

= (UTOR)Wx(UTOR)−1 (4)

2.3 RR-HMM Inference in the Observable
Representation

For inference in the RR-HMM using the observable
representation, we define the internal state ~bt. Just
as the parameter ~b1 is a linear transform of the initial
RR-HMM belief state, ~bt is a linear transform of the
belief state of the RR-HMM at time t:

~bt = (UTOR)~lt(x1:t−1) = (UTO)~ht(x1:t−1) (5)

~bt can be updated to condition on observations and
evolve over time, just as we can update ~lt for RR-
HMMs and ~ht for regular HMMs. Given a set of ob-
servable parameters, we can now easily compute se-
quence probabilities (eqn. 6(a)), update the internal
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state (eqn. 6(b)), and compute conditional probabili-
ties (eqn. 6(c)) (proofs in Siddiqi et al. (2009)):

P̂r[x1, . . . , xt] = b̂T∞B̂xt
. . . B̂x1 b̂1 (6a)

b̂t+1 =
B̂xt

b̂t

b̂T∞B̂xt
b̂t

(6b)

P̂r[xt | x1:t−1] =
b̂T∞B̂xt

b̂t∑
x b̂

T
∞B̂xb̂t

(6c)

3 Learning Reduced-Rank HMMs
We estimate the parameters of the RR-HMM observ-
able representation from data using Singular Value De-
composition (SVD) (Golub & Van Loan, 1996). The
basic algorithm for estimating rank-k RR-HMMs is
equivalent to the spectral learning algorithm of HKZ
for learning k-state HMMs. However, our relaxation
of their conditions (e.g., HKZ assume a full-rank tran-
sition matrix, without which their bounds are vacu-
ous) leads to finite-sample performance guarantees for
rank-k RR-HMMs. In addition, we provide (and ana-
lyze) generalizations to t-step observable RR-HMMs,
to RR-HMMs with continuous observations, to indica-
tive and characteristic features (rather than events),
and to general PSRs. So, our new results allow us to
learn a much larger class of models.

3.1 The Algorithm
The algorithm takes as input the desired rank k
rather than the number of states m. Alternatively,
given a threshold, the algorithm can choose the rank
of the HMM by examining the singular values of P̂2,1

(whose rank is k in the absence of noise) in Step 2. It
assumes that we are given N independently sampled
observation triples 〈x1, x2, x3〉 from the HMM. In
practice, we can use a single long sequence of observa-
tions as long as we discount the bound on the number
of samples based on the mixing rate of the HMM (i.e.
(1 − second eigenvalue of T )), in which case π must
correspond to the stationary distribution of the HMM
to allow estimation of ~P1. The algorithm results in an
estimated observable representation of the RR-HMM:

Algorithm: Learn-RR-HMM(k,N)
1. Compute empirical estimates P̂1, P̂2,1, P̂3,x,1 of

~P1, P2,1, P3,x,1 (for x = 1, ..., n).

2. Use SVD on P̂2,1 to compute Û , the matrix
of left singular vectors corresponding to the k
largest singular values.

3. Compute model parameter estimates:
(a) b̂1 = ÛTP̂1,
(b) b̂∞ = (P̂T

2,1Û)+P̂1,

(c) B̂x = ÛTP̂3,x,1(ÛTP̂2,1)+ ( x = 1, . . . , n)

Estimated RR-HMM parameters can, in theory, lead

to negative probability estimates, which is an intrin-
sic aspect of linear PSRs (Wiewiora, 2007). These
are most harmful when they cause the normalizers
b̂T∞B̂xt

b̂t or
∑
x b̂

T
∞B̂xb̂t to be negative. However, in

our experiments, the latter was never negative and the
former was very rarely negative; and, using real-valued
observations (Section 3.5) makes negative normalizers
even less likely, since in this case the normalizer is a
weighted sum of several estimated probabilities. In
practice we recommend thresholding the normalizers
with a small positive number, and not trusting prob-
ability estimates for a few steps if the normalizers fall
below the threshold.

