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Parallel Algorithms for Arrangements1

R. Anderson,2 P. Beame,2 and E. Brisson2

Abstract. We give the first efficient parallel algorithms for solving the arrangement problem. We give a
deterministic algorithm for the CREW PRAM which runs in nearly optimal bounds ofO(logn log∗ n) time and
n2/ logn processors. We generalize this to obtain anO(logn log∗ n)-time algorithm usingnd/ logn processors
for solving the problem ind dimensions. We also give a randomized algorithm for the EREW PRAM that
constructs an arrangement ofn lines on-line, in which each insertion is done in optimalO(logn) time using
n/ logn processors. Our algorithms develop new parallel data structures and new methods for traversing an
arrangement.
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1. Introduction. The problem of determining the geometric structure of the intersec-
tions of curves and surfaces has a long history in mathematics [4], [6], [19]. For the
purposes of computational geometry, a very important special case is that of determin-
ing this structure when the curves and surfaces being intersected are lines inR2 or, more
generally, hyperplanes inRd for d ≥ 2. In this context the problem is known as the
arrangementproblem.

A simple and elegant sequential algorithm for computing arrangements inR2 was
found by Chazelleet al. [8] and Edelsbrunneret al. [12]; the latter also showed how the
algorithm can be generalized toRd. In R2 this algorithm has a worst-case running time
of O(n2), which is obtained by inserting the lines one after another into the arrangement
produced so far. InRd the algorithm runs inO(nd) time. Since the problem generally
requires thatÄ(nd) values be produced, the output requirements alone show that this is
optimal.

Computing arrangements is an important building block in several computational ge-
ometry algorithms. In two dimensions, arrangements are used during a preprocessing step
in algorithms for computing visibility graphs. They are also used by algorithms for find-
ing shortest paths that avoid polygonal obstacles. Furthermore, the worst-case optimal
hidden surface removal algorithm of McKenna [17] first projects the three-dimensional
problem (involving planes) onto a two-dimensional image plane, then computes the
two-dimensional arrangement produced in the image plane, and finally simplifies it to
produce the viewed image.

There is a substantial body of work on the subject of parallel algorithms for computa-
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tional geometry (e.g., [1], [5], [13], and [18]). Included in this work are parallel algorithms
for some problems related to finding arrangements, such as computing visibility from a
point in two dimensions [5] and hidden surface removal in restricted three-dimensional
scenes [18]. However, finding an optimal parallel algorithm for computing arrangements
has received less attention [2], [13].

A fairly straightforward parallel algorithm for computing arrangements can be con-
structed usingn2/ logn processors, requiring2(log2 n) time. In [13], which was the
starting point for this research, Goodrich gives an output-sensitive algorithm for com-
puting the intersections of line segments; however, when used to find arrangements of
lines, its running time is no better than that of the straightforward algorithm.

We present two algorithms for the arrangement problem. The first is a deterministic
algorithm for the CREW PRAM which runs in near-optimalO(logn log∗ n) time using
O(n2/ logn) processors for computing arrangements inR2. We also show how this
generalizes to anO(logn log∗ n)-time algorithm usingO(nd/ logn) processors inRd.
The second solves the on-line version of the arrangement problem, in which lines are
only available as input one after another. It is a randomized algorithm for the EREW
PRAM that constructs an arrangement ofn lines on-line, so that each insertion is done
in optimalO(logn) time usingn/ logn processors. Both of our algorithms develop new
methods for traversing an arrangement efficiently in parallel.

Perhaps because of their perceived sequential nature, very little study has been made
of parallel algorithms for on-line problems. However, efficient on-line parallel algo-
rithms can be useful in a context where extremely fast response times are required in a
dynamic environment. On-line problems place unique demands on parallel algorithms
because, unlike static problems, they can require efficient maintenance of data structures
significantly larger than the number of processors available. In our on-line algorithm for
computing arrangements we encountered a problem apparently requiring sophisticated
data structures developed for sequential computation. We develop simpler data structures
that are sufficient for the demands of our algorithm.

Independently of this work, Hagerupet al. [15] have developed a randomized CRCW
PRAM algorithm for thed-dimensional arrangements problem (not on-line) that is com-
plementary to our results and uses a different approach. At the expense of randomness
they obtain annd/ logn processor algorithm that runs in optimalO(logn) parallel time.
Subsequent to the initial appearance of our result, Goodrich [14] presented a more elab-
orate algorithm than ours, which achieves optimal deterministic performance.

2. Background

2.1. Problem Statement. Given a setH of n hyperplanes inRd, whered ≥ 2, their
arrangementA(H) is the subdivision ofRd they create. That is, ifH = {h1, . . . , hn},
and h−i and h+i are the open half-spaces defined byhi , then thefacesof A(H) are
{⋂n

i=1 h̃)i : h̃ = h−i , hi , or h+i }. A description of an arrangement must include an enu-
meration of the faces, along with their topological relationships, for instance, an incidence
graph. If the input hyperplanes are in general position, so that the intersection of anyk
hyperplanes is a(d–k)-dimensional face, thenA(H) is simple. The number ofk-faces
in a general arrangement isO(nd), and the number ofk-faces in a simple arrangement is
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Fig. 1.Traversal during sequential line insertion.

2(nd). In the two-dimensional case the points, edges, and regions ofA(H) are denoted
by P(H), E(H), andR(H), respectively.

We assume that the input set of hyperplanes forms a simple arrangement, and in the
two-dimensional case contains no horizontal or vertical lines. The latter assumption may
be eliminated by making a small rotation of coordinates if the input includes horizontal
or vertical lines.

For output we need to give a description of the arrangement. In the two-dimensional
case we produce, for each line inH , a sorted list of its intersections with the other lines
of H . The incidence graph may be produced within the same processor and time bounds.
In higher dimensions the incidence graph is produced as output.

2.2. The Sequential Algorithm. InR2 the arrangement problem can be solved by brute
force in O(n2 logn) time by computing all the intersections along each line and then
sorting thesen lists independently. The optimal sequential algorithm for the arrangement
problem inR2 given in [8] and [12] removes the logn factor, using an on-line algorithm
which inserts each linel into the existing arrangement of up ton lines in timeO(n), to
achieve its running time.

