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1. THE COMPLEXITY OF GRAPH TRAVERSAL

Graph traversal is a fundamental problem in computing, since it is the natural
abstraction of many search processes, with applications as diverse as Internet
searching (Mauldin and Leavitt [40], Selberg and Etzioni [46]) and computer-
aided verification (Dill et al. [25], Kurshan [38]). In computational complexity
theory, graph traversal (or more precisely, st-connectivity) is a fundamental
problem for an additional reason: understanding the complexity of directed versus
undirected graph traversal seems to be the key to understanding the relationships
among deterministic, probabilistic, and nondeterministic space-bounded algorithms.
For instance, although directed graphs can be traversed nondeterministically in
polynomial time and logarithmic space simultaneously, it is not widely believed that
they can be traversed deterministically in polynomial time and small space
simultaneously. (See Tompa [48] and Edmonds and Poon [27] for lower bounds,
and Barnes et al. [5] for an upper bound.) In contrast, undirected graphs can be
traversed in polynomial time and logarithmic space probabistically by using a ran-
dom walk (Aleliunas et al. [2], Borodin et al. [17]); this implies similar resource
bounds on (nonuniform) deterministic algorithms (Aleliunas et al. [2]). More
recent work presents uniform deterministic polynomial time algorithms for the
undirected case using sublinear space (Barnes and Ruzzo [8]), and even O(log2 n)
space (Nisan [41]), as well as a deterministic algorithm using O(log1.5 n) space, but
more than polynomial time (Nisan et al. [42]).

In this paper we concentrate on the undirected case. The simultaneous time and
space requirements of the best known algorithms for undirected graph traversal are
as follows. Depth-first or breadth-first search can traverse any n vertex, m edge
undirected graph in O(m+n) time, but requires 0(n) space. Alternatively, a ran-
dom walk can traverse an undirected graph using only O(log n) space, but requires
3(mn) expected time (Aleliunas et al. [2]). In fact, Feige [28], based on earlier
work of Broder et al. [20] and Barnes and Feige [7], has shown that there is a
spectrum of compromises between time and space for this problem: any graph can
be traversed in space S and expected time T, where ST�mn(log n)O(1)�dmin and
dmin is the minimum degree of any vertex. This raises the intriguing prospect of
proving that logarithmic space and linear time are not simultaneously achievable
or, more generally, proving a time-space tradeoff that closely matches these upper
bounds.

Although it would be desirable to show a tradeoff for a general model of com-
putation such as a random access machine, obtaining such a tradeoff is beyond the
reach of current techniques. Thus it is natural to consider a ``structured'' model
(Borodin [16]), that is, one whose basic move is based on the adjacencies of the
graph, as opposed to one whose basic move is based on the bits in the graph's
encoding. An appropriate structured model for proving such a tradeoff is some
variant of the JAG (``jumping automaton for graphs'') of Cook and Rackoff [24].
Such an automaton has a set of states, and a limited supply of pebbles that it can
move from vertex to adjacent vertex (``walk'') or directly to a vertex containing
another pebble (``jump''). The purpose of its pebbles is to mark certain vertices tem-
porarily, so that they are recognizable when some other pebble reaches them. The
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pebbles represent vertex names that a structured algorithm might record in its
workspace. Walking represents replacing a vertex name by some adjacent vertex
found in the input. Jumping represents copying a previously recorded vertex name.

Rabin (see [24]), Savitch [45], Blum and Sakoda [13], Blum and Kozen [12],
Hemmerling [30] and others have considered similar models; see Hemmerling's
monograph for an extensive bibliography (going back over a century) emphasizing
results for ``labyrinths''��graphs embedded in two- or three-dimensional Euclidean
space.

The JAG is a structured model, but not a weak one. In particular, it is general
enough to encompass in a natural way most known algorithms for undirected
graph traversal. For instance, a JAG can execute a depth-first or breadth-first
search, provided it has one pebble for each vertex, by leaving a pebble on each
visited vertex in order to avoid revisiting it, and keeping the stack or queue of
pebble names in its state. Furthermore, as Savitch [45] shows, a JAG with the
additional power to move a pebble from vertex i to vertex i+1 can simulate an
arbitrary Turing machine on directed graphs. Even without this extra feature, we
will show in Section 3 that JAGs are as powerful as Turing machines for the
purposes of solving undirected graph problems (our main focus). In particular, we
will show for all space bounds S(n)=0(log n) that JAGs can solve any graph
problem solvable by Turing machines in space S(n), with at most a constant factor
loss in space and a polynomial factor loss in time. Furthermore, the simulation
requires only two pebbles and no jumping.

Cook and Rackoff define the time T used by a JAG to be the number of pebble
moves, and the space to be S=P log2 n+log2 Q, where P is the number of pebbles
and Q the number of states of the automaton. (Keeping track of the location of
each pebble requires log2 n bits of memory, and keeping track of the state requires
log2 Q.) It is well known that st-connectivity for directed graphs can be solved by
a deterministic Turing machine in O(log2 n) space by applying Savitch's Theorem
[44] to the obvious O(log n) space nondeterministic algorithm for the problem.
Cook and Rackoff show that the same O(log2 n) space upper bound holds for
deterministic JAGs by direct construction of an O(log n) pebble, nO(1) state deter-
ministic JAG for directed st-connectivity. More interestingly, they also prove a
lower bound of 0(log2 n�log log n) on the space required by JAGs solving this
problem, nearly matching the upper bound. Standard techniques (Adleman [1],
Aleliunas et al. [2]) extend this result to any randomized JAG whose time bound
is at most exponential in its space bound. Berman and Simon [11] extend this
space lower bound to probabilistic JAGs with even larger time bounds, namely
exponential in (log n)O(1).

In this paper we use variants of the JAG to study the tradeoff between time and
space for the problem of undirected graph traversal. The JAG variants we consider
are in some ways more restricted than the model introduced by Cook and Rackoff,
but in other ways are sometimes more powerful. For example, the variant studied
in Section 4 is more restricted in its jumping ability, but is considerably more
powerful in another dimension, namely, it is nondeterministic.

Several authors have considered traversal of undirected regular graphs by a JAG
with an unlimited number of states but only the minimum number (one) of pebbles,
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a model better known as a universal traversal sequence (Aleliunas et al. [2], Alon
et al. [3], Bar-Noy et al. [4], Borodin et al. [18], Bridgland [19], Buss and
Tompa [21], Istrail [34], Karloff et al. [37], Tompa [49]). A result of Borodin
et al. [18] shows that such an automaton requires 0(m2) time (on regular graphs
with 3n�2�m�n2�6&n). Thus, for the particularly weak version of logarithmic
space corresponding to the case P=1, a quadratic lower bound on time is known.

The known algorithms and the lower bounds for universal traversal sequences
suggest that the true time-space product for undirected graph traversal is
approximately quadratic, perhaps 3(mn). The main results of this paper are lower
bounds for variants of the JAG that provide progress toward proving this conjec-
ture and, in fact, establish such a lower bound for one variant. These results are
outlined below.

The upper bound of ST�mn(log n)O(1)�dmin by Feige [28], and the preceding
upper bounds of Broder et al. [20] and Barnes and Feige [7], are established on
a model that is actually a restricted variant of the JAG. In their algorithms, the
JAG initially drops P&1 pebbles on random vertices, after which they are never
moved. It then uses its last pebble to explore the graph (probabilistically), with the
others as fixed landmarks. In Section 4, using essentially the same variant of the
JAG, we prove lower bounds of PT=0(mn�d )=0(n2) for d-regular graphs (d�3),
and PT=0(mn) for nonregular graphs, independent of the value of Q, even for
nondeterministic JAGs. This nearly matches the upper bound. The main difference
between the upper and lower bounds is that they are for complementary problems.
The upper bound is by a one-sided error probabilistic algorithm for undirected
st-connectivity. The lower bound applies to nondeterministic, and hence one-sided
error probabilistic, algorithms for st-nonconnectivity. This result does not imply
that Feige's algorithm is optimal, but does imply, for example, that it cannot be
made both errorless (i.e., zero-sided error) and substantially faster (on this JAG
model). It also implies optimality of depth- and breadth-first search, in the following
sense. While it is not surprising that linear time is necessary for deciding connec-
tivity (e.g., see Theorem 3), our quadratic lower bound shows the stronger result
that achieving linear time requires linear space.

This result also bears on the complexity of undirected st-connectivity, versus that
of its complement, st-nonconnectivity. For deterministic, or errorless probabilistic
algorithms, of course, the two problems are of equal complexity. For nondeter-
ministic, or one-sided error probabilistic algorithms, however, the complexities may
differ. In particular, if a problem L is solvable nondeterministically in O(log n)
space, then the complement of L is, too, by the result of Immerman [33] and
Szelepcse� nyi [47]. (For the problem of undirected st-connectivity, this also follows
from the result of Nisan and Ta-Shma [43].) However, their algorithms are rather
slow. For example, a logarithmic space nondeterministic RAM can solve st-connec-
tivity in time O(n), but to solve the complementary st-nonconnectivity problem by
the Immerman or Szelepcse� nyi algorithms requires time 0(n4). Is nonconnectivity
intrinsically more difficult? One of our results shows that this is indeed the case, at
least on one class of structured models we consider. Namely, although both
problems are solvable by a logarithmic space, polynomial time nondeterministic
JAG, st-nonconnectivity is provably harder. Specifically, st-connectivity is solvable
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in O(n) time by a logarithmic space nondeterministic JAG with only one pebble, a
constant number of states, and no jumping. In contrast, we show that st-noncon-
nectivity requires more time, even on a somewhat richer model. Namely, time
0(mn) (0(n2) for regular graphs) is required to solve st-nonconnectivity by a non-
deterministic JAG with one movable pebble and any fixed number of unmovable
pebbles, even using exponentially many states and jumping.