3.2 Theoretical Guarantees
Theorem 2 bounds the L1 error in joint probability es-
timates from the learned RR-HMM, generalizing The-
orem 6 from HKZ to the case of low-rank T . This
bound shows the consistency of the algorithm in learn-
ing a correct observable representation of the under-
lying RR-HMM, without ever needing to recover the
high-dimensional parameters R,S,O of the latent rep-
resentation. Note that the number of samples needed
to achieve a certain error level is independent of m,
the number of hidden states; instead, it depends on k,
the rank of the transition matrix, which can be much
smaller than m. Since HKZ explicitly assumes a full-
rank HMM transition matrix, and their bounds be-
come vacuous otherwise, generalizing their guarantees
involves relaxing this condition.

Define σk(M) to denote the kth largest singular value
of a matrix M . The sample complexity bounds depend
polynomially on 1/σk(P2,1) and 1/σk(OR). The larger
σk(P2,1) is, the more well-separated are the dynamics
from noise. The larger σk(OR) is, the more informa-
tive the observation is regarding state. For both these
quantities, the larger the magnitude, the fewer sam-
ples we need to learn a good model. The bounds also
depend on a term n0(ε), which is the minimum number
of observations that account for (1− ε) of probability
mass, i.e. the number of “important” observations.
Theorem 2 There exists a constant C > 0 such that
the following holds. Pick any 0 ≤ ε, η ≤ 1 and
t ≥ 1. Assume ~π > 0 everywhere, rank(T ) = k,
rank (UTOR) ≥ k and rank(O) ≥ k. In addition,
assume rank(S diag(~π)OT) ≥ k, ‖R‖1 ≤ 1, and for
some column c of R, ‖Rc‖2 ≤

√
k/m. Let ε =

σk(OR)σk(P2,1)ε/(4t
√
k). Assume

N≥C · t
2

ε2

(
k

σk(OR)2σk(P2,1)4
+

k · n0(ε)
σk(OR)2σk(P2,1)2

)
log

1
η

With probability ≥ 1 − η, the model returned by
LearnRR-HMM(k,N) satisfies∑

x1,...,xt

|Pr[x1, . . . , xt]− P̂r[x1, . . . , xt]| ≤ ε
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Some of the assumptions above are similar to condi-
tions in HKZ. Others (starting with “in addition”)
are unique to the low-rank setting. The condition on
rank(S diag(~π)OT) is needed to ensure invertibility.
The condition on ‖Rc‖2 can be satisfied by choosing
one column of R to be a near-uniform distribution.
The condition on ‖R‖1 can be satisfied by scaling down
R and scaling up S accordingly; however, this increases
one of the terms in our bound, 1/σk(OR), so we pay
a price by increasing the number of samples needed to
attain a particular error bound. For details and proofs,
see Siddiqi et al. (2009).

3.3 Consistent Learning of PSRs
Observable representations of rank-k RR-HMMs are
a subset of k-dimensional PSRs. In the finite data
case we are not guaranteed that the observable repre-
sentation learned by the spectral method corresponds
to any finite-state HMM or any RR-HMM. However,
we can show that the spectral method is a statistically
consistent PSR learning algorithm as well. This means
that we can apply it to situations where the underlying
model is not necessarily an RR-HMM and learn some-
thing sensible in the limit. This is a first step towards
deriving error bounds to general PSRs.

PSRs have no transition or observation matrices.
There are only observable operators (Jaeger, 2000),
which account for an observation and a transition si-
multaneously; we will call these Mx, analogous to
the Wx observable parameters of the RR-HMM. In
addition, a PSR needs a normalization vector ~m∞
and an initial prediction vector ~m1. Here we only
prove consistency for the observable operators Mx

in discrete-observation uncontrolled PSRs where one-
step tests and histories are sufficient. We show con-
sistency for other parameters, and for general discrete
and continuous-observation controlled PSRs with ar-
bitrary tests and histories, in Boots et al. (2009).

Denote tests by q and histories by h. PSR dimen-
sionality is determined by the size of the minimal set
of core tests that can represent it. Assume the PSR
can be represented by a minimal set of k core tests
q1, . . . , qk. Assume all histories and tests are indicator
functions of single-step observations, so that the ex-
pected value of a test or history is the probability of
seeing an observation. The prediction vector ~sh ∈ Rk
is defined as the vector of core test probabilities given
the history h: ~sh = [Pr[qi | h]]ki=1. For PSRs, the pre-
diction vector ~sh is a sufficient statistic for the state
of the system (Singh et al., 2004), and the probability
of any other test τ can be computed linearly from ~sh
using some vector ~rτ : Pr[τ | h] = ~rT

τ ~sh.

Minimal core test set discovery is a hard problem
which many researchers have worked on (Jaeger et al.,

2006; Wingate, 2008). Here, we take an approach that
is closely related to Subspace ID and spectral HMM
learning: we discover a minimal set of core tests by
SVD of a matrix of probabilities of a larger set of tests,
choosing dimensionality based on the singular values.
This approach learns a representation called a Trans-
formed PSR (TPSR) (Rosencrantz et al., 2004), which
is simply a similarity transform of an ordinary PSR.
Let T = {τ1, . . . , τn} and H = {h1, . . . , hn} be the ini-
tial sets of n > k core tests and histories (in general
their sizes may differ, but for simplicity of notation we
assume they are the same). Let S ∈ Rk×n be the ma-
trix whose columns ~sh are prediction vectors for the
unknown set of k core tests given all histories h ∈ H.
Let R ∈ Rn×k be the matrix whose rows ~rτ are lin-
ear coefficients for computing probabilities of all tests
τ ∈ T from the unknown set of k core tests. Now
define ~P1, P2,1 and P3,x,1 as

[~P1]i = Pr[hi]
[P2,1]i,j = Pr[τi, hj ]

[P3,x,1]i,j = Pr[τi, x, hj ] x = 1, . . . , n

for i, j = 1, . . . , n. For brevity we will denote ~P1 by
~π. It is now straightforward to show that [P2,1]i,j =
~rT
τi
~shj~πhj and [P3,x,1]i,j = ~rT

τi
Mx~shj~πhj , and hence

P2,1 = RS diag(~π) (7a)
P3,x,1 = RMxS diag(~π) (7b)

The parallels to the RR-HMM case are evident (see
eqn. 1(a–b)). If we now fix a matrix U ∈ Rn×k such
that UTR is invertible, we can define a k-dimensional
parameterization 〈~b1,~b∞, {Bx}〉 of the TPSR in terms
of observable quantities; in particular, the observable
operators are Bx = UTP3,x,1(UTP2,1)+ for observa-
tions x. Bx is related to Mx by a similarity transform,
which we prove in a manner similar to eqn. (4) under
similar conditions:
Bx = UTP3,x,1(UTP2,1)+

= UTRMxS diag(~π)(UTP2,1)+ (by eq. 7(b))

= UTRMx(UTR)−1(UTR)S diag(~π)(UTP2,1)+

= (UTR)Mx(UTR)−1(UTP2,1)(UTP2,1)+ (by eq. 7(a))

= (UTR)Mx(UTR)−1

Just as above, we can estimate Bx by plugging in em-
pirical estimates P̂2,1, P̂3,x,1. Since P̂2,1 → P2,1 and
P̂3,x,1 → P3,x,1, and since multiplication and pseudoin-
verse are continuous in a neighborhood of the limit due
to our rank assumptions, we see that Bx is a statis-
tically consistent estimator of Mx up to a similarity
transform. Note that this argument depends on as-
suming a fixed U matrix, since SVD is not continuous
in its inputs; in practice, however, we can use SVD to
pick U for PSRs as well.
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3.4 Learning with Sequences and Features
The probability matrix P2,1 acts as a correlation ma-
trix relating one past timestep to one future timestep.
It is useful under the assumption that the vector of ob-
servation probabilities at a single step is sufficient to
disambiguate state (n ≥ m and rank(O) = m). In sys-
tem identification theory, this corresponds to assum-
ing 1-step observability (Van Overschee & De Moor,
1996). This assumption is unduly restrictive for many
real-world dynamical systems of interest. More com-
plex sufficient statistics of past and future may need
to be modeled, such as the block Hankel matrix for-
mulations for subspace methods (Van Overschee & De
Moor, 1996), to identify linear systems that are not 1-
step observable. It is possible to consider sequences of
observations in the past and future and estimate larger
versions of P2,1 and P3,x,1 accordingly (for single obser-
vations x). These matrices will have one row for each
distinct sequence of past observations, and one column
for each distinct sequence of future observations. As
long as past and future sequences never overlap, these
matrices still have rank equal to that of the dynam-
ics model, and we can learn a k-dimensional RR-HMM
representation with as many parameter matrices Bx as
the number of distinct single observations, unlike the
sequence-modeling method suggested in HKZ which
was more complex and did not necessarily preserve
rank. The consistency and error bounds of the algo-
rithm hold as well.

Another interpretation of P2,1, P3,x,1 is as matrices
containing expected values of products of indicator
functions of observations, which correspond to sim-
ple indicative and characteristic events (Jaeger, 2000),
or histories and tests (Singh et al., 2004). More gen-
erally, these matrices can contain expected values of
statistics computed from the observations, which we
call indicative and characteristic features. The consis-
tency results still hold in this case; however extending
the bounds to this case is an area of current research.

3.5 Learning with Real-Valued Observations
It is straightforward to model multivariate real-
valued data sequences with RR-HMMs using
KDE. Assume for ease of notation that the
training data consists of N tuples of three con-
secutive continuous observation vectors each, i.e.,
〈~x1,1, ~x1,2, ~x1,3〉, 〈~x2,1, ~x2,2, ~x2,3〉, . . . , 〈~xN,1, ~xN,2, ~xN,3〉.
Also assume for now that each observation vector con-
tains a single raw observation, though this technique
can easily be combined with the more sophisticated
sequence-based learning and feature-based learning
methods described above. Pick a kernel function
K(·) and n kernel centers ~c1 . . .~cn. (In general we
can use different kernels and centers for different
feature vectors.) Let λ be a bandwidth parameter

that goes to zero at the appropriate rate in the limit.
First compute n × 1 feature vectors 〈~φj〉Nj=1, 〈~ψj〉Nj=1,
〈~ξj〉Nj=1 and 〈~ζj〉Nj=1, and normalize each to sum to 1:

[~φj ]i ∝ K(~xj,1 − ~ci) [~ψj ]i ∝ K(~xj,2 − ~ci)

[~ξj ]i ∝ K(~xj,3 − ~ci) [~ζj ]i ∝ K ((~xj,2 − ~ci)/λ)

Note that, in ~ζj only, we scale the kernel by the band-
width λ. Then, estimate the vector ~P1 and matrices
P2,1 and P3,x,1 (for ~x = ~c1, . . . ,~cn) from data:

P̂1 =
1
N

N∑
j=1

~φj P̂2,1 =
1
N

N∑
j=1

~ψj~φ
T
j

For x = c1, . . . , cn: P̂3,x,1 =
1
N

N∑
j=1

[~ζj ]x~ξj~φT
j

We compute n “base” observable operators
Bc1 , . . . , Bcn from the estimated probability ma-
trices, as well as vectors ~b1 and ~b∞, using algorithm
Learn-RR-HMM (Section 3.1). Filtering for a
sequence 〈~x1, . . . , ~xτ 〉 now proceeds as follows:
For t = 1, . . . , τ :

1. Compute & normalize[~σt]i ∝ K ((~xt − ~ci)/λ) .

2. Bσt =
n∑
j=1

[~σt]jBcj 3. ~bt+1 =
Bσt

~bt
~b∞Bσt

~bt

Many of our theoretical results carry over to the KDE
case (Siddiqi et al., 2009). Essentially, the bound holds
for predicting functions of ~σ1, ~σ2, . . . , ~σt, though we
cannot yet connect this bound to the error in estimat-
ing probabilities of raw observations.

4 Experimental Results

We designed several experiments to evaluate the prop-
erties of RR-HMMs and the learning algorithm on syn-
thetic and real-world data. The first set of experiments
(Sec. 4.1) tests the ability of the spectral learning al-
gorithm to recover the correct RR-HMM. The second
(Sec. 4.2) evaluates the representational capacity of
the RR-HMM by learning a model of a video that re-
quires both competitive inhibition and smooth state
evolution. The third (Sec. 4.3) tests the model’s abil-
ity to learn, filter and predict video captured from a
robot moving in an indoor office environment.

4.1 Learning Synthetic RR-HMMs
First we evaluate the consistency of the spectral learn-
ing algorithm for RR-HMMs on 3 synthetic examples.
In each case, we build an RR-HMM, sample observa-
tions from the model, and estimate the model with the
spectral learning algorithm described in Section 3. In
Figure 2 we compare the eigenvalues of B =

∑
xBx in

the learned model to the eigenvalues of the transition
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Figure 2: Learning discrete RR-HMMs. The three fig-
ures depict the actual eigenvalues of three different RR-
HMM transition matrices, and the estimated eigenvalues
with 95% error bars, for two different training set sizes.

−1

C.RR-HMMB. Stable LDSA.HMM

Figure 3: State space manifold and video frames simulated
by a HMM, a stable LDS, and a RR-HMM learned using
clock pendulum video (manifold scales are arbitrary). (A)
10-state HMM. (B) 10-dim LDS. (C) Rank 10 RR-HMM.

matrix T of the true model. B is a similarity transform
of SR, which has the same non-zero eigenvalues as
T = RS, so the estimated eigenvalues should converge
to the true eigenvalues with enough data. See Siddiqi
et al. (2009) for the HMM parameters.

Example 1: An RR-HMM [m = 3 hidden states, n =
3 observations, k = 2 rank]. In this example the RR-
HMM is low-rank. See Figure 2(A).
Example 2: A 2-step-Observable HMM [m = 3 hid-
den states, n = 2 observations]. In this example, the
HMM violates the m ≤ n condition of HKZ. The pa-
rameters of this HMM cannot be estimated with the
original learning algorithm, since a single observation
does not provide enough information to disambiguate
state. However, by considering 2 consecutive observa-
tions (see Section 3.4), the spectral learning algorithm
can be applied successfully. See Figure 2(B).
Example 3: A 2-step-Observable RR-HMM [m = 4
hidden states, n = 2 observations, k = 3 rank]. In
this example, the HMM is low rank, and it violates
the m ≤ n condition of HKZ. See Figure 2(C).

4.2 Competitive Inhibition+Smooth Dynamics

We model a clock pendulum video consisting of 55
frames (with a period of ∼ 22 frames) as a 10-state
HMM, a 10-dimensional LDS, and a rank 10 RR-
HMM. Note that we could easily learn models with
more than 10 latent states/dimensions; we limited the
dimensionality in order to demonstrate the relative ex-
pressive power of the different models. For the HMM,
we convert the continuous data to discrete observa-
tions by 1-nearest neighbor on 25 kernel centers sam-
pled sequentially from the training data. We trained
the resulting discrete HMM using EM. We learned
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Figure 4: (A) Sample images from the robot’s camera.
The figure below depicts the hallway environment with
a central obstacle (black) and the path that the robot
took through the environment while collecting data (the
red counter-clockwise ellipse) (B) Squared error for pre-
diction (1, . . . , 100 steps out in future) with different esti-
mated models and baselines, averaged over different initial
filtering durations (1, . . . , 250).

the LDS directly from the video using subspace ID
with stability constraints (Siddiqi et al., 2007) using a
Hankel matrix of 10 observations. We trained the RR-
HMM by considering sequences of 4 continuous mul-
tivariate observations, choosing an approximate rank
of 10 dimensions, and learning 25 observable operators
corresponding to 25 Gaussian kernel centers. We sim-
ulate a series of 500 observations from the model and
compare the manifolds in the 10-dimensional space
and the observations and frames from the simulated
videos (Figure 3). The small number of states in the
HMM is not sufficient to capture the smooth evolu-
tion of the clock: the simulated video is characterized
by realistic looking frames, but exhibits jerky irregu-
lar motion. For the LDS, although the 10-dimensional
subspace captures smooth evolution of the simulated
video, the system quickly degenerates and individual
frames of video are modeled poorly (resulting in su-
perpositions of pendulums in generated frames). For
the RR-HMM, the simulated video benefits from both
smooth state evolution and competitive inhibition.
The low-dimensional manifold is smooth and struc-
tured and the video is realistic. The results demon-
strate that the RR-HMM has the benefits of smooth
state evolution and compact state space of a LDS and
the benefit of competitive inhibition of a HMM.

4.3 Filtering, Prediction, and Simulation

We compare HMMs, LDSs, and RR-HMMs on the
problem of modeling video data from a mobile robot
in an indoor environment. A video of 2000 frames
was collected at 6 Hz from a Point Grey Bumblebee2
stereo camera mounted on a Botrics Obot d100 mo-
bile robot platform circling a stationary obstacle (Fig-
ure 4(A)) and 1500 frames were used as training data
for each model. Each frame from the training data
was reduced to 100 dimensions via SVD on single ob-
servations. Using this training data, we trained an
RR-HMM (k = 50, n = 1500) using spectral learn-
ing with sequences of 20 continuous observations and
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KDE with Gaussian kernels with 1500 centers; a 50-
dimensional LDS using Subspace ID with Hankel ma-
trices of 20 timesteps; and a 50-state HMM with 1500
discrete observations using EM run until convergence.
For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2 . . . , 100. The squared error of this predic-
tion in pixel space was recorded, and averaged over all
the different filtering extents t1 to obtain means which
are plotted in Figure 4(B). As baselines, we plot the
error obtained by using the mean of filtered data as
a predictor (‘Mean’), and the error obtained by using
the last filtered observation (‘Last’).

Both baselines perform worse than any of the more
complex algorithms (though as expected, the ‘Last’
predictor is a good one-step predictor), indicating that
this is a nontrivial prediction problem. The LDS does
well initially (due to smoothness), and the HMM does
well in the longer run (due to competitive inhibition),
while the RR-HMM performs as well or better at both
time scales since it models both the smooth state evo-
lution and competitive inhibition in its predictive dis-
tribution. In particular, the RR-HMM yields lower
prediction error consistently for the duration of the
prediction horizon (100 steps, or 16 2

3 seconds).

5 Conclusion

We have generalized the spectral learning algorithm
and bounds of Hsu et al. (2009) to accurately learn
a larger class of sequential data models (RR-HMMs)
under a larger class of observation models (non-1-step-
observable domains and multivariate continuous ob-
servations). RR-HMMs combine desirable properties
of HMMs and LDSs, allowing them to model a larger
class of dynamical systems. We have also shown that
the algorithm is consistent for learning a simple class
of PSRs. The generalization of this algorithm to con-
sistent learning of general controlled PSRs yields ac-
curate, compact models that facilitate successful plan-
ning and control (Boots et al., 2009). The most impor-
tant task for future work is to extend the performance
bounds from RR-HMMs to general PSRs, as well as to
explore practical applications in sequential data mod-
eling and planning.
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