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Application: Dynamic Textures1 

•  Videos of moving scenes that exhibit stationarity properties 
•  Dynamics can be captured by a low-dimensional model 
•  Learned models can efficiently simulate realistic sequences 
•  Applications: compression, recognition, synthesis of videos 

steam 

river 

fountain 

1 S. Soatto, D. Doretto and Y. Wu. Dynamic Textures. Proceedings of the ICCV, 2001 
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Linear Dynamical Systems2 

• State and observation models: 

• Dynamics matrix: 
• Observation matrix: 

This talk:  
-  Learning LDS parameters from data while ensuring a stable 
dynamics matrix A more efficiently and accurately than previous 
methods 

2 Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans.ASME-JBE 
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• Define state reconstruction error  as the objective: 

• We would like to learn       such that 

i.e. 
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• Lets train an LDS for steam textures using this 
algorithm, and simulate a video from it! 

= [                                …] 

xt 2 R40 



Simulating from a learned model 

xt 

t 

The model is 
unstable 



Notation 
•   λ1 , … , λn : eigenvalues of A  (|λ1| > … > |λn| ) 
•   ν1,…,νn        : unit-length eigenvectors of A 
•    σ1,…,σn    : singular values of A (σ1 > σ2 > … σn) 

•        Sλ              : matrices with |λ1| · 1 
•        Sσ          : matrices with  σ1 · 1 
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Stability 
• a matrix A is stable if |λ1|·  1, i.e. if   

• We would like to solve 

|λ1| = 0.3 

|λ1| = 1.295 

xt(1),  
xt(2) 
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s.t. 
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Stability and Convexity 
•  But Sλ is non-convex! 

•  Lets look at Sσ  instead …
–  Sσ  is convex 

–   Sσ µ Sλ 

•  Previous work4  
exploits these properties to  
learn a stable A by solving the semi-definite program

4 S. L. Lacy and D. S. Bernstein. Subspace identification with guaranteed stability using constrained 
optimization. In Proc. of the ACC (2002), IEEE Trans. Automatic Control (2003) 

A1 A2 

s.t. 



• Lets train an LDS  for steam again, this time 
constraining A to be in Sσ



Simulating from a Lacy-Bernstein 
stable texture model 
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Model is  
over-constrained.  
Can we do better? 



•  Formulate the Sσ approximation of the problem as 
a semi-definite program (SDP) 

• Start with a quadratic program (QP) relaxation of 
this SDP, and incrementally add constraints 

• Because the SDP is an inner approximation of the 
problem, we reach stability early, before reaching 
the feasible set of the SDP 

• We interpolate the solution to return the best 
stable matrix possible 

Our Approach 
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The Algorithm 

•  A1: unconstrained QP solution (least squares estimate) 
•  A2: QP solution after 1 constraint (happens to be stable) 
•  Afinal: Interpolation of stable solution with the last one 
•  Aprevious method: Lacy Bernstein (2002) 

objective function contours 



• Lets train an LDS for steam using constraint 
generation, and simulate … 



Simulating from a Constraint 
Generation stable texture model 

xt 

t 

Model captures 
more dynamics 
and is still stable 



•  Least Squares •  Constraint Generation 



Empirical Evaluation 
• Algorithms: 

– Constraint Generation – CG (our method) 
– Lacy and Bernstein (2002) –LB-1 

• finds a σ1 · 1 solution 

– Lacy and Bernstein (2003)–LB-2  
• solves a similar problem in a transformed space 

• Data sets 
– Dynamic textures 
– Biosurveillance baseline models (see paper) 





Reconstruction error 
• Steam video 
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Running time 
• Steam video 
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Conclusion 
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Conclusion 
• A novel constraint generation algorithm for learning 

stable linear dynamical systems 

•  SDP relaxation enables us to optimize over a larger set 
of matrices while being more efficient 

•  Future work: 
–  Adding stability constraints to EM 
–  Stable models for more structured dynamic textures 



• Thank you! 





Subspace ID with Hankel matrices 
 Stacking multiple observations in D forces latent states 
to model the future 

e.g. annual sunspots data with 12-year cycles 

= 

First 2 columns of U 

k = 1 k = 12 

t t 
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•  The state space of a stable LDS lies 
inside some ellipse 

•  The set of matrices that map a particular 
ellipse into itself (and hence are stable) is 
convex 

•  If we knew in advance which ellipse 
contains our state space, finding A 
would be a convex problem.  
But we don’t 

•  …and the set of all stable matrices is 
non-convex 
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Stability and Convexity 