The result above is the desired quadratic lower bound, on a model that is natural
but more restricted than we would like. In particular, it would be nice to extend the
result to a model in which all pebbles are movable. In fact, our proof does extend
to give a nonlinear lower bound when some motion of the pebbles is allowed, but
the bound degenerates when the pebbles are allowed to move with complete
freedom. Such models are surprisingly powerful; see Section 3. Nevertheless, in a
companion paper [10] we prove a lower bound on a model with freely moving
pebbles, but without the ability to jump one pebble to another. This nonjumping
model is closer to the one studied by Blum and Sakoda [13], Blum and Kozen
[12], and Hemmerling [30]. We will distinguish this nonjumping variant by refer-
ring to it as a WAG��``walking automaton for graphs.''

Following the preliminary appearance of some of these results [9], Edmonds
[26] proved a much stronger result for traversing undirected graphs than that
proved in [10], and Barnes and Edmonds [6] and Edmonds and Poon [27]
proved even more dramatic tradeoffs for traversing directed graphs.

The results described above have the strength that they hold independent of the
magnitude of Q, the number of states. Presumably the bounds can be strengthened
by also accounting for Q. It is tempting to tackle first the case in which Q is
constant; indeed, Cook and Rackoff [24] investigate JAGs on undirected graphs in
this case, showing for example that PQ=O(1) is impossible. For a nonjumping
variant of JAGs, in Section 5 we prove the stronger bound PQ=0(n) for 2-regular
graphs, no matter how much time the automaton is allowed. Thus, for logarithmic
space, lower bounds on time are only interesting when the number of states grows
at least linearly with the size of the graph. As one simple consequence, this makes
the lower bounds harder to prove, as one cannot simply make the graph so large
compared to Q that the automaton is guaranteed to loop forever among some
states. As a byproduct, we show that a universal traversal sequence for 2-regular
graphs cannot consist solely of the repetition of a short sequence.

Sections 3, 4, and 5 are largely self-contained, and may be read in any order.

2. GRAPH-TRAVERSING AUTOMATA

The problem we will be considering is ``undirected st-connectivity'': given an
undirected graph G and two distinguished vertices s and t, determine if there is a
path from s to t.

Consider the set of all n-vertex, edge-labeled, undirected graphs G=(V, E) with
maximum degree d. For this definition, edges are labeled as follows. For every edge
[u, v] # E there are two labels *u, v , *v, u # [0, 1, ..., d&1] with the property that, for
every pair of distinct edges [u, v] and [u, w], *u, v {*u, w . It will sometimes be
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convenient to treat an undirected edge as a pair of directed half edges, each labeled
by a single label. For example, the half edge directed from u to v is labeled *u, v .

We will also consider more restricted labelings, since this technical detail influen-
ces some of our results in unexpected ways. The general definition above requires
that the outgoing labels from each vertex u be distinct. That is, for all u and all
neighbors v{v$ of u we require *u, v {*u, v$ . We define a graph to be bijectively
labeled if, in addition, the incoming labels are distinct, i.e., *v, u {*v$, u . Any graph
G can be given a bijective labeling as follows. Form a bipartite graph on two copies
of G's vertex set by adding a directed edge from u in the first copy to v in the second
for each directed half edge from u to v in G. Any bipartite graph of maximum
degree d can be d-edge-colored using matching techniques (see Bondy and Murty
[15, Theorem 6.1]). The color of the edge (u, v) becomes the label *u, v of the
corresponding half edge in G.

A special case of a bijective labeling is a symmetric labeling, where all edges have
the same label in each direction, i.e., *u, v=*v, u for all u, v. (Universal traversal
sequences for regular graphs with bijective and symmetric labelings have been
considered previously by Hoory and Wigderson [32] and Istrail [35], respectively,
although under different names. Both papers used the term ``consistent'' for these
two different classes of restricted labelings.)

Not all graphs have symmetric labelings, and while every graph does have a
bijective labeling, such labelings are not known to be computable in logarithmic
space. Nevertheless, Lemma 1 below shows that, when upper bounds for st-connec-
tivity are considered, there is no loss of generality in restricting attention to sym-
metrically (and hence, bijectively) labeled graphs. Of course, lower bounds are at
least as strong if they also hold when restricted to such graphs.

The reduction mentioned in Lemma 1 is not intended to be implemented on a
JAG, but rather on a general model of computation such as a Turing machine.

Lemma 1. There is a simple, connectivity-preserving, logarithmic space reduction
from general labeled graphs to symmetrically labeled graphs of maximum degree at
most 3.

Proof. Let ru, v be the rank of *u, v in [*u, v$ | v$ is adjacent to u]. For example,
if the graph is regular, ru, v is simply *u, v . Replace each vertex of degree d with a
d-cycle, if d is even, and a (d+1)-cycle, if d is odd. (For the purposes of this proof,
a 2-cycle is simply an edge.) Label these cycles symmetrically using 0 and 1. Replace
edge [u, v] by an edge from the (ru, v) th vertex of u's cycle to the (rv, u) th vertex of
v's cycle, symmetrically labeled 2. K

It is not difficult to extend the proof to make the graph in Lemma 1 both sym-
metrically labeled and 3-regular.

Following Cook and Rackoff [24], a JAG is an automaton with Q states and P
distinguishable pebbles, where both P and Q may depend on n and d. For the
st-connectivity problem, two vertices s and t of its input graph are distinguished.
The P pebbles are initially placed on s. Each move of the JAG depends on the
current state, which pebbles coincide on vertices, which pebbles are on t,
and the edge labels emanating from the pebbled vertices. Based on this information,
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the automaton changes state, and selects some pebble p and either some
i # [0, 1, ..., d&1] or some j # [1, 2, ..., P]. In the former case, i must be an edge
label emanating from the vertex currently pebbled by p, and p is moved to the other
endpoint of the edge with label i; in the latter case, p ``jumps'' to the vertex occupied
by pebble j. (The decision to make t ``visible'' to the JAG but s ``invisible'' was made
simply to render 1-pebble JAGs on regular graphs equivalent to universal traversal
sequences.) A deterministic JAG that determines st-connectivity is required to enter
an accepting state if and only if there is a path from s to t. Nondeterministic and
probabilistic generalizations of JAGs are defined in the usual way. Note that JAGs
are nonuniform models.

There are a number of interesting variants of JAGs. For instance, in Section 4 we
will consider a strengthened form of jumping, called ``strong jumping,'' where the
automaton's move may also be to select some v # [1, ..., n] and jump pebble p to
vertex v. On the other hand, in Section 5 we will disallow jumping by studying
WAGs. We will also distinguish among three types of pebbles: ``active,'' ``passive,''
and ``unmovable.'' The automaton as described in the previous paragraph has
active pebbles, in the sense that any pebble can move. A weaker notion is that of
the passive pebble, which cannot move unless accompanied by an active pebble. In
this case, we allow one active pebble accompanied by any number of passive
pebbles to walk or jump each move. Of particular interest is the case of one active
pebble and P&1 passive pebbles, in which case it is natural to think of the
automaton itself as the active pebble moving about the graph, picking up and
dropping pebbles. This is the model used in Section 5.

Closely related to the passive pebble is the unmovable pebble, which, once placed
on the graph, cannot be moved at all. This is the model discussed in Section 4. We
will mainly consider unmovable pebbles as a special case of passive pebbles. That
is, the automaton starts with a supply of pebbles that are carried and dropped at
will (but never picked up). In Section 4.2, however, we will also consider a less
uniform placement method where some of the pebbles are placed on the graph
before the JAG begins its computation. Detailed definitions of this version are
deferred to Section 4.2.

We have defined JAGs running on arbitrary graphs, but JAGs that are guaran-
teed to operate correctly only on regular graphs are also of interest, and sometimes
may be substantially more efficient than in the general case; see Theorem 12, for
example. Our lower bounds generally apply even to JAGs operating on regular
graphs. The restriction to regular graphs, in addition to strengthening the lower
bound results, provides comparability to the known results about universal traver-
sal sequences. A technicality that must be considered in the case of regular graphs
is that they do not exist for all choices of degree d and number of vertices n, as is
seen from the following proposition.

Proposition 2. d-regular, n vertex graphs exist if and only if dn is even and
d�n&1.

(See [18, Proposition 1], for example, for a proof.) To allow use of 0-notation
in expressing our lower bounds, however, the ``time'' used by a JAG must be
defined for all sufficiently large n. To this end, we consider the time used by a JAG
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on d-regular, n-vertex graphs where dn is odd to be the same as its running time
on d-regular, (n+1)-vertex graphs. We adopt a similar convention for d-regular
symmetrically labeled graphs, which exist if and only if, in addition to the restric-
tions above, either d=0 or n is even.

It is not difficult to show that st-nonconnectivity requires time 0(m) on any of
the JAG variants described above, independent of the number of pebbles and states.
This result is not surprising, but we will sketch it because of its generality, and also
because the proof introduces some ideas we will use subsequently.

Theorem 3. Let n be a multiple of 4, d<n�2, and m=dn�2. Any JAG, even a
nondeterministic one with strong jumping, solving st-nonconnectivity for all symmetri-
cally labeled, d-regular, n-vertex, m-edge graphs requires time 0(m) in the worst case.

Proof. With the given constraints on n and d, there is a d-regular, n-vertex,
symmetrically labeled graph having its vertices and edges evenly divided between
two connected components, one containing s, the other containing t (see [15,
Exercise 6.2.1]). Fix a minimal length accepting computation of JAG J on this
disconnected graph. Suppose for some a # [0, 1, ..., d&1] that pebbles in this
computation walk across fewer than wm�(2d )x edges labeled a. Then there must be
at least one edge labeled a in each component that is not crossed during this
computation. These two edges can be cut and rejoined so that the resulting graph
is an st-connected graph also accepted by this computation. Hence, J requires at
least m�2 steps. K

See Theorem 15 for a matching upper bound, which is in fact achieved by a
deterministic WAG, even on general graphs.

3. JAGS HAVE TURING MACHINE POWER

In this section we will show that, although JAGs are structured computational
models, they are as ``powerful'' as Turing machines for the purposes of solving
problems about undirected graphs. That is, we will show that any undirected graph
problem solvable by a Turing machine is also solvable by a JAG in roughly the
same space and time. This holds even on relatively weak variants such as WAGs
with one passive and one active pebble. Thus, sufficiently strong lower bounds on
JAGs or WAGs will have direct implications for Turing machine complexity.

Since the input conventions for JAGs and Turing machines are quite different, we
must specify the correspondence between the two models carefully. For technical
reasons, we will focus initially on problems about connected, regular graphs with
no distinguished vertices. More general problems, including st-connectivity, will be
discussed later. Let G be the set of all edge-labeled, connected, regular graphs,
where edges are labeled as described in Section 2. A graph problem is simply a sub-
set H�G. For example, H might be the set of (connected, regular, edge-labeled)
bipartite graphs, or the set of Hamiltonian graphs. To say that a graph problem H

is solvable by a JAG J has the obvious meaning��J, when started with all its
pebbles on an arbitrary vertex of G # G, accepts if and only if G # H.
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Turing machines, of course, work not on graphs, but rather on encodings of
graphs. Thus, to say that H is solvable by a Turing machine M means that M
accepts a ``reasonable'' encoding of a graph G # G if and only if G # H. To be
precise, an encoding is reasonable if and only if it is interreducible with the
``adjacency matrix'' representation by a deterministic Turing machine using
O(log n) space. In the adjacency matrix representation, an n-vertex d-regular graph
is represented by a string l of n2 symbols from the alphabet [C, 0, 1, ..., d&1]. Let
l(i, j) denote the (n } i+ j) th symbol of l, 0�i, j�n&1. Then l(i, j)=l( j, i)=C if
and only if vertices i and j are not adjacent, and otherwise l(i, j) is the label on the
half edge from vertex i to vertex j. Note that reasonable encodings of graphs (at
least implicitly) specify a numbering of the vertices, a feature not present in G.
Thus, there may be many different encodings of each graph, corresponding to
different vertex numberings. M, of course, must accept all or none of these equiv-
alent encodings.

Consider the following ``edge list encoding,'' which will be used throughout this
section. The vertex names are distinct, but not necessarily consecutive, O(log n) bit
integers. An edge is encoded as a triple (i, j, a), where i and j are vertex names and
a is the label on the half edge from i to j. The edge list encoding consists of a
sequence of such triples, in any order, and possibly with repetitions. It is
straightforward to show that this is a reasonable encoding.

The main technical result of this section is that a simple JAG can construct an
edge list encoding of its input graph in polynomial time and logarithmic space. This
is embodied in Lemma 5 below. One key idea in the proof of Lemma 5 is that a
WAG can use a universal traversal sequence (Aleliunas et al. [2]) to explore its
input. Recall that a universal traversal sequence is guaranteed to visit all vertices of
a graph. The following simple extension is more useful for our purposes.

A sequence V # [0, 1, ..., d&1]* is said to be a half edge universal traversal
sequence for d-regular, n-vertex graphs if it has the property that a walk according
to V from any start vertex of any d-regular, n-vertex graph G will cross every edge
of G at least once in each direction. An analogous definition can be made for non-
regular n-vertex graphs of maximum degree d. In this case we define the ``walk
according to V '' so that, at a vertex u of less than maximum degree, the next letter
of V selects among u's neighbors evenly. To be precise, when at a vertex u of degree
d(u)=d, with the next letter of V being _ # [0, 1, ..., d&1], the walk proceeds to the
neighbor v of u having *u, v=_, just as in the d-regular case. When d(u)<d, the
walk remains at u if _�wd�d(u)x d(u), and otherwise proceeds to the vertex v
having *u, v=_i , where _i is the ith smallest label on a half edge leaving u, and
i=_ mod d(u). (A simpler definition of ``walk according to V '' for nonregular
labeled graphs would be to remain at u unless _=*u, v for some v. Under this
convention, the bound below would be increased by a factor of O(n).)

Lemma 4. Half edge universal traversal sequences of polynomial length exist
for n vertex graphs. In particular, length O(dn3 log n)=O(mn2 log n) suffices for
d-regular graphs, and length O(m2n log n) suffices for all m-edge graphs.

Proof (Sketch). The vertex (half edge) cover time of a graph G, CV (G) (CE (G)),
is the maximum, over all vertices u, of the expected number of steps required for
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a random walk starting at u to reach all vertices (cross all half edges, respectively)
of G. The vertex (half edge) hitting time of G, HV (G) (HE (G)), is the maximum,
over all pairs u, x, of the expected number of steps required for a random walk
starting at vertex u to reach vertex x (respectively, to cross half edge x). Clearly
hitting time is never greater than cover time, either for vertices or edges. Let F be
a family of edge-labeled graphs, and define CV (F) to be the maximum cover time
of any graph in F, and similarly for HV (F). A basic result of Aleliunas et al. [2]
is that any family F of d-regular graphs has a (vertex) universal traversal sequence
of length O(CV (F) log(n2 |F | )). Alon et al. [3] and Chandra et al. [22] observe
that CV (F) can be replaced by HV (F) in this expression.

These results extend easily to universal traversal sequences for nonregular graphs
of maximum degree d (as defined above) by observing that cover-and hitting times
are at most doubled when the random walk is modified so as to remain at a vertex
u of degree d(u) with probability (d&wd�d(u)x d(u))�d�1�2. Furthermore, for both
regular and nonregular graphs, the technique yields an analogous expression
bounding the length of half edge universal traversal sequences, using HE in place of
HV . Zuckerman [50] observes that HE (G)�HV (G)+2m for all graphs G. Aleliunas
et al. [2] show that HV (G)�2m 2, where 2 is the diameter of G (maximum distance
between two vertices). It is well known (cf. Lemma 13) that the diameter of
d-regular graphs is O(n�d ). The Lemma follows, since there are at most ndn labeled
d-regular n-vertex graphs, and at most n4m labeled nonregular m-edge, n-vertex
graphs. K

We remark that Lemma 4 implies the same bounds for lengths of vertex universal
traversal sequences, asymptotically matching the best known upper bounds for
both regular (Aleliunas et al. [2], Kahn et al. [36]) and nonregular graphs.

The main technical result of this section is the following lemma. For the purposes
of this lemma, it is convenient to think of the JAG as a ``transducer,'' i.e., as a
machine equipped with a one-way, write-only output tape, excluded from the space
bound, on which it writes the string encoding the graph given to it as input.

Lemma 5. A deterministic WAG with two pebbles, one of them passive, can
output an edge list encoding of its (connected, regular) input graph in time nO(1) and
space O(log n).

Proof. The idea of the proof is for the WAG to use a universal traversal
sequence to systematically explore its input G, generating an encoding of the edges
it explores as it goes. The key point is to be able to devise a numbering for the
vertices, and to determine a vertex's number when needed.

Call the WAG E, and let s be the vertex on which the pebbles of E start. Suppose
G is d-regular, with n vertices. Let V be a half edge universal traversal sequence for
d-regular, n-vertex graphs. (Cf. Lemma 4.)

Call E 's passive pebble p. Initially, E leaves p on s, then determines the shortest
prefix U of VV such that |U |�|V |, and a walk from s according to U ends at s.
U has the property that a walk from s according to U returns to s after crossing
each edge at least once in each direction. Recall that s is not specially marked in
our model. The construction of U allows us to retain s as a landmark without
permanently marking it with a pebble.
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The vertex number *w that E assigns to an arbitrary vertex w # G is the length
of the shortest prefix Uw of U such that the walk from s according to Uw ends
at w. For instance, *s=0.

For 1�i�|U |+1, let vi be the vertex reached from s by walking according to
the length i&1 prefix of U. Let ai be the i th symbol of U. Then, for 1�i�|U | ,
the half edge crossed during the i th step of the walk according to U from s will
be the half edge [vi , vi+1], which has the label *vi , vi+1

=ai . During the i th phase
of the algorithm, 1�i�|U |, E will determine and write onto its output tape the
triple (*vi , *vi+1 , ai) defining this labeled half edge.

Suppose at the start of the i th phase that both E and p are on vi , and that E has
stored in its state the values i and *vi . (Initially, this holds with E and p on s=v1 ,
i=1, and *v1=0.) During the i th phase, E operates as follows.

1. Carry p across the half edge labeled ai , then drop p on the vertex reached
(vi+1 , by definition).

2. Walk from vi+1 according to the last |U |&i symbols of U, thus returning
to s.

3. Walk from s according to U until p is encountered. The length of this walk
is *vi+1.

4. Output the triple (*vi , *vi+1 , ai) defining this labeled half edge.

Note that, at the completion of this process, E is in the configuration desired for
the start of phase i+1.

The running time of E is O( |U | 2)=nO(1), and E had nO(1) states. K

On bijectively labeled graphs, it suffices to have only one movable pebble.

Lemma 6. A deterministic WAG with one active pebble and one arbitrarily placed
unmovable pebble can construct a binary string encoding its (connected, regular)
bijectively labeled input graph in time nO(1) and space O(log n).

Proof. The proof is similar to that of Lemma 5. Let U be a half edge universal
traversal sequence, and for a vertex w, define *w to be the length of the shortest
prefix of U that walks from w to the fixed pebble. Since the graph is bijectively
labeled, these vertex numbers will be unique. (This idea is used by Hoory and
Wigderson [32].) For 1�i�|U |+1, let vi be the vertex reached from the fixed
pebble by walking according to the length i&1 prefix of U. Suppose again that the
values i and *vi are stored in the state, the movable pebble is on vi , and ai is the
ith symbol of U. Then, for the neighbor vi+1 of vi reached via label ai , *vi+1 can
be determined by walking from vi+1 to the fixed pebble according to U. After
writing (*vi , *vi+1 , ai), the movable pebble can be returned to vi+1 by walking
from the fixed pebble according to the length i prefix of U. Again, the running time
of this algorithm is O( |U | 2)=nO(1). K

Theorem 7 below is the main result of this section. It establishes the equivalence
between WAGs and ``general machines'', which include nonuniform Turing
machines as a special case. A general machine consists of an input x1x2 } } } xn and
a set of states. The state set may depend on the length n of the input and, in
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particular, the number of states may be a function of n. Included in each state is
the input index, which specifies the index of the next input character to be read. In
one move, based on its current state q, input index i, and the input symbol xi , the
machine enters a new state q$ with a new input index i $, as dictated by a transition
function that may also depend on n. This transition may be deterministic, nondeter-
ministic, or probabilistic, depending on the type of the general machine. Acceptance
is defined as it is for the corresponding types of Turing machines. Time is defined
as the number of moves, and space as log2 Q, where Q is the number of states.

General machines are almost identical to the ``recognition machines'' defined by
Cobham [23], except that recognition machines require the input to be accessed
sequentially, whereas general machines allow completely random access to the
input. It is also easy to see that Turing machines are a special case, by including the
worktape contents and head positions as part of the state of the general machine.

Theorem 7. Let H be an undirected graph problem as defined above, and let
S(n)=0(log n). H is solvable using space O(S(n)) and time nO(1) } T(n) by a deter-
ministic (nondeterministic, probabilistic) general machine if and only if it is solvable
in space O(S(n)) and time nO(1) } T(n) by a deterministic (nondeterministic,
probabilistic, respectively) JAG. Moreover, the JAG simulating a general machine
requires no jumping and only two pebbles, one of them passive. On bijectively labeled
graphs, the WAG requires only one active and one unmovable pebble.

Proof. Let M be a general machine accepting H in space S(n) and time T(n).
By Lemma 5 or 6 above, there is a two pebble deterministic WAG E that can
construct a binary string encoding its input graph G. Because of logarithmic space
reducibility among reasonable encodings, assume without loss of generality that M
operates on the same encoding output by E. We build a WAG W accepting H by
simulating both M and E. Specifically, W maintains M 's state as part of its state.
If M 's input index is i, W simulates E until it generates its i th output bit, and then
simulates one step of M (deterministically, nondeterministically, or probabilisti-
cally, as appropriate). W continues in this manner until M halts. W 's state set must
be large enough to encode a state of M and a state of E. This requires 2O(S(n)) states,
or O(S(n)) space. Note that it is not necessary to store the string constructed by
E; its bits are reconstructed as needed. The simulation by W of each of M 's steps
requires rerunning the entire computation of E, so W 's time bound is nO(1) } T(n).

In the other direction, let J be a JAG that accepts H using P(n) pebbles, Q(n)
states, and T(n) time. J is simulated by a general machine M, whose state encodes
J 's state plus the vertex names on which pebbles currently reside. This requires
Q(n) } nP(n) states, or space P(n) log2 n+log2 Q(n), which is, by definition, J 's space
bound. M can then simulate a move of J, using its input to determine the vertex
name to which a given pebble walks by following a given edge label, which
increases the time and number of states by only a polynomial factor. K

Note that a general machine can solve any graph problem in linear space and
time (nonuniformly), hence by Theorem 7, a WAG can do so in linear space and
polynomial time. Theorems 12 and 15 in Section 4.3 give faster WAG algorithms at
this space extreme.
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Corollary 8. A JAG solving an undirected graph problem in space 0(log n) can
be simulated by a WAG, at the expense of a constant factor loss in space and a poly-
nomial factor loss in time.

Corollary 9. A JAG or WAG solving an undirected graph problem using P
pebbles and space 0(log n) can be simulated by one with only two pebbles, at the
expense of a polynomial factor loss in time and a constant factor loss in space (more
precisely, a factor of nP+O(1) in the number of states).

The polynomial factor loss in time implicit in Corollaries 8 and 9 is O(U2(n)),
where U(n) is the length of a half edge universal traversal sequence (Lemma 4).
This factor can be improved to O(U(n)) by directly using the proof techniques from
Lemmas 5 and 6.

As another illustration of Theorem 7, consider the problem of deciding bipartite-
ness of a connected graph. It is easy to see that a nondeterministic two pebble
WAG can recognize nonbipartite graphs (guess and verify an odd cycle), but not so
easy to see a direct way to recognize bipartite graphs. In fact this is also possible,
by the following corollary to Theorem 7 and Immerman and Szelepcse� nyi's
Theorem [33, 47].

Corollary 10. Let H be an undirected graph problem, and let S(n)=0(log n).
If H is solvable using space O(S(n)) by a nondeterministic JAG or WAG J, then so
is its complement G&H.

Proof. Simulate J by a nondeterministic, S(n) space-bounded general machine
M. By a straightforward adaptation of Immerman and Szelepcse� nyi's Theorem
[33, 47], there is a nondeterministic, S(n) space-bounded general machine M$ that
accepts the complement G&H. Simulate M$ by a nondeterministic, S(n) space-
bounded WAG. K

We know no substantially simpler method for recognizing bipartite graphs.
Implementation of the Immerman�Szelepcse� nyi method on a JAG seems to require
construction of a vertex numbering, which is the key idea in Lemmas 5 and 6.

Algorithmic problems about graphs often have input parameters other than the
graph itself. For example, consider the shortest path problem: given a connected
undirected graph G, two designated vertices s and t in G, and an integer k, is there
a path from s to t of length at most k? The results above are easily extended to
encompass such problems by incorporating integers such as k into the WAG's
initial state, and marking ``designated'' vertices or edges with pebbles, or making
them ``visible'' to the WAG as we did for st-connectivity. Thus, for example, the
shortest path problem is solvable in (deterministic) logarithmic space by a WAG
if and only it is so solvable by a general machine. This problem is of particular
interest since it is a problem about undirected graphs that is known to be complete
for nondeterministic logarithmic space (Ladner, personal communication). Hence, it
is plausible that complexity results for WAGs will solve a long-standing open
problem in Turing machine complexity.

Finally, we mention that the restriction to regular graphs in the above results
is only a technicality. Lemmas 5 and 6 are modified easily to accommodate
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nonregular graphs, since by Lemma 4 there are universal traversal sequences of
polynomial length for such graphs. The restriction to connected graphs is only
slightly more problematic. Obviously a WAG with only one active pebble cannot
explore more of its input graph than the connected component initially holding that
pebble. With strong jumping, or with an active pebble in each connected compo-
nent, or some other mechanism for accessing all components, the results could be
extended easily to nonconnected graphs.

4. JAGS WITH UNMOVABLE PEBBLES

A plausible paradigm for an st-connectivity algorithm is to choose and mark a
small number of ``landmark'' vertices in the graph, based perhaps on local proper-
ties like proximity to low or high degree vertices or certain small subgraphs, then
to explore the graph with these landmarks fixed. This paradigm motivates our
study of JAGs with unmovable pebbles.

Depth-and breadth-first search are examples of algorithms where vertices are
permanently marked. The undirected st-connectivity algorithms of Broder et al.
[20], Barnes and Feige [7], and Feige [28] are more complex examples of this
paradigm. In outline they operate as follows. First, s and t are marked by pebbles.
Then P&3 other pebbles are placed on the graph at random. (The random dis-
tribution used to place the pebbles is what distinguishes the three algorithms.)
These P&1 pebbles are not subsequently moved. The one remaining pebble then
executes a small number of short random walks from each of the P&1 fixed peb-
bles. At the end of each walk, the movable pebble jumps to one of the fixed pebbles.
Connectivity information is inferred from the pebbles encountered during these
short walks. For example, if the algorithm has learned that pebbles 1 and 2 are in
the same connected component, and similarly for pebbles 3 and 4, and during a
walk from pebble 1 the algorithm reaches pebble 4, then it can infer that all four
pebbles are in the same component. The authors show that, if s and t are in the
same connected component, the algorithm will discover this quickly with high
probability. Note that this algorithm can be executed on a model that is essentially
a probabilistic JAG, except that the unmovable pebbles are ``preplaced''
probabilistically without walking to their locations. On a regular graph, the algo-
rithm could be implemented by a probabilistic JAG with strong jumping. On non-
regular graphs, the model would have to be extended to allow the dependence of
pebble preplacement on vertex degree. In Section 4.2 we will discuss and prove a
lower bound for such a model that allows preplacement of pebbles. Prior to that,
Section 4.1 gives the lower bound for the simpler basic model, i.e., without
preplacement. Section 4.3 shows that this lower bound is tight for the model we
consider.

Note that these lower bounds apply to models that are sufficiently rich to admit
depth-and breadth-first search, and the algorithms of Broder et al., Barnes and
Feige, and Feige. Thus, as corollaries we establish three facts claimed in the intro-
duction��that depth-first search is space-optimal among linear time algorithms,
that Feige's algorithm cannot be made both errorless and substantially faster, and
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that closure under complementation is intrinsically slow (all with respect to this
class of models, of course).

4.1. A Lower Bound for Unmovable Pebbles

In this section, we prove an 0(n2�P) lower bound on the time for a nondeter-
ministic P-pebble JAG to solve st-nonconnectivity. We first prove a basic lower
bound for regular graphs of degree d=3. Several generalizations are sketched later.

Theorem 11. Let M be any nondeterministic JAG with strong jumping that has
1 active pebble and P&1 unmovable pebbles. If M determines st-nonconnectivity for
all 3-regular symmetrically labeled graphs, then M requires time 0(n2�P).

Proof. The proof generalizes the main lower bound technique introduced by
Borodin et al. [18]. Assume without loss of generality that n is a multiple of 4.
(If not, set aside 6 vertices in a 3-regular connected component containing neither
s nor t.) We define a family of n vertex graph each formed by joining two copies
of an n�2 vertex graph H by ``switching'' some combination of edge pairs. We will
show that M must frequently walk from one pebble to another via some distant
switchable edge.

Many graphs H would work for our purposes; for definiteness, we use the n�2
vertex ``squirrel cage'': two n�4 vertex cycles, with each vertex on one cycle joined
by an edge, called a ``rung,'' to the corresponding vertex on the other cycle. Fix any
numbering of the vertices and any symmetric labeling of the edges of H. Take as
the set of ``switchable'' edges any r=n�4&1 of the rungs. As in Borodin et al. [18],
for each x # [0, 1]r the graph Gx is formed from two copies H0 and H1 of H by
``switching'' the edges corresponding to the 1's in x. That is, if [u0, v0] is the i th
switchable edge in H0 and [u1, v1] is the corresponding edge in H1, then Gx has
the pair of edges [ub, vb�xi], b # [0, 1], with labeling *ub, vb�xi =*u, v=*v, u=
*vb�xi, ub , where � denotes the exclusive or operation. Choose s to be any vertex
in H0 and t any vertex in H 1. Let G=[Gx | x # [0, 1]r]. Notice that the only graph
in G with no path from s to t is G0r , and that all graphs in G are symmetrically
labeled.

The key property of the family G of graphs is that a walk on Gx is identical to
such a walk on G0r , except that the walk switches from one copy of H to the other
when a switched edge is crossed. After any sequence of edge crossings starting from
a vertex v, M 's active pebble will be in the same copy of H as v exactly when the
net parity with respect to x of all edge crossings is even, where the parity with
respect to x of an individual edge e is defined to be xi if e is the i th switchable edge,
for any 1�i�r, and 0 for all unswitchable edges.

Intuitively, M gains information about connectivity only by walking to a pebble;
nothing is learned (directly) about the existence or nonexistence of a path from u
to v by jumping from u to v. We exploit this fact, together with the fact that pebbles
on average are far apart, to argue that M must execute many walking steps.

Note that s and t are not connected in G0r , hence M must have at least one
accepting computation on G0r . Fix one such computation # of minimal length.
Assume that two extra unmovable pebbles are placed on the distinguished vertices
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s and t. Now in G0r ``mark'' both copies of each vertex that received an unmovable
pebble during the computation #. Break # into sequences of walk moves that
(1) begin with a walk move from a vertex that either is marked or was the target
of a jump in the immediately preceding step, and (2) end with the next walk move
into a vertex that either is marked, is the source of a jump move in the immediately
following step, or is the last move of #. Discard any such sequence that does not
end at a marked vertex. Suppose there are w sequences remaining. Each of these
sequences naturally corresponds to a connected sequence of edges in G0r . Notice
that if, for some x, one of the w sequences is of odd parity with respect to x, then
the computations of M on G0r and on Gx may diverge at the end of this sequence,
since a pebble encountered on one may not be encountered on the other. This
cannot occur if all sequences have even parity with respect to x:

Claim. For every x # [0, 1]r, if each of these w edge sequences is of even parity
with respect to x, then # is also an accepting computation for Gx .

To see this, we show by an induction on i, that after making the moves dictated
by # up to the end of the ith sequence (including the discarded sequences), the
configurations of M on G0r and on Gx are identical, with the exception that the
movable pebble will be on opposite copies of a vertex if the net parity with respect
to x of the i th sequence is odd. (This can happen only if this is a discarded
sequence.) Basically, this is true since all the ``interesting'' events in the computation
#, i.e., dropping or encountering pebbles, occur at marked vertices, and we have
taken care that all walks between these interesting points are of even parity in Gx

just as they were in G0r . The base case (i=0) is vacuous. For the induction step,
first note that the configurations at the start of the i th sequence are the same on
both graphs, since if they differed at the end of the (i&1) st, then all intervening
steps were jumps. All steps within the i th sequence are walk steps into unmarked
vertices, hence no pebbles are encountered during those steps in either G0r or Gx .
Since both graphs are 3-regular, all unpebbled vertices ``look alike'', so the i th
sequence of walk moves of # in G0r is also a legal sequence of moves in Gx , and
carries the movable pebble to the same place in both graphs, up to the parity of the
sequence with respect to x. This completes the proof of the claim.

As noted earlier, Gx is connected for all x{0r, hence must not be accepted by
M. Thus it must be that there is no x{0r for which the w sequences all have even
parity. Equivalently, it must be that the corresponding homogeneous system of w
linear equations in r unknowns over GF(2) has no nonzero solution.

Let S be the set of r switchable edges. For each e # S, let dist(e) be the distance
from e to the closest marked vertex, where the distance from an edge to a vertex
is defined to be the length of a shortest path containing both. Let m be the maxi-
mum integer such that some switchable edge e has dist(e)=m. For any nonnegative
integer d, let Sd=[e # S | dist(e)�d], and let rd be the number of switchable edges
e with dist(e)=d, so that rd=|Sd |&|Sd+1 |.

Now it must be the case that, for all d�m, at least |Sd | of the w walks each have
length at least d. If this were not the case, then the edges in Sd would appear collec-
tively on fewer than |Sd | walks or, equivalently, the variables corresponding to
these edges would occur in fewer than |Sd | of the homogeneous equations. Set the
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variables corresponding to the other r&|Sd | switchable edges to 0, and these |Sd |
to some nonzero solution, which must exist in a homogeneous system with fewer
equations than unknowns (Herstein [31, Corollary to Theorem 4.3.3]). Since such
a nonzero solution cannot occur, we have a contradiction.

Thus, at least rm of the w walks each have length at least m, an additional rm&1

each have length at least m&1, etc. In other words, M makes at least

:
m

d=1

d } rd= :
e # S

dist(e)

moves. This last sum is minimized when the O(P) marks are equidistantly dis-
tributed around the cycle in which case the sum is 0(rn�P)=0(n2�P). K

Using Hall's Theorem [29], one can in fact prove somewhat more about the w
walks: each switchable edge in S can be assigned a unique walk that contains it.

Next, we will sketch several promised generalizations to the theorem. First, to
extend the result to d-regular graphs, d�3, we generalize the squirrel cage graph
H. Note that Kd&1, the d&1 vertex complete graph, is d&2 regular. Form the new
d-regular, n�2 vertex graph H from (d&1) cycles of length n�(2(d&1)) by joining
corresponding groups of (d&1) vertices as Kd&1. (An extra gadget is needed if
2(d&1) does not divide n.) The rest of the argument is essentially as before, except
that there are more switchable edges (all but a spanning tree of H, hence 3(dn) of
them), but on average they are closer to marked vertices (0(n�(dP)) average
distance). The result is still an 0(n2�P) lower bound, independent of d. To provide
some intuition of why the bound does not increase with d, note that any connected
d-regular graph has diameter O(n�d ), a corollary of Lemma 13 below. This idea is
exploited in Theorem 12 to obtain a matching upper bound.

A better bound is possible for nonregular graphs. For n vertex graphs of maxi-
mum degree d, one can prove an 0(dn2�P) lower bound, provided n�(4d )�2P.
Again, the key point is to choose H appropriately. In this case it suffices to take H
to be an n�4 vertex cycle, attached at evenly spaced intervals to n�(4d ) copies of Kd .
Most of the 3(dn) edges are switchable, and their average distance from any place-
ment of P pebbles is 0(n�P). In Section 4.3 we prove matching upper bounds for
both the regular and nonregular cases, demonstrating that this disparity in bounds
is inherent in the problem.

The remaining generalization promised above is to the case where the automaton
can move the ``unmovable'' pebbles a limited number of times. (A detail about the
algorithms of Broder et al., Barnes and Feige, and Feige that we oversimplified
above is that they rerandomize the placement of the P&3 landmark pebbles
O(log n) times.) Suppose M is a P-pebble JAG of this more general form. Suppose
pebbles are placed on at most P$ vertices during M 's computation. Then a
straightforward adaptation of the proof of Theorem 11 shows that M requires time
0(n2�P$). Note that, as long as the number of pebble placements is sublinear, the
time must be superlinear. However, any graph in the family G built from squirrel
cage graphs as above can be traversed in linear time by a deterministic automaton
with 2 pebbles, one of them passive, even without jumping, provided the passive
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pebble can be moved freely. Thus, stronger proof techniques are necessary for freely
moving pebbles; see our companion paper [10] for one such technique.

4.2. Preplacement of Unmovable Pebbles

As we have noted earlier, the JAG is a powerful yet restricted model. It is
conceivable that there is certain useful information about graphs that is intuitively
``easy to compute,'' yet hard for JAGs to compute. That is, there might be certain
information about an input graph G that (1) could be collected easily by a more
flexible computational device such as a logarithmic space RAM, that (2) would
greatly facilitate a JAG's determination of the st-nonconnectivity of G, yet (3) is
difficult or impossible for a JAG to collect. If this were the case, it might ``explain''
(and trivialize) the strong lower bound given in the previous section.

The algorithms of Broder et al., Barnes and Feige, and Feige again furnish a
motivating example. In all three algorithms the initial (random) pebble placement
is dependent on vertex degree. On nonregular graphs, a JAG cannot duplicate this
behavior without visiting all vertices, a slow or even impossible process for, say, a
probabilistic JAG without strong jumping. Yet this is an easy process for a RAM,
and a crucial one for the efficiency of their algorithms. (Note that the rest of their
algorithms can be performed efficiently by a JAG.) Generalizing this slightly, it
might be useful to know how many neighbors each vertex has at distance two.
Although this information is easily computed by a RAM, as far as we know it is
not easily computable by a JAG with one active pebble and a limited number of
unmovable pebbles, even a nondeterministic one with strong jumping.

Does our lower bound rest on this or similar deficiencies of the JAG model? In
this section we give evidence that it does not. We generalize the model to allow
precomputation on the input and preplacement of (unmovable) pebbles, and show
that a similar lower bound holds. Of course, such precomputation must be restricted
so as to preclude solving st-connectivity itself. Therefore, the unmovable pebbles are
placed based on complete knowledge of the local, but not global, structure of the
graph as described below.

Let N\(G) denote a list G1 , G2 , ..., Gn of edge labeled graphs, each with a dis-
tinguished vertex, such that Gi is isomorphic to the radius \ neighborhood of vertex
i in G, and the isomorphism maps Gi 's distinguished vertex to vertex i. For instance
for a triangle free graph, and ignoring edge labels, N1(G) is equivalent to an
ordered list of the degrees of G 's vertices. Then an automaton with P$ unmovable
pebbles placed by \-precomputation is a pair ( f, M), where M is one of the JAG
variants as described above, and f is an arbitrary function mapping N\(G) to
U # [1, 2, ..., n]P$. Given G, the P$ unmovable pebbles are placed on the sequence
of vertices f (N\(G)), and then M is run on the resulting pebbled graph. The defini-
tion can be further generalized to allow f to select M 's initial state. Additionally, it
can be generalized in a straightforward way to probabilistic or nondeterministic
precomputation by letting f be a relation, and selecting a value from its range
probabilistically or nondeterministically. For instance, the algorithms of Broder et
al., Barnes and Feige, and Feige can be executed by a probabilistic JAG with
probabilistic 1-precomputation.
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The proof of Theorem 11 immediately extends to show an 0(n2�P) lower bound
on nondeterministic JAGs with nondeterministic 1-precomputation. The only
changes needed in the proof are to note that the initial pebble placement and state
f (N1(G0r)) are considered to be part of the fixed accepting computation #, and to
note that all graphs in G are 3-regular, symmetrically labeled, and triangle-free,
hence N1(G0r)=N1(Gx) for all x # [0, 1]r, and so this initial configuration is also
legal in Gx .

As a concrete example of the potential utility of precomputation, we note that the
squirrel cage family G defined above can be traversed quickly, provided the
unmovable pebbles can be placed based on vertex neighborhoods of radius two,
generalizing the use of vertex degree. Specifically, in Gx , a vertex v will have 4, 5,
or 6 distinct neighbors at distance 2 depending on whether the ``rung'' of the
squirrel cage incident to v is of the same parity as both, one, or neither, respec-
tively, of the two nearest nonincident rungs. Thus, 2-precomputation alone suffices to
distinguish the disconnected graph G0r (every vertex has 4 neighbors at distance 2)
from all the connected members of G (some vertex has more than 4 neighbors).
Furthermore, by placing one unmovable pebble on any vertex with more than 4
neighbors at distance 2, a WAG with no additional pebbles can traverse the entire
graph in linear time.

However, we can show that radius 2, or indeed any constant radius, does not
help in general. That is, we can further generalize the proof of Theorem 11 to use
families of graphs in which switched edges do not alter the local structure within
any fixed radius \. This is done by choosing a d-regular bipartite graph R whose
girth (minimum cycle length) is at least 2\+2 and whose size |R| is dO(\) (Bolloba� s
[14, Chap. 3]), and then constructing the half-size graph H by connecting
c=wn�(2 |R| )x copies of R in a cycle. One way to do this is to choose a fixed edge
[u, v] in R, remove this edge from each copy of R, then insert an edge from u in
the i th copy of R to v in copy (i+1) mod c, 0�i<c. Note that, for every cycle in
Gx , there is a corresponding cycle in G0r that is no longer, so all graphs in G have
girth at least 2\+2. Furthermore, note by Hall's Theorem [29] that R can be
symmetrically labeled since it is regular and bipartite, hence so can G0r . The key
new idea in the proof is that the list N\(G) of radius \ neighborhoods of any sym-
metrically labeled, d-regular, girth 2\+2 graph G will simply consist of n identical
symmetrically labeled, degree d, complete trees of height \. Thus, \-precomputation
cannot distinguish between G0r and Gx . The remainder of the proof is essentially
unchanged. Thus, nondeterministic JAGs with nondeterministic \-precomputation
require time n2�(dO(\)P) to solve st-nonconnectivity for d-regular graphs.

We remark in closing this section that \-precomputation seems to be orthogonal
to pebble placement by the JAG itself. For instance, as noted above, deterministic
2-precomputation may be helpful even to a nondeterministic JAG with strong
jumping on as simple a family as the basic squirrel cage family. On the other hand,
there are cases where even a weak model such as a deterministic WAG can place
pebbles more effectively than can be done by deterministic precomputation. Specifi-
cally, we again consider the simple 3-regular squirrel cage family, but enlarged to
include all n! permutations of vertex labels for each Gx , x # [0, 1]r. Suppose all
unmovable pebbles are placed by deterministic 1-precomputation. Then an 0(n2)
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lower bound applies for P�n&0(n), since all pebbled vertices might be concen-
trated on one part of the squirrel cage pair. On the other hand, a deterministic
WAG (knowing the edge labeling) can easily walk one of the cycles, dropping its
P&1 unmovable pebbles at evenly spaced positions around the cycle. It is then a
simple matter to test the switchable edges one after the other from the nearest
pebble, hence solving st-connectivity in time O(n2�P).

4.3. An Upper Bound for Unmovable Pebbles

A natural question to ask is whether the lower bounds given in Section 4.1 can
be improved. Recall that Theorem 11 shows that time 0(mn�P) (0(n2�P) for
regular graphs) is required by JAGs with unmovable pebbles and strong jumping,
even with an unbounded number of states. We will close this section by showing
that this bound cannot be improved: on the model to which the lower bounds
apply, exploiting an unbounded number of states we give matching upper bounds
on time for a given number of pebbles, even without jumping. More strongly, we
show that any graph problem, as defined in Section 3, can be solved within the
same bounds.

Theorem 12. Let G be the set of all bijectively labeled graphs (all bijectively
labeled regular graphs). For any P�2, the following sets can be recognized by a non-
deterministic WAG with one active pebble, P&1 unmovable pebbles, an unbounded
number of states, and time O((mn�P)+m) (O((n2�P)+m) in the case of regular
graphs):

1. the set of st-nonconnected graphs in G, or

2. any set H of connected graphs in G.

The main import of this result is to show the limits of the proof technique used
in Theorem 11. For example, we do not believe that st-nonconnectivity can be
solved by a nondeterministic JAG in time O(mn) and space O(log n) simulta-
neously. The fastest known logarithmic space nondeterministic JAG for st-noncon-
nectivity is much slower than this. Indeed, no better method is known than to use
a universal traversal sequence, i.e., a deterministic one pebble WAG, which may
require time 0(m2n log n) for nonregular graphs (Lemma 4). However, Theorem 12
shows that to obtain a lower bound greater than that of Theorem 11 we must
somehow exploit a bound on the number of states, as well as the number of
pebbles. (It might also be possible to exploit nonbijective labelings but, in light of
Lemma 1 and the remarks following the proof of the theorem, this issue is a techni-
cality of the model that is not of fundamental importance to the computational
complexity of st-connectivity.)

The following facts are needed in the proof of Theorem 12.

Lemma 13. Let G be a connected d-regular graph, let u and v be any two vertices
in G, and let dist(u, v)=l be the length of a shortest path between them. Then there
are at least (d+1) w(l+2)�3x vertices in G within distance l of u.

Proof. Let 1(x)=[ y | dist(x, y)�1]. Fix a shortest path u=u0 , u1 , ..., ul=v
from u to v. Then 1(u0), 1(u3), ..., 1(u3w(l&1)�3x) are pairwise disjoint, for otherwise
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there would be a shorter path from u to v. Furthermore, these sets are all of size
(d+1), and all are within distance l of u. K

Corollary 14. Let G be a connected d-regular graph, and s a vertex in G. For
any positive integer P�n�d, there exists a set S with s # S and |S|�P such that every
vertex of G is within distance l=2W1+3n�((d+1)PX=O(n�dP)) of some member
of S.

Proof. Construct S=[s0 , s1 , . . .], where s0=s and, for i�1, si is chosen to be
any vertex at distance greater than l from [s0 , ..., si&1]. The neighborhoods of
radius l�2 around the si 's are pairwise disjoint. Furthermore, by Lemma 13, each of
these neighborhoods will be of size at least (d+1)w(l�2+2)�3x�n�P. Hence at
most P members of S can be chosen before no vertices of G remain at distance
greater than l. K

The analogous results for nonregular graphs are that at least (l+1) vertices are
within distance l of u, hence P vertices can be chosen so that every vertex is within
distance 2n�P of a chosen vertex. The proofs are similar, but easier.

Finally, we prove the theorem.

Proof of Theorem 12. The approach is to nondeterministically guess the graph,
then verify the guess. First we prove part 1: we describe a nondeterministic WAG
M accepting st-nonconnected graphs.

Let G be the input graph. It suffices to verify that the connected component C of
G containing s does not contain t. Let l=2n�(P&1), or l=2W1+3n�((d+1)(P&1))X

in the case of regular graphs. By Corollary 14, for any n-vertex graph G and
designated vertex s, there is a set of P&1 vertices including s such that every vertex
of C is within distance l of a member of this set. Leave one unmovable pebble on
s (the initial location of the active pebble), and place the other P&2 unmovable
pebbles on arbitrary, distinct vertices selected nondeterministically during a walk #
of length at most 2(n&1) from s back to s. (This walk is long enough to traverse
a spanning tree of C, hence any vertex may be pebbled.)

M proceeds by guessing and recording in its state an n$<n vertex, connected,
bijectively labeled graph B with P&1 distinct vertices marked by numbered pebbles.
The remainder of M 's computation is deterministic. In outline, M constructs a
mapping , from B to C, then verifies that , is a surjective homomorphism. That
is, , is a surjection preserving pebble placement, vertex degree, adjacency, and edge
labeling. Thus, for all vertices u in B, (1) there is a pebble p on ,(u) in C if pebble
p is on u in B, (2) degree(u)=degree(,(u)), and (3) for all edges [u, v] in B, if
*u, v=a then *,(u), ,(v)=a. (It might seem more natural to guess an isomorphic
graph B, and it would not be difficult to modify M to do this, but a homomorphism
suffices and is easier to verify.) To complete the algorithm, M visits ,(v) in C for
all v # B, accepting if and only if none is the specially marked vertex t. (Recall that
M can sense when it has a pebble on t.)

We now show how to construct and verify the homomorphism ,. A key property
of a bijectively labeled graph, used earlier in Lemma 6, is that for any sequence _
of edge labels, and any vertices u, u$, and v, if walks following _ from both u and
u$ end at v, then u=u$. Otherwise, the graph is nonbijectively labeled at the vertex
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where the two paths last converge. This property is central to constructing and
verifying the homomorphism. In particular, recall that a JAG has no access to
vertex numbers of the input graph. Instead, we will identify vertices by paths to or
from pebbles.

M now runs a breadth-first search of B, with the queue initially containing all the
pebbled vertices. The result is a spanning forest of B with B's pebbles as the roots.
Reject if any tree has height greater than l. Otherwise, for all vertices u in B, let \(u)
be the number of the pebble marking the root of the tree containing u, let _(u) be
the sequence of edge labels on the unique path of tree edges from \(u) to u, and
let _&1(u) be the sequence of labels in the reverse direction, i.e., from u to \(u). For
all vertices u in B, define ,(u) to be the vertex reached in C by walking from the
vertex marked by pebble \(u) according to the sequence _(u).

M now performs the following test.
For all edges [u, v] in B, say with labels *u, v=a and *v, u=b, M verifies that in

C the walk _(u) a_&1(v) ends at \(v) when started from \(u), and that _(v) b_&1(u)
returns to \(u) from \(v). During this process, at the first visit to ,(u) for each u
in B, M also verifies that degree(u)=degree(,(u)) (with the same set of labels).

We now show that , is a surjective homomorphism if and only if this test
succeeds. First, suppose , is a surjective homomorphism. For any vertices x and y in
B, if a walk from x according to : ends at y, then a walk from ,(x) in C according
to : must end at ,( y). This is shown easily by induction on the length of :, using
the fact that *u, v=*,(u), ,(v) for all edges [u, v]. By construction, for any edge [u, v]
in B, the walk in B from \(u) according to _(u) *u, v_&1(v) must end at \(v).
Furthermore, by construction, if vertex w in B holds a pebble, then ,(w) holds the
same pebble in C. Consequently, each of M 's ``walk'' tests will succeed. By the
assumption that , is a homomorphism, each of M 's degree tests will also succeed,
and so , passes the test.

Conversely, suppose the test succeeds. We argue that , is a surjective homo-
morphism. Note that by construction a walk from \(v) according to _(v) ends at
,(v), for all v. We claim first that the reverse also holds: a walk from ,(v) according
to _&1(v) ends at \(v), for all v. If v has a pebble, this is trivial. Otherwise v is the
child of some u in the spanning forest of B. Then \(v)=\(u) and _(v)=_(u) a for
some a. Since the test succeeds, _(u) a_&1(v) goes from \(u)=\(v) to \(v). But the
first part _(u) a goes from \(v) to ,(v), so the last part _&1(v) must go from ,(v)
to \(v), establishing the claim. Note that as a consequence, if a walk in C from a
vertex w according to _&1(v) ends at \(v), then w=,(v), since C is bijectively
labeled.

The following properties of , are now easily established.

1. For all pebbled vertices u in B, ,(u) holds the same pebble. This holds by
construction.

2. For all u # B, degree(u)=degree(,(u)). This holds since M explicitly tests
for this condition, and by assumption the test succeeds.

3. For all adjacent vertices u, v # B, ,(u) and ,(v) are adjacent, with
*,(u), ,(v)=*u, v (and *,(v), ,(u)=*v, u). This holds since _(u) *u, v_&1(v) walks from
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\(u) to \(v), by construction the vertex reached by _(u) is ,(u), and by the remark
above the vertex from which _&1(v) reaches \(v) is ,(v).

4. , is surjective. If this did not hold, there would be a vertex in C not in the
range of , that is adjacent to a vertex ,(u) that is in the range of ,. However, this
is impossible, since by property 2, degree(u)=degree(,(u)), and by property 3, ,(u)
has degree(u) neighbors that are in the range of ,.

Thus, , is a surjective homomorphism, as claimed.
If M accepts, then there is an accepting computation in which B is isomorphic

to C, hence has at most m edges. In this computation, the algorithm makes O(m)
walks, each of length O(l ); hence the total running time is O(ml ), as desired. Note
that M can move between the pebbles in C by walking #, the tour used initially to
drop the pebbles, which adds only O(n) to the time.

The proof of part 2 of the theorem is similar. The main difference is that the
graph B guessed by M will have n vertices, rather than n$<n. M then verifies that
this graph is isomorphic to the input graph G, accepting (nonuniformly) if and only
if it is in H. Note that the homomorphism test given above suffices to verify that
B is isomorphic to G, since they have the same number of vertices. K

As in Section 3, these results can be generalized to graph problems with other
input parameters, and�or to other problems about unconnected graphs, given an
appropriate mechanism for accessing all connected components.

The restriction of Theorem 12 to bijectively labeled graphs can be relaxed at the
expense of adding one passive pebble, as follows. The constructions of ,(u), _&1(u),
_(u), and \(u) are as before. With a nonbijectively labeled graph it remains true
that a walk from ,(u) according to _&1(u) will end at \(u), but it is no longer true
that ,(u) is the only vertex with this property. To verify that the active pebble is
on vertex ,(u), we instead leave the passive pebble there, then verify that _&1(u)
walks to \(u), from which _(u) returns to the passive pebble. The remainder of the
algorithm is unchanged.

As a final observation, the following theorem shows that, at the extreme where
P=n, the WAG of Theorem 12 can be made deterministic.

Theorem 15. The set of st-nonconnected graphs, and arbitrary sets of connected
graphs (nonregular, under general labelings) can be recognized in time O(m) by a
deterministic WAG with one active pebble and n unmovable pebbles.

Proof. Rather than guessing the input graph, as in Theorem 12, the WAG
simply does a systematic traversal of it, akin to a depth-first search, placing a pebble
on each vertex. With jumping, or with symmetric edge labels, depth-first search itself
would be easy to implement, but lacking both it seems difficult to quickly return after
crossing a ``back edge'' whose reverse label is unknown. We avoid this problem with
the following algorithm, which is also akin to an algorithm for finding Euler tours.

M places a distinctly labeled pebble on each vertex it visits, thus effectively num-
bering the vertices. M records in its state the source, destination, and label of each
half edge it crosses. It will eventually cross each half edge, so at termination it will
have in its state a complete description of the graph. Connectivity or other proper-
ties of the graph can then be determined directly (nonuniformly).
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M starts at s, initializing a stack in its state to contain s. At a general step, when
at a vertex u with u on top of the stack, if there is a previously uncrossed half edge
leaving u, say (u, v), then M crosses this edge, pushing v onto the stack. (M pebbles
v if it does not already hold a pebble.) If there are no previously uncrossed half
edges leaving u, then M backtracks by popping u from the stack, and returning to
v, where v is the new top of stack. By assumption M has previously crossed the
(u, v) half edge, and so knows its label. In either case, the process is repeated at v.
M terminates when the stack is emptied.

It is easy to see that every visited vertex is pushed onto the stack, and none is
removed from the stack until all its outgoing half edges have been traversed. Thus,
M will visit all vertices reachable from s. M 's running time will be exactly 4m, since
exactly two moves can be charged to each half edge (u, v)��one for the first move
by M across that half edge, when v is pushed (on top of u), and the second for the
move across (v, u) when that instance of v (there may be several instances) is
popped from the stack. K

As noted above, with jumping it would be easy to implement depth-first search
directly in O(m) time using O(n) pebbles, and space O(n log n) in total. The algo-
rithm presented in the proof of Theorem 15 also uses O(n) pebbles, but uses more
space, namely 3(m log n) in total, since it constructs a representation of the entire
graph in its state. It is not known whether the result can be strengthened to match
the bounds attained by depth-first search while retaining the weaker model assumed
in Theorem 15.

5. LOWER BOUNDS FOR THE CYCLE

5.1. A Lower Bound on the Number of States

In this section we show that deterministic nonjumping automata with a constant
number Q of states, one active pebble, and a constant number P of passive pebbles
are too weak for studying lower bounds on time. In fact, unless PQ=0(n) such
automata cannot even traverse all n-vertex cycles, no matter how much time they
are allowed.

Lemma 16. Let : # [0, 1]*. Consider the chain C: of length 2 |:| with left end-
point L, right endpoint R, and midpoint M, and edge labels so that : is the labeling
from L to M and also from R to M. Then starting at any vertex v on C: that is an
even distance from L and traversing according to : terminates at M.

Proof. Consider three pebbles traversing simultaneously according to :, begin-
ning at L, v, and R, respectively. A straightforward induction shows that the pebble
that began at v is always an even distance from the other two and between them.
Since the ones that started at L and R both end at M, so does the third. K

Theorem 17. Any WAG W that traverses every labeled n-cycle using Q states,
one active pebble, and P passive pebbles satisfies (P+4)Q�n.

Proof. Assume to the contrary that (P+4) Q<n. Consider the action of W 's
active pebble if it never encounters a passive pebble it previously dropped: it traverses
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according to the sequence t=:0:1 } } } :P # [0, 1]*, where :i is its traversal after
dropping i but before dropping i+1 pebbles. If each |:i |�Q, then |t|�(P+1) Q<
n&1, so that W does not traverse any cycle having t as the prefix of the clockwise
labeling beginning at the start vertex. Thus let i be the least integer such that
|:i |>Q. Then W repeats some state during this interval, and :i=\;;; } } } is
infinite, with |\|+|;|�Q.

Let :=;; and t$=:0 :1 } } } :i&1\. Consider the cycle in which t$ is the clockwise
labeling from the start vertex to a vertex L, followed by an embedding of the chain
C: of Lemma 16 from L clockwise to R. Notice that |t$|+|C: |�(P+4) Q<n, so
that this labeling can be embedded on a cycle of length n. Now a traversal according
to t$: causes the active pebble to move unidirectionally to the midpoint M of C: ,
so that no pebble dropped is reencountered. By Lemma 16, each further traversal
according to : returns to M, so that the pebbles previously dropped cannot be
reencountered, and R is never reached. K

In contrast, it is easy to see that there is a nonjumping automaton that traverses
every labeled n-cycle using a constant number of states and only two active pebbles,
and in addition requires only O(n) time. The idea is to maintain the invariant that
the leading and trailing pebbles are on adjacent vertices, and the automaton knows
the label from the trailing pebble to the leading pebble. Now after moving the lead-
ing pebble along label 0 it is a simple matter to advance both pebbles one vertex
while maintaining the invariant. A similar construction works with only one passive
pebble, if the automaton can jump.

Cook and Rackoff [24, Theorem 4.14] present a family of 3-regular graphs that
cannot be traversed using a constant number of states and pebbles, even if jumping
is allowed and the edge labels are disclosed. The price paid to capture this
strengthened model is a bound that is quantitatively weaker than that of
Theorem 17. For instance, they do not rule out the combination Q=O(1) and
P=O(log log n).

5.2. The Form of Universal Traversal Sequences

As another byproduct of Lemma 16, there is an interesting corollary concerning
universal traversal sequences for the cycle. It is not clear a priori that a sequence
such as (00010)n2

could not be universal for all cycles. The following corollary of
Lemma 16 shows that this is impossible.

Corollary 18. For any : # [0, 1]+ and any integers n and k, if |:|<n�2 then
:k is not a universal traversal sequence for all labeled n-cycles.

Proof. Since |:|<n�2, the chain C: of Lemma 16 can be embedded in a cycle
of length n. Consider a traversal according to : starting at M. If |:|, the distance
from M to L, is even then, according to Lemma 16, the traversal ends at M. If |:|
is odd then the traversal ends at a vertex an even distance from L, so that a second
traversal according to : returns to M. In either case a traversal according to ::
starting at M returns to M after visiting at most |:|+1<n distinct vertices. There-
fore :k starting at M never visits more vertices. K
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Fig. 1. A cycle constructed from a chain and its reversal.

Using similar techniques, Theorem 19 proves that the previous result in fact
holds for any even length : such that : is not a universal traversal sequence for all
labeled (n�2)-cycles. For instance, it holds for any : whose length is even and
O(n1.43) (Buss and Tompa [21]).

Theorem 19. For any : # [0, 1]* of even length, any even integer n, and any
integer k, if : is not a universal traversal sequence for all labeled (n�2)-cycles, then
:k is not a universal traversal sequence for all labeled n-cycles.

Proof. Since : is not a universal traversal sequence for all labeled (n�2)-cycles,
there is a labeled chain C of n�2&1 vertices with a vertex S such that starting at
S and traversing according to : never leaves C and ends at some vertex T.
Construct a cycle of length n as follows (see Fig. 1): take a copy of C in which T
is clockwise from S, followed by a new vertex M, followed by a copy C$ of C in
which the copy T $ of T is counterclockwise from the copy S$ of S, followed by a
new vertex X.

Now start at any vertex s on the arc between S and S$ containing M, where s
is an even distance from S, and traverse according to :. This must terminate at a
vertex t on the arc between T and T $ containing M, where t is also an even distance
from S, without ever reaching X. The reason t is between T and T $ is that the walk
from s to t is trapped between the walks from S to T and from S$ to T $. The reason
t is an even distance from S is because s is, and because |:| is even.

Therefore, starting at S and traversing according to :k will never reach X, for
any k. K

6. CONCLUSION

This paper has investigated time-space tradeoffs for traversing undirected graphs,
using structured models based on Cook and Rackoff 's ``Jumping Automata for
Graphs''. Our three main contributions are the following.

First, we investigated the power of the model. It is easy to see that JAGs with
sufficiently many pebbles can simulate well-known algorithms such as depth-first
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search and random walk. More surprisingly, we have shown that an extremely
simple variant of this model (a 2-pebble WAG, one of whose pebbles is passive) is
nearly as powerful as a Turing machine. Specifically, for general undirected graph
problems, it can simulate a Turing machine with only a constant factor increase in
space and a polynomial factor increase in time.

Second, we have shown a lower bound on the number of states required by such
machines��a WAG with one active and P passive pebbles requires 0(n�P) states to
traverse even such a simple graph as an n-cycle, independent of time. An interesting
corollary is that universal traversal sequences for labeled n-cycles cannot consist
solely of the repetition of some short sequence.

Finally, we have shown a strong tradeoff for graph traversal��a quadratic lower
bound on the product of time and space for nondeterministic JAGs with strong
jumping, one active pebble, and any number of unmovable pebbles. For example,
achieving linear time requires linear space, implying that depth-first search is
optimal on this model. Since our bound applies to nondeterministic algorithms for
nonconnectivity, it also implies that closure under complementation of nondeter-
ministic space-bounded complexity classes is achieved only at the expense of
increased time, and that the algorithm of Feige [28] (based on Broder et al. [20]
and Barnes and Feige [7]) cannot be made both errorless and substantially faster.
We also showed that our lower bound is tight.

The obvious important problem is to strengthen and generalize these lower
bounds. Following an earlier version of this paper [9], Edmonds [26] proved a
time-space tradeoff on general JAGs: for every z�2, a JAG with at most
(1�(28z))(log n�log log n) pebbles and at most 2logz n states requires time
n } 20((log n)�(log log n)) to traverse 3-regular graphs. The ultimate goal might be to
prove that ST=0(mn) for JAGs, or even for general models of computation.

Received April 23, 1996; final manuscript received July 29, 1996
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