For the purposes of illustration, view the linel to be inserted as being horizontal. The
leftmost intersection ofl with the arrangement is found andl is inserted in the list of
the line that it intersects. Then a left-to-right traversal of the arrangement is made along
l which discovers and adds each intersection point involvingl . Given any intersection
point p on l , let R be the region whichl intersects immediately to the right ofp. The
next intersection is found by traversing the portion of the boundary ofR lying abovel by
following the chain of edges incident to the boundary in clockwise order (this ordering
is extended to infinite faces in the obvious way). Figure 1 gives an illustration of the
traversal. Although it is not immediately obvious, it can be shown that such a traversal
never encounters more than 3n segments along the way and thus the time for the insertion
is O(n).

3. Deterministic Algorithm for Arrangements

3.1. Overview. There are two key elements to the deterministic parallel algorithm.
The first is the fast insertion of a single line into an arrangement, and the second is
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Fig. 2.Overview of the deterministic algorithm, in two dimensions.

the fast merging of arrangements. The insert is a parallelization of the sequential insert,
which requires doing the inserts in a particular order and maintaining two extra data
structures, to allow an even distribution of processors and to speed up the traversal
of region boundaries. The merge of a set of arrangements is done by simultaneously
inserting every line into every arrangement other than its own, and then merging the
results of these separate inserts independently for each line. Somewhat surprisingly, to
obtain the most efficient algorithm, we must slow down the rate at which geometric
information is produced, as the bottleneck in our algorithm is the standard merging of
sorted lists.

The set of input lines is denoted byHin. Let H ⊆ Hin. To insert a linel into H means
creating a sorted list of the intersection points betweenl and the lines inH (excludingl ,
if l ∈ H ). If every line inH has been inserted intoH , thenH taken with its lines’ sorted
lists is called asubarrangementof A(Hin).

The algorithm is a divide-and-conquer algorithm which first performs a “setup step”
followed by log∗ n “phases.” (Figure 2 gives a visual presentation of the algorithm.) The
setup step orders the input lines by their slopes, and then organizes them into logn groups
of n/ logn consecutive lines (taken in this slope ordering). Each line is then inserted into
the group which contains it. Thus the setup step provides logn disjoint subarrangements,
each of sizen/ logn.

Each phase takes as input a partition ofHin into k disjoint subarrangements of size
n/k (in this section it will always be the case thatk ≤ logn). A phase runs in three steps.
The first step divides the input into groups ofk/ logk consecutive subarrangements (in
the ordering of the lines they contain). It also computes two auxiliary data structures,
“splitters” and “level” (which are defined later) for each of the input subarrangements.

Each line appears within exactly one subarrangement, and so appears in exactly one
group, which we call the line’s group. The second step inserts every line into each of the
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Fig. 3.Example of vertical levels.

subarrangements within the line’s group. Thusk/ logk sorted lists are created for every
line.

In the third step the sorted lists for each line are merges into one sorted list. By
creating this merged list, the line has now been inserted into its group. Thus the output
is a partition ofHin into logk disjoint subarrangements of sizen/ logk.

We prove, in four lemmas, that the setup step and each of a merge-phase’s steps can be
performed in timeO(logn) usingn2/ logn processors on a CREW PRAM, thus proving
the main theorem of this section:

THEOREM3.1. Given a set H of n lines in the plane, the deterministic algorithm outlined
above constructs A(H) in time O(logn log∗ n) using n2/ logn processors.

3.2. Levels and Slope Ordering. The key to the insertion of a line into a subarrangement
is the parallelization of the sequential traversal described earlier. This is accomplished
by distributing the available processors evenly along the line being inserted, in particular
by assigning a processor to every lognth intersection point. In order to show that our
method works, we consider the level structure of the arrangement. For technical reasons
we consider both horizontal and vertical levels.

If e is an edge inE(H), choose a vertical line throughe which does not contain
any points ofP(H). Define thevertical level of e in A(H) to be to be the number of
edges ofE(H) this line intersects belowe. It is easy to check that this is well defined
(in particular, is independent of the choice of vertical line), given the fact that there are
no vertical lines in the input. The set of all edges inE(H) whose level isk is called the
k-levelof A(H). Given any linel , define theintersection of l with level k to be the edge
in levelk which intersectsl . Horizontal levels are defined similarly. (See Figure 3.)

The key to making our method work is the following observation about the levels of
an arrangement: given a set of lines of “consecutive” slope, the level structure of their
arrangement is the same for all lines whose slope lies “outside” of their set of slopes.
The first step of a phase builds vertical and horizontal levels. Then the intersection of a
line with the lognth level, in one of these two directions, can be computed, which gives
the lognth intersection point. This is described in further detail below.
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Each input linel of Hin has a slope−∞ < ml <∞. If H is a subarrangement, define
m−H = minl∈H ml andm+H = maxl∈H ml . Let l be a line ofHin such thatml 6∈ [m−H ,m

+
H ].

If |ml | > |m−H | we say thatl is vertically insertable into H , and if |ml | < |m+H | we say
thatl is horizontally insertable into H .

OBSERVATION 3.2. If l is vertically insertable into H, then, with increasing y, it inter-
sects the vertical levels in strictly increasing order.

PROOF. For any region ofA(H), classify its edges asbottom edges if they lie below
it, andtop edges if they lie above it. Observe that all bottom edges of a region are of the
same levelk, for somek, and all top edges of that region have the same levelk+ 1. By
the definition of insertability, ifl intersects a region, then it intersects the bottom of the
region and the top of the region exactly once each.

OBSERVATION 3.3. Given an arrangement A(H) of n lines, a data structure can be
built in O(logn) time by n2 logn processors, which allows finding the intersection of a
vertically insertable line with any level of A(H) in timeO(logn) by a single processor.

PROOF. An ordering is defined on all edges in the arrangement, first by level, then
within levels from left to right. A binary tree is built, with the edges as leaves, in time
O(logn) usingn2/ logn processors.

The similar observations hold for horizontally insertable lines for increasingx and
horizontal levels.

3.3. The Algorithm

3.3.1. Setup Step. Ordering then input lines by the their slopes is done as a sort of
n scalar in timeO(logn) by n processors. Breaking the lines into groups ofn/ logn
lines can be done in constant time byn processors. Each line must now be inserted into
a group ofn/ logn lines. Assignn/ logn processors to each line. For a specific linel ,
each of its processors finds the intersection ofl with a different line inl ’s group. To sort
these intersection points is done as a sort ofn/ logn scalars byn/ logn processors in time
O(logn). This gives the following lemma:

LEMMA 3.4. The setup step can be done in time O(logn) using n2/ logn processors.

3.3.2. Auxiliary Data Structures. We now define splitters, which facilitate the fast
traversal of large regions (those with many edges). The use of splitters first appears in
[7]; it was also used in [13]. If e is an edge ofA(H), let R be the region belowe. The
splitter for e in A(H) is the rightmost edge among the bottom edges ofR. (See Figure 4.)
If R has no bottom edges, then the splitter is undefined for the edges ofR. This occurs
only for the “bottommost” region, which will not be traversed.

We describe how to attach a pointer from every edge to its splitter, in a subarrangement
of n/k lines, in timeO(logn) usingn2/(k logn) processors. Note that such a subarrange-
ment has(n/k)2 edges, so there are logn/k edges per processor. To begin, every edge
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Fig. 4.Pointers to (downward) vertical splitters.

(except one) sets a pointer to its clockwise neighbor in the region below itself. The ex-
ception is the right-hand infinite edge of the bottommost region, which points to itself.
Thus there is at most one list for every region, whose root is that region’s splitter (except
in the case of the bottommost region). The goal is to have every edge point to the root
of its list. By using list-ranking, we can set each edge’s pointer to the root of its list
within the desired time bounds. Note that the edges of the bottommost region will all be
pointing at that region’s right-hand infinite edge.

To calculate levels, observe that the level of any edge is one greater than that of its
splitter, except in the case of edges of the bottommost region, which all have level 0. The
right-hand infinite edge of the bottommost edge will be theroot edgefor the purposes of
this step. The starting configuration for making levels is just the result of the construction
of splitters. These pointers are now labeled with 1, unless they point at the root edge, in
which case they are labeled with 0. This gives a tree whose root is the root edge. Again
using list-ranking, along with an Eulerian tour, we can compute the cost of the path from
each edge along these pointers to the root edge in the desired time bounds, which is
exactly the level of the edge.

LEMMA 3.5. Given a subarrangement of n/k lines, where k≤ logn, its splitters and
levels can be produced in O(logn) time using n2/(k logn) processors.

3.3.3. Inserting a Line into a Subarrangement. As a result of the ordering done in the
setup step and by merging of consecutive subarrangements, whenever we do an insert the
line will be either vertically or horizontally insertable. Avertical insert or ahorizontal
insert will be done in each case, respectively. We describe the vertical insert of a line
l into a subarrangementA(H) of n/k lines, usingn/(k logn) processors; the horizontal
insert is similar.

A vertical insert is done in two passes, calledtraversals, the first downward and
the second upward; we describe the downward pass. A subarrangement ofn/k lines has
n/k levels. Assign a processor to every lognth level, and also to leveln/k. Subscript
the processors by successive positive integers in order of the levels to which they are
assigned. Each processorPi first finds the intersectionei of l with its level, and computes
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Fig. 5.Example of downward and upward traversals.

the intersectionpi of l and the line containingei . Let R be the region belowei . The
processor now begins a clockwise traversal of the boundary ofR. This cannot actually
be done edge-by-edge, as it would take too long for large regions. Instead, the processor
immediately jumps to its splitter, and then the clockwise search proceeds as it would in
the sequential case. If this traversal reaches an edgee′ which intersectsl , the process is
started over, and so on. The processor stops when it reachespi−1 or encounters an edge
whose containing line intersectsl below pi−1.

The upward pass is now done, traversing boundaries counterclockwise, using the
appropriate redefinition of splitters, etc. (See Figure 5.) What needs to be proven is that
this takes timeO(logn), and that each intersection point ofl with the lines ofH is found
by either the downward or upward pass. This is enough to give the sorted order of the
intersection points.

LEMMA 3.6. The above algorithm inserts a line into a subarrangement of size n/k, in
time O(logn) using n/(k logn) processors.

PROOF. The allocation of processors takes constant time. Consider processorPi , where
1 ≤ i ≤ n/k. For Pi to find the intersection ofl with its level takes timeO(logn), by
Observation 3.3. The following argument is due to Goodrich [13].

Divide the setH of linesHabove, Hbetween, andHbelow, as the lines intersectl abovepi ,
betweenpi andpi−1 inclusive, or belowpi−1. Note that in the downward traversal, edges
whose containing lines are inHaboveare never encountered (they are jumped over), and
at most one edge whose containing line is inHbelow is encountered (then the processor
stops its traversal). The cardinality ofHbetweenis less than logn, by the allocation of
the processors. Consider the standard sequential traversal which would be performed
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when insertingl into A(Hbetween). The number of edges encountered in such a traversal
is O(logn). The number of edges encountered in our traversal is no greater than the
number in such a sequential traversal, hence isO(logn). Thus the traversal takes time
O(logn).

If the downward traversal by processorPi reachespi−1, or the upward traversal by
Pi−1 reachespi , then all the intersection points betweenpi and pi−1 have been found.
If the upward and downward traversals each terminate by reaching an edge contained in
HaboveandHbelow, respectively, then make the following argument. Consider the region
formed by the lines ofHabove∪ Hbelow which containspi and pi−1. If the boundary of
this region is followed from top to bottom in the clockwise direction, starting froml ,
then the edges encountered will first all be contained in lines ofHabove, then all contained
in lines of Hbelow. This is also true in our traversal, so in the case under consideration
the two traversals will have “passed” each other. Thus all intersection points have been
found.

3.3.4. Merging Sorted Lists. In the third step of each phase, every line must merge
k/ logk sorted lists using the processors assigned to it:

LEMMA 3.7. Let k ≤ logn. k/ logk sorted lists of length n/k can be merged in time
O(logn) using n/ logn processors.

PROOF. A balanced binary tree is formed with the lists at the leaves. The lists are merged
in rounds, so that each round reduces the depth of the tree by one. Thus there are logk
rounds. Each round can be completed inO(logn/ logk) time usingn/ logn processors.
This is done by slowing down the optimal workO(log logn)merging algorithm [16].

3.4. Higher-Dimensional Arrangements. Given a setH of n hyperplanes inRd, the
d-dimensional arrangementA(H) is the subdivision ofRd generated byH . An optimal
worst-case sequential algorithm for constructingA(H) is given in [12], which runs in
O(nd) time. We show that our two-dimensional arrangement algorithm can be used to
solve thed-dimensional problem inO(logn log∗ n) time usingnd/ logn processors (thus
is within O(log∗ n) of optimal). The algorithm begins by computing the projection of
the problem onto each of the two-dimensional planes formed by the intersection ofd−2
hyperplanes. Each of these two-dimensional arrangement problems is solved, and then
the results are combined to build the higher-dimensional structure of thed-dimensional
arrangement. The combining process takesO(logn) time withnd/ logn processors, so if
a faster two-dimensional algorithm is used [14], [15], the run time of thed-dimensional
algorithm is also improved.

In representing the solution to the arrangement problem, we need to represent the
topological structure of the arrangement. Ind dimensions an arrangement consists ofk-
faces, fork = 0 throughd. (A k-face is ak-dimensional region bounded by hyperplanes
of H .) We assume that the arrangement is in general position so that the intersection of
k hyperplanes is a(d − k)-flat. The standard representation of the topological structure
is the incidence graph. The incidence graph has a vertex for each face, and an edge
between ak-face and a(k + 1)-face if thek-face is contained in the(k + 1)-face. A
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detailed discussion of the structure of arrangements can be found in [11]. A vertex in the
arrangement is the intersection ofd hyperplanes. It is important later that an arrangement
vertex is incident to a constant number ofk-faces.

We begin our construction of the arrangement ind dimensions by computing the
intersection of each set ofd − 2 hyperplanes. Each one of these intersections gives a
two-dimensional plane. For each of these planes we compute the intersection with the
remaining hyperplanes and solve the two-dimensional arrangement problem. There are(

n
d − 2

)
problems, so we allocateO(n2/ logn) processors to each problem. This allows

us to compute the incidence graph for all of the zero- and one-dimensional faces. Ifv

andw are vertices of the arrangement, we say they are neighbors if they are incident to
a common one-dimensional face.

We begin by creating records for the faces of the arrangement. Each vertexv creates
a set of records for all of the faces incident to it. Each face is represented by a number
of records. The key step in the algorithm is to pick a canonical representative for each
face. We do this by attaching each face to the lexicographically minimal (lexmin) vertex
that it is incident to. We now describe our algorithm for identifying the lexmin vertex
adjacent to each face. Each vertex has a set of records of the form(v, f ), wherev is
the vertex andf is a face. We create a directed graph on these ordered pairs which has
outdegree at most one. Ifv is adjacent to the facef , the processor associated withv
chooses a vertexw such thatw is a neighbor ofv,w <lex v, andw is adjacent tof . The
processor creates an edge from(v, f ) to (w, f ). If there is no such vertex, thenv is the
lexmin vertex adjacent tof . After constructing this graph, we identify the lexmin vertex
adjacent to each face by traversing each of these trees to its root. (This can be done by
an Eulerian tour and list-ranking. In order to set up the Eulerian tour, we use the fact the
each vertex has a bounded number of neighbors.) After we have identified a canonical
vertex for every face, we can construct the edge lists for the intersection graph. If the
k-face fk is adjacent to the(k+ 1)-face fk+1, the canonical vertex forfk identifies this
adjacency. We then do another list traversal to bring together all of thek-faces adjacent
to fk+1. This traversal is done using the same links as were set up to identify the lexmin
vertices associated with the faces. Since list ranking can be done inO(logn) time with
linear work, the algorithm runs in the claimed time bound.

4. On-Line Algorithm. We now present the second main result of the paper: an opti-
mal randomized algorithm for the on-line version of the two-dimensional arrangements
problem. The on-line problem is to construct an arrangement by inserting lines one at a
time. We must complete the insertion of one line before starting the insertion of the next
line. We do not know the position of a line before we begin inserting it. The sequential
algorithm for constructing an arrangement builds the arrangement one line at a time, so
it solves the on-line problem. We give an optimal randomized parallel algorithm for the
problem. The algorithm inserts a line into an arrangement ofn lines in O(logn) time
usingn/ logn processors. The algorithm is for an EREW PRAM. Our algorithm relies on
making random choices. The results of the algorithm are always correct, and it succeeds
in inserting a line inc logn time with high probability. Since we are using this algorithm
to insert a sequence ofn lines, it is important that our performance guarantee is “with
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Fig. 6. Inserting a line with independent subtraversals.

high probability,” so that we can say it is very likely that all of the insertions succeed
within the time bound.

Our on-line algorithm for the problem works along the same lines as the sequential
algorithm. The sequential algorithm inserts a linel into an arrangement by traversing the
faces adjacent tol . This algorithm works since the number of segments on faces adjacent
to l is O(n), and we can move from segment to segment in constant time. For a parallel
version of this algorithm, we perform the traversal starting from many intersections along
l simultaneously as shown in Figure 6. For a lineh in the arrangement, we can locate
where the intersection ofh andl fits in h’s sorted list of intersections inO(logn) time
by binary search. We can then traverse the faces adjacent tol starting fromh. Since
it takesO(logn) time to find the starting point for a traversal, we can afford to start
from n/ logn points. We choose our starting points by selectingn/ logn lines from the
arrangement at random. We would like to perform the subtraversals from each of the
starting points, but we run into a major difficulty. The total length of the traversal is
O(n), so they have average lengthO(logn). However, it is possible that a moderately
large number of subtraversals have length greater thanc logn, so it is not possible to
complete them inO(logn) time. This difficulty arises for two distinct reasons:

(1) The arrangement may have large faces.
(2) When we selectn/ logn elements out of set of sizen, some of the gaps between

selected elements will be larger thanc logn.

The on-line problem is broken into two parts. The first part is to insert a line into the
arrangement. Inserting a linel into the arrangement means that we construct a list that
contains the intersections ofl with the other lines in sorted order, and, for each lineh, we
insert the intersection point ofh andl into h’s list of intersections. The second part of the
computation is to update the data structure to reflect the addition of the linel . The data
structure represents the lines both as a planar subdivision, and as lists of intersections.
The subdivision allows the segments bounding a face to be traversed in order. The faces
are represented as doubly linked lists of edges. Large faces have binary trees embedded
in them which allow us to determine the intersection points of a line with a face in time
that is logarithmic in the face size. The other representation of the arrangement gives the
intersections along each line in sorted order. This information is used in both a random
access fashion as well as to perform binary search. For the purpose of discussion it is best
to think that for each line we have an array that gives its intersections with other lines
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in sorted order. The actual data structure is more complicated, since it must be updated
in essentially constant time. We postpone out discussion of the intricacies of the data
structure until after our presentation of the algorithm.

Main Idea. We begin withn/ logn starting points for our traversal. This gives usn/ logn
tasks to perform with total execution time bounded bycn. We haven/ logn processors
available. We could complete all butεn/ logn of the tasks by executing each task for
c logn/ε time. However, we cannot afford to leave this many incomplete tasks (our
algorithm will complete all butn/ log3/2 n of the tasks). The main idea is to redefine
the traversal so that each of the subtraversals can be accelerated by a factor ofS by
assigningSprocessors to it. This allows us to transform our problem into one consisting
of n/ logn tasks with a total execution time bounded byc′n/Sto be scheduled onn/Slogn
processors. By using the Cole–Vishkin [9] scheduling algorithm we can complete all but
n/Slogn of the tasks inO(logn) time. After we have completed the subtraversals, there
is a substantial cleanup phase in which we identify and place all of the intersections.
However, it is redefining the traversal and applying Cole–Vishkin scheduling that is the
key to the solution.

Traversal Algorithm. We describe our algorithm as if the linel were horizontal. The
algorithm begins by selectingn logn lines at random from the arrangement, and then
computing a sorted list of their intersections withl . For convenience we also select the
lines that have the leftmost and rightmost intersections withl . We denote this subset of
lines byĤ = h1, . . . , hm and the set of intersection points byq1, . . . ,qm whereqi is the
intersection ofhi with l and the intersections are orderedq1, . . . ,qm from left to right.

The full traversal consists of a set of subtraversals, where thei th subtraversal is a
path Pi from qi to qi+1. The angle between consecutive segments on a subtraversal is
less than 180◦, so following the subtraversal from left to right corresponds to a series of
right turns. The segments need not arise from adjacent intersections in the arrangement.
Thus, if the segment(p1, p2) of the lineh is a portion of a subtraversal, thenh may
have intersections with other lines betweenp1 and p2. Figure 7 gives an example of a
subtraversal.

We define thelengthof the traversal to be the total number of intersections that are
encountered during the construction of its subtraversals. This includes both the inter-

Fig. 7.SubtraversalPi .
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sections that form the endpoints of the segments and intersections that are interior to
segments. The total length of the traversal must be bounded bycn for some constantc,
so that we can construct it within our resource bound.

In order to have a traversal algorithm that we can efficiently parallelize, we process
the intersections along a line inblocks. By this we mean that if we are at the intersection
v on the lineh, we consider the nextK intersections alongh simultaneously to decide
which segment to traverse when we leaveh. We assignS processors to the traversal
(whereS = √K ), and achieve a speedup of a factor ofS over the time for a single
processor.

Constructing a Subtraversal. The subtraversal algorithm finds a pathPi fromqi toqi+1

for eachi . We construct the pathPi by stepping along the lines of the arrangement, turning
clockwise at intersections, except when the intersection is with a line that intersectsl
betweenqi andqi+1. We implement this algorithm in a manner that allows us to achieve
a limited parallelism on the traversal. Suppose that lineh has been identified as being
part of the traversal starting fromp, the intersection ofh and some other line. We need to
decide which line followsh in the traversal. We examine the firstK intersections along
h following p. Our choice of the next line is basically the one that allows us to make
as sharp a turn as possible without selecting a line that intersectsl betweenqi andqi+1.
If none of the intersections allows a suitable clockwise turn, then we consider the next
K intersections alongh. We give a more complete specification of the selection process
below. We allocateS = √K processors to this. Assuming that the intersections ofh
are stored in an appropriate data structure, we can process each block of intersections in
O(S) time.

We now give a precise version of the traversal algorithm. The complications in the
traversal algorithm arise because we must guarantee that it has lengthO(n). The sub-
traversal fromqi to qi+1 is divided into aleft subtraversaland aright subtraversal. The
left subtraversal begins atqi and proceeds clockwise until a line is encountered that
intersectsl to the right ofqi+1, and the right subtraversal begins atqi+1 and proceeds
counterclockwise until a line is encountered that intersectsl to the left ofqi . Since the
subtraversals are mirror images of each other, we concentrate on the left traversal.

The algorithm for constructing the left subtraversal maintains a current line and a
current intersection. We begin with the current line ashi and the current intersection as
qi . We examine the lines that give rise to the nextK intersections along the current line
h. There are several cases that can occur:

1. If one of the lines intersectsl to the right of or atqi+1, then the left subtraversal is
finished. We call the first of these lines theleft boundary.

2. Case 1 does not occur and one of the lines is a memberĤ . We choose the first such
line h′ as the current line, and the current intersection becomes the intersection ofh′

andh.
3. Cases 1 and 2 do not occur, and one of the lines intersectshi+1 “below” the intersection

of h andhi+1. We choose the lineh′ that has the “lowest” intersection withhi+1, as
in Figure 8. (The lowest point onhi+1 is the intersection ofhi+1 andl . We consider
the linehi+1 to wrap around+∞).

4. Cases 1–3 do not occur. We advance the current intersectionK intersections alongh.
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Fig. 8.Selection of the next intersection.

If the left boundary intersects the right subtraversal, then the full subtraversal is formed
by following the left subtraversal, then following the left boundary, and then following
the right subtraversal (in reverse) from its intersection. If the left boundary does not
intersect the right subtraversal, then the lemma below shows that the right boundary
intersects the left subtraversal, so that the full subtraversal is formed by following the
right subtraversal, then the right boundary, and then the left subtraversal.

LEMMA 4.1. The left boundary intersects the right subtraversal or the right boundary
intersects the left subtraversal.

PROOF. If the right boundary does not intersect the left subtraversal, then the left bound-
ary intersects the right subtraversal, as shown in Figure 9.

We choose a block size ofK = logn. We now prove that the amount of work done
in computing all of the subtraversals isO(n).

Fig. 9.Left boundary intersecting the right subtraversal.
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THEOREM4.2. The total amount of work performed during the construction of the
subtraversals is O(n).

The proof that the amount of work is linear has to account for all of the intersections
that are examined. Using the same analysis as for the sequential algorithm it is immediate
that Case 2 arisesO(n/ logn) times, so Case 2 accounts forO(n) intersections in total.
The key to the proof is to show that Case 3 accounts for onlyO(n) intersections. It is
possible for a line to be encountered by many of the subtraversals. Our argument is that
only a few lines that are encountered during thei th left subtraversal are ever encountered
again.

LEMMA 4.3. Let X be the set of lines involved in Case3 intersections during the ith
left subtraversal. At most2 logn lines from X are involved in Case3 intersections of
subsequent left subtraversals.

PROOF. Letb1, . . . ,bk be the blocks of intersections examined during the construction
of the i th left subtraversal. We denote the line traversed when blockbj is examined
by gj . Let Xj be the bundle of lines associated withbj that intersecthi+1 below the
intersection ofgj andhi+1 (see Figure 10). The key to the proof is that the bundles are
ordered in the sense that forj < j ′, to the right ofhi+1, the lines inXj are above those
in Xj ′ . It is sufficient to prove this forj ′ = j + 1. Let p be the intersection ofgj+1

andhi+1. We show that ifg′ ∈ Xj andg′′ ∈ Xj+1, theng′ is strictly aboveg′′ on the
right-hand side ofhi+1. This is true because the slope ofg′ is greater than the slope of
g′′ andg′ intersectshi+1 abovep while g′′ intersectshi+1 below p. This is shown in
Figure 11.

If
∑

1≤ j≤k |Xj | ≤ 2 logn the lemma is trivial, so suppose that
∑

1≤ j≤k |Xj | > 2 logn.
Let j ′ be the largest index such that logn <

∑
j ′≤ j≤k |Xj | ≤ 2 logn. Such aj ′ exists

since|Xj | ≤ logn. We claim that only lines inXj ′ , . . . , Xk can be involved in any sub-
sequent intersections. In order to intersect a lineg ∈ Xj for j < j ′, more than logn lines
must be encountered. Since there are only logn intersections per block, this means that
more than one block would have to be involved. However, the first block that contains

Fig. 10.A bundle of lines.



Parallel Algorithms for Arrangements 119

Fig. 11.Ordering of lines.

any of the intersections fromXj ′ , . . . , Xk would cause the traversal to remain below the
line g.

We can now complete the proof of Theorem 4.2 using an accounting trick. We need
to account for the total number of Case 3 intersections. Supposeh′ is a line involved in a
Case 3 intersection during thei th subtraversal. If this is the first Case 3 intersection for
h′, we bill it to h′, otherwise we bill it to the traversalof the previousCase 3 intersection
for h′. Each line gets billed at most once, and each traversal gets billed at most 2 logn,
so the number of intersections inO(n).

Cole–Vishkin Scheduling. The traversal algorithm defines a set of subtraversals be-
tween adjacent pairs of points in the setq1, . . . ,qm. We view each of these subtraversals
as a task that we need to execute. It is not necessary to complete all of the tasks within
O(logn) time, since we can have a cleanup phase that processes a small number of the
subtraversals by a different method. If we were to assign one processor to a subtraversal
of lengthk, we could complete it inO(k) time. However, if we assignS processors
(where S is much smaller than the block sizeK ), we can complete the subtraversal
in O(k/S) time. Our approach is to group the processors together in groups of sizeS
referred to assuperprocessors. This gives usn/ logn tasks to execute onn/Slogn su-
perprocessors, with a total processing requirement ofO(n/S). We haveO(logn) time
available and want to complete as many tasks as possible. What we have gained by
grouping the processors, is that we are now able to load balance; when a processor
completes a task, it can then move on to some uncompleted task. A direct application of
the Cole–Vishkin deterministic scheduling algorithm [9] says that inO(logn) time we
can execute all of the tasks of size less thanc logn. Since tasks of size less thanc logn
correspond to subtraversals of length less thancSlogn, this allows us to traverse most
of the paths. If we are able to complete the subtraversal betweenqi andqi+1 we say that
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the gap(qi ,qi+1) is covered, and if we are not able to traverse the segment, we say the
gap isuncovered.

LEMMA 4.4. If we choose S= log1/2 n, then after the traversal is complete, there are
O(n/ log3/2 n) uncovered gaps.

PROOF. Since the sum of the lengths of the subtraversals is at mostcnand we complete
all paths of length log3/2 n or less, there are at mostcn/ log3/2 n subtraversals we do not
complete, leaving at mostcn/ log3/2 n uncovered gaps.

Covered and Uncovered Gaps. We now use the traversal to findn/ log2/3 n roughly
equally spaced points alongl . We run the sequential algorithm independently from each
one of these points to complete the insertion ofl . We construct a setH of approximately
n/ log2/3 n lines by assigning lines independently toH with probability 1/ log2/3 n and
including the two lines having the leftmost and rightmost intersections withl . We must
locate wherel intersects each of the lines ofH . This means that, for eachh ∈ H , we
must determine where the intersection ofl andh falls in the list of intersections forh.
If l intersectsh in a covered gap, we can use information gained during the traversal
to locate the traversal quickly, otherwise we must perform a binary search to locate the
intersection point. We address both of these cases below. Figure 12 shows lines inH
intersecting covered and uncovered gaps.

We actually choose the setH before the execution of the traversal algorithm described
above. When we are doing the traversal we can test each intersection we encounter as to
whether or not it is with a line in the setH . Suppose we encounter an intersection with
the lineh ∈ H when we are traversing betweenqi andqi+1 and suppose thath intersects
l at q which is betweenqi andqi+1. We must determine where the intersectionq will
go inh’s list of intersections. On the traversal we encounter an intersection pointp of h
with some segment of the traversal. The number of intersections betweenp andq along
h is bounded by log3/2 n. This means that we could use a binary search to locate whereq

Fig. 12.Covered and uncovered gaps.
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belongs inO(log logn) time.3 We can thus place all of the intersections betweenl and
the lines ofH that fall in covered gaps within our time and processor bounds.

We handle the intersections that occur in uncovered gaps by binary search. During
the traversal we identify all of the lines ofH that intersectl in covered gaps, so we are
left only with the lines that intersect in uncovered gaps. We perform a binary search on
each of these lines to locate the intersection withl . We must show that we do not have
too many of these lines that intersect uncovered gaps.

LEMMA 4.5. The numbers of lines of H that intersect uncovered gaps is bounded by
n/ logn with high probability.

PROOF. The key to the proof is to show that the total size of the uncovered gaps is
bounded byn/ log1/3 n with high probability. The uncovered gaps arise from first selecting
a random set ofn/ logn intersections which define all of the gaps, and then performing
traversals to determine which are covered or uncovered. To show that the uncovered
gaps contain no more thann/ log1/3 n intersections, we use the fact that the number of
elements in the largestn/ log3/2 n gaps is bounded byn/ log1/3 n with high probability.
The selection of the setH is done by choosing each line with probability 1/ log2/3 n. If
we select elements from a set of size at mostn/ log1/3 n each with probability 1/ log2/3 n,
then with high probability, using Chernoff bounds, the resulting set has size bounded by
2n/ logn.

After considering both covered and uncovered intervals, we have a set ofn/ log2/3 n
points alongl and want to step along the arrangement from each of these points. The
one remaining obstacle that we have is that the arrangement may have some large faces.
In order to speed up the traversal along large faces, we assume that for each face of the
full arrangement we have a balanced binary tree which gives us the segments adjacent
to the face in clockwise order. The operation that we perform on a facef is: given the
line l and a segments1 wherel entersf , find the segments2 wherel leavesf . It is easy
to see that we can finds2 in time logarithmic in the number of segments boundingf
using the binary tree. Then/ log2/3 n points define a set ofn/ log2/3 n tasks where a task
corresponds to traversing the bounding faces until the next point in the set is found. The
total amount of work to execute these tasks isO(n). We can apply the Cole–Vishkin
scheduling algorithm to execute all of the tasks that take fewer thanc logn units of work
(when we encounter a long task, we just execute it forc logn units, and then give up if
it is not complete). We must now show that almost all of the tasks take less thanc logn
time units. We can then have a cleanup phase to take care of the remaining tasks.

LEMMA 4.6. The amount of work in tasks not completed in clogn time units is bounded
by2n/ logn with high probability.

3 The data structure that we give actually supports this operation inO(log1/6 n) time, which is sufficient for
our result.
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PROOF. There are two things that can cause the tasks to take too long: either the gaps
between elements ofH can be large, or the faces that are being covered can be too large.
We first set aside all of the tasks that have more than log5/6 n intersections withl . It is
easy to show that the number of intersections in the gaps that are larger than log5/6 n
is bounded byn/ logn with very high probability. If a face is very large (of sizenε),
then, even with a binary tree, traversing the face can take more time than we can afford.
As long as faces have size less thanK = 2log1/6 n time, we can traverse them in time
O(log1/6 n). We set aside all tasks that contain faces of size greater thanK . Since there
areO(n/K ) faces of that size, the number we set aside is very small. It follows that the
amount of work associated with the tasks we set aside is at most 2n/ logn.

5. Data Structures. One of the interesting aspects of this problem is that the data
structures that arise are nontrivial. Data structures have not played a major role in the
development of parallel algorithms. A review of parallel algorithms shows that in most
cases lists and arrays have been sufficient. An explanation of why the data structures are
more complicated in this problem than most others is that, since it is an on-line problem,
the number of processors(n/ logn) is much smaller than the number of data items that
it is necessary to keep track of(Ä(n2)).

The key to our data structure is to maintain for each line asortedlist of intersections.
(Our data structure also maintains some geometric information, but this is not a source
of difficulty.) For every insertion of a line we must add one intersection to each list.
We must do this inO(logn) time with n/ logn processors. If we only had to worry
about the insertion this would not be a difficulty, since we are supplied with an adjacent
intersection to each intersection that we add. The difficulty is that we must be able to
perform binary search on these lists of intersections. We need to be able to perform
binary search on an entire list inO(logn) time, and need to be able to perform a search
between elements separated by log3/2 n elements in timeO(log1/6 n). The natural solution
is to use some form of balanced tree to represent the list, however, that leads toÄ(logn)
worst-case time for an insert. We give a data structure that supports the needed operations
within our resource bounds. Our data structure is based on a balanced binary tree with
a higher branching factor closer to the leaves. An alternate approach would be to adapt
the persistent data structures of Driscollet al. [10]. Our data structure is substantially
simpler than theirs, since we neither support the full range of operations they describe,
nor are our resource requirements as tight.

We represent each of then lists as a balanced search tree. After we insert a new line
into the arrangement, we must update each of these lists by adding one intersection.
We haveO(logn) time to perform the update usingn/ logn processors. This means the
average time for an insert must beO(1). The difficulty is that the rebalancing operations
might takeO(logn) time each, which would exceed our resource bounds. Our solution
is to give a data structure where onlyn/ logn of the inserts takeO(logn) time, and the
remainder can be done inO(1) time. Our data structure is a balanced binary tree, except
that the bottom 12 levels have a branching factor ofO(log1/6 n). Figure 13 illustrates our
data structure. We refer to each of the subtrees formed by the bottom 12 levels as asmall
tree. Whenever we perform an insert, we just put the item into the appropriate small tree,
and rebalance the small tree. This can be done in constant time provided that the set of
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Fig. 13.Balanced tree with higher branching at lower levels.

values in a tree node is represented as a linked list. After every lognth insert into a list,
we choose the largest of the small trees in that list, and can rebalance the binary tree
above that small tree. The key lemma to prove is that the small trees never get too big.

LEMMA 5.1. If we are allowed to split a small tree after everylogn inserts, then no
small tree has more than2 log2 n leaves.

PROOF. Whenever we rebalance, we can split one of the small trees into two small trees
of half the size. A simplified way of modeling this is to assume we have a set of buckets.
We place logn elements into the buckets, and then get to empty one of the buckets. Since
we are attempting to minimize the number of elements in a bucket, we naturally choose
the bucket containing the largest number of elements to empty. The question is, after
we have insertedn elements, what is the maximum number of elements that a bucket
could contain. For every bucket that hasj logn elements, we can identify one bucket
containing at least( j −1) logn elements that we emptied. This means that to get a bucket
containing log2 n items, we must have emptied 2logn buckets. The detail that we must fix
up is that instead of emptying buckets, we split a bucket into two equal-sized buckets.
The trick that we use is to assume that we start withn buckets each containing log2 n
elements. We now argue that after insertingn new elements, we will have no bucket with
more than 2 log2 n items. We can view bucket splitting as emptying, since after a bucket
is split, it will contain fewer than log2 n elements.

Since we only rebalance every lognth insert, the work done to insert a line isO(n),
so it can be done inO(logn) time withn/ logn processors.

Each insertion into a small tree is done in constant time. The small trees are B-trees
with interior nodes having degree between1

2 log1/6 n and log1/6 n. Each node in the tree
is represented by a doubly linked list. When we insert an element, we are given a pointer
to a neighboring element, so it takes constant time to splice the element into the list.
When we insert an element, we might have to split a node in the tree. We split a node by
maintaining a pointer to the center element in the node. Since the height of the small trees
is bounded by a constant, we can rebalance in constant time. We can maintain pointers
to the central element of a node by an amortized computation. We only need the central
pointer when a node has size log1/6 n, so after a node is split, we have1

2 log1/6 n inserts
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before the next split, so we compute the central pointer by traversing the nodes one step
at each insert.

It is straightforward to perform binary search inO(logn) on these trees. If we make
sure the small trees have close to log1/6 n elements per internal node, then it is straight-
forward to do a binary search between two elements separated byO(log2 n) elements in
O(log1/6 n) time. It is also important to have the internal nodes close to full so that the
traversal can be done in blocks.

6. Deletion. The problem of deleting a line from an arrangement is much easier than
insertion. We delete a line by traversing the adjacent faces, starting fromn/ logn equally
spaced intersections. Since we are given the line, all the difficulties of finding these
starting points are avoided. We augment the data structure described above to handle
deletes in a straightforward manner. We do not rebalance the trees for deletes. If we have
m lines in the arrangement and a total ofn inserts have been executed, a line can be
inserted or deleted in timeO(logn) usingm/ logn processors.

There is room for improvement in this result, since we would like the cost of operations
only to depend on the number of elements in the arrangement, and not on the history.
We leave open the problem of performing insertion and deletion on an arrangement of
sizem in time O(logm) usingm/ logm processors.

7. Conclusions. We have demonstrated a very efficient parallel algorithm for the prob-
lem of computing arrangements of lined dimensions. This algorithm runs on a CREW
PRAM in near-optimal time and total work. We have also shown an EREW PRAM
algorithm for an on-line version of the two-dimensional arrangements problem that is
randomized and operates in asymptotically optimal time and total work. This latter al-
gorithm shows some of the interesting problems that arise when dealing with parallel
algorithms for on-line problems, particularly in the need for nontrivial data structures.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C. K. Yap. Parallel computational geometry.
Algorithmica, 3:293–326, 1988.

[2] A. Aggarwal and J. Wein. Computational geometry: lecture notes for 18.409, spring 1988. Technical
Report MIT/LCS/RSS 3, MIT Laboratory for Computer Science, 1988.

[3] R. J. Anderson, P. Beame, and E. Brisson. Parallel algorithms for arrangements.Proceedings of the
Second Annual Symposium on Parallel Algorithms and Architectures, 1990, pp. 298–306.

[4] D. Arnon, G. Collins, and S. McCallum. Cylindrical algebraic decomposition,I andII . SIAM Journal
on Computing, 13(4):865–889, 1984.

[5] M. J. Atallah, R. Cole, and M. T. Goodrich. Cascading divide-and-conquer: a technique for designing
parallel algorithms.SIAM Journal on Computing, 18:499–532, 1989.

[6] J. Canny. A new algebraic method for robot motion planning and real geometry.Proceedings of the
28th Symposium on Foundations of Computer Science, 1987, pp. 29–38.

[7] B. Chazelle. Intersecting is easier than sorting.Proceedings of the16th ACM Symposium on Theory of
Computation, 1984, pp. 125–134.

[8] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality.BIT, 25:76–90, 1985.



Parallel Algorithms for Arrangements 125

[9] R. Cole and U. Vishkin. Approximate parallel scheduling. Part I: The basic technique with applications
to optimal parallel list ranking in logarithmic time.SIAM Journal on Computing, 17:128–142, 1988.

[10] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan. Making data structures persistent.Journal of Computer
and System Sciences, 38:86–124, 1989.

[11] H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987.
[12] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with

applications.SIAM Journal on Computing, 15(2):341–363, 1986.
[13] M. T. Goodrich. Intersecting line segments in parallel with an output-sensitive number of processors.

Proceedings of the First Annual Symposium on Parallel Algorithms and Architectures, 1989, pp. 127–
136.

[14] M. T. Goodrich. Constructing arrangements optimal in parallel.Proceedings of the Third Annual Sym-
posium on Parallel Algorithms and Architectures, 1991, pp. 169–179. Also inDiscrete & Computational
Geometry, 9:371–385, 1993.

[15] T. Hagerup, H. Jung, and E. Welzl. Efficient parallel computation of arrangements of hyperplanes ind
dimensions.Proceedings of the Second Annual Symposium on Parallel Algorithms and Architectures,
1990, pp. 290–297.
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