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Parallel Algorithms for Arrangements?
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Abstract. We give the first efficient parallel algorithms for solving the arrangement problem. We give a
deterministic algorithm for the CREW PRAM which runs in nearly optimal bound3(dg n log* n) time and

n2/logn processors. We generalize this to obtairCaiog n log* n)-time algorithm using®/ log n processors

for solving the problem ird dimensions. We also give a randomized algorithm for the EREW PRAM that
constructs an arrangementrofines on-line, in which each insertion is done in optinillogn) time using

n/logn processors. Our algorithms develop new parallel data structures and new methods for traversing an
arrangement.
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1. Introduction. The problem of determining the geometric structure of the intersec-
tions of curves and surfaces has a long history in mathematjc§d], [19]. For the
purposes of computational geometry, a very important special case is that of determin-
ing this structure when the curves and surfaces being intersected are [Rfesrirmore
generally, hyperplanes iR® for d > 2. In this context the problem is known as the
arrangemenproblem.

A simple and elegant sequential algorithm for computing arrangemeit$ as
found by Chazellet al. [8] and Edelsbrunnest al. [17); the latter also showed how the
algorithm can be generalized ®'. In R? this algorithm has a worst-case running time
of O(n?), which is obtained by inserting the lines one after another into the arrangement
produced so far. IiRY the algorithm runs ir0O(n%) time. Since the problem generally
requires thaf2 (n) values be produced, the output requirements alone show that this is
optimal.

Computing arrangements is an important building block in several computational ge-
ometry algorithms. Intwo dimensions, arrangements are used during a preprocessing step
in algorithms for computing visibility graphs. They are also used by algorithms for find-
ing shortest paths that avoid polygonal obstacles. Furthermore, the worst-case optimal
hidden surface removal algorithm of McKenri&T first projects the three-dimensional
problem (involving planes) onto a two-dimensional image plane, then computes the
two-dimensional arrangement produced in the image plane, and finally simplifies it to
produce the viewed image.

There is a substantial body of work on the subject of parallel algorithms for computa-
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tionalgeometry (e.g.1], [5],[13],and [Lg]). Included in this work are parallel algorithms

for some problems related to finding arrangements, such as computing visibility from a
point in two dimensionsd] and hidden surface removal in restricted three-dimensional
scenes]d]. However, finding an optimal parallel algorithm for computing arrangements
has received less attentio?l[[13].

A fairly straightforward parallel algorithm for computing arrangements can be con-
structed using?/logn processors, requiring (log? n) time. In [13], which was the
starting point for this research, Goodrich gives an output-sensitive algorithm for com-
puting the intersections of line segments; however, when used to find arrangements of
lines, its running time is no better than that of the straightforward algorithm.

We present two algorithms for the arrangement problem. The first is a deterministic
algorithm for the CREW PRAM which runs in near-optin@a{log nlog* n) time using
O(n?/logn) processors for computing arrangementsRih We also show how this
generalizes to a®(lognlog* n)-time algorithm usingd(n’/logn) processors iR,

The second solves the on-line version of the arrangement problem, in which lines are
only available as input one after another. It is a randomized algorithm for the EREW
PRAM that constructs an arrangemenindines on-line, so that each insertion is done

in optimal O(log n) time usingn/logn processors. Both of our algorithms develop new
methods for traversing an arrangement efficiently in parallel.

Perhaps because of their perceived sequential nature, very little study has been made
of parallel algorithms for on-line problems. However, efficient on-line parallel algo-
rithms can be useful in a context where extremely fast response times are required in a
dynamic environment. On-line problems place unique demands on parallel algorithms
because, unlike static problems, they can require efficient maintenance of data structures
significantly larger than the number of processors available. In our on-line algorithm for
computing arrangements we encountered a problem apparently requiring sophisticated
data structures developed for sequential computation. We develop simpler data structures
that are sufficient for the demands of our algorithm.

Independently of this work, Hagerapal. [15] have developed a randomized CRCW
PRAM algorithm for thed-dimensional arrangements problem (not on-line) that is com-
plementary to our results and uses a different approach. At the expense of randomness
they obtain am?/logn processor algorithm that runs in optin@(logn) parallel time.
Subsequent to the initial appearance of our result, Goodtifjlpfesented a more elab-
orate algorithm than ours, which achieves optimal deterministic performance.

2. Background

2.1. Problem Statement Given a setH of n hyperplanes iRY, whered > 2, their
arrangemenfA(H) is the subdivision oRY they create. That is, iIH = {hy, ..., hy},
andh;” and h}* are the open half-spaces defined tyy then thefacesof A(H) are
(N h)i: h =h, hi, orh}. A description of an arrangement must include an enu-
meration of the faces, along with their topological relationships, for instance, anincidence
graph. If the input hyperplanes are in general position, so that the intersection lof any
hyperplanes is &—k)-dimensional face, theA(H) is simple The number ok-faces

in a general arrangement@(n?), and the number dé-faces in a simple arrangement is
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Fig. 1. Traversal during sequential line insertion.

®(nY). In the two-dimensional case the points, edges, and regioAstbj are denoted
by P(H), E(H), andR(H), respectively.

We assume that the input set of hyperplanes forms a simple arrangement, and in the
two-dimensional case contains no horizontal or vertical lines. The latter assumption may
be eliminated by making a small rotation of coordinates if the input includes horizontal
or vertical lines.

For output we need to give a description of the arrangement. In the two-dimensional
case we produce, for each linelh a sorted list of its intersections with the other lines
of H. The incidence graph may be produced within the same processor and time bounds.
In higher dimensions the incidence graph is produced as output.

2.2. The Sequential Algorithm In R? the arrangement problem can be solved by brute
force in O(n?logn) time by computing all the intersections along each line and then
sorting thesa lists independently. The optimal sequential algorithm for the arrangement
problem inR? given in [8] and [L2] removes the log factor, using an on-line algorithm
which inserts each linkinto the existing arrangement of upridines in timeO(n), to
achieve its running time.

For the purposes of illustration, view the lihto be inserted as being horizontal. The
leftmost intersection off with the arrangement is found ahds inserted in the list of
the line that it intersects. Then a left-to-right traversal of the arrangement is made along
| which discovers and adds each intersection point invollir@iven any intersection
point p onl, let R be the region whicl intersects immediately to the right @f The
next intersection is found by traversing the portion of the boundaR/lging above by
following the chain of edges incident to the boundary in clockwise order (this ordering
is extended to infinite faces in the obvious way). Figure 1 gives an illustration of the
traversal. Although it is not immediately obvious, it can be shown that such a traversal
never encounters more tham8egments along the way and thus the time for the insertion
is O(n).

3. Deterministic Algorithm for Arrangements

3.1. Overview There are two key elements to the deterministic parallel algorithm.
The first is the fast insertion of a single line into an arrangement, and the second is
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1 group: n lines \
.

loglogn groups: n/loglogn lines each

logn groups: nflogn lines each

Fig. 2. Overview of the deterministic algorithm, in two dimensions.

the fast merging of arrangements. The insert is a parallelization of the sequential insert,
which requires doing the inserts in a particular order and maintaining two extra data
structures, to allow an even distribution of processors and to speed up the traversal
of region boundaries. The merge of a set of arrangements is done by simultaneously
inserting every line into every arrangement other than its own, and then merging the
results of these separate inserts independently for each line. Somewhat surprisingly, to
obtain the most efficient algorithm, we must slow down the rate at which geometric
information is produced, as the bottleneck in our algorithm is the standard merging of
sorted lists.

The set of input lines is denoted bi;,. LetH C Hi,. Toinsert a linel into H means
creating a sorted list of the intersection points betwesmd the lines irH (excludingl,
if | € H). If every line inH has been inserted intd, thenH taken with its lines’ sorted
lists is called ssubarrangementof A(Hj,).

The algorithm is a divide-and-conquer algorithm which first performs a “setup step”
followed by log' n “phases.” (Figure 2 gives a visual presentation of the algorithm.) The
setup step orders the input lines by their slopes, and then organizes them imggdagps
of n/logn consecutive lines (taken in this slope ordering). Each line is then inserted into
the group which contains it. Thus the setup step provides ttigjoint subarrangements,
each of sizan/logn.

Each phase takes as input a partitionHf into k disjoint subarrangements of size
n/k (in this section it will always be the case thak logn). A phase runs in three steps.

The first step divides the input into groupskifogk consecutive subarrangements (in
the ordering of the lines they contain). It also computes two auxiliary data structures,
“splitters” and “level” (which are defined later) for each of the input subarrangements.

Each line appears within exactly one subarrangement, and so appears in exactly one

group, which we call the line’s group. The second step inserts every line into each of the
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Fig. 3. Example of vertical levels.

subarrangements within the line’s group. Tk gk sorted lists are created for every
line.

In the third step the sorted lists for each line are merges into one sorted list. By
creating this merged list, the line has now been inserted into its group. Thus the output
is a partition ofH;, into logk disjoint subarrangements of sinélogk.

We prove, in four lemmas, that the setup step and each of a merge-phase’s steps can be
performed in timeD (log n) usingn?/ log n processors on a CREW PRAM, thus proving
the main theorem of this section:

THEOREM3.1. Givenaset H ofnlinesinthe plajtbe deterministic algorithm outlined
above constructs @) in time O(lognlog* n) using r#/logn processors

3.2. Levels and Slope Ordering The keyto the insertion of aline into a subarrangement

is the parallelization of the sequential traversal described earlier. This is accomplished
by distributing the available processors evenly along the line being inserted, in particular
by assigning a processor to every hih intersection point. In order to show that our
method works, we consider the level structure of the arrangement. For technical reasons
we consider both horizontal and vertical levels.

If eis an edge inE(H), choose a vertical line throughwhich does not contain
any points ofP(H). Define thevertical level of ein A(H) to be to be the number of
edges ofE(H) this line intersects below. It is easy to check that this is well defined
(in particular, is independent of the choice of vertical line), given the fact that there are
no vertical lines in the input. The set of all edgedEH ) whose level ik is called the
k-levelof A(H). Given any lind, define thentersection ofl with level k to be the edge
in level k which intersect$. Horizontal levels are defined similarly. (See Figure 3.)

The key to making our method work is the following observation about the levels of
an arrangement: given a set of lines of “consecutive” slope, the level structure of their
arrangement is the same for all lines whose slope lies “outside” of their set of slopes.
The first step of a phase builds vertical and horizontal levels. Then the intersection of a
line with the lognth level, in one of these two directions, can be computed, which gives
the lognth intersection point. This is described in further detail below.
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Each input lind of Hi, has a slope-co < m < oo. If H is a subarrangement, define
My = minecy M andmy, = maxcy my. Letl be aline ofH;, such thatn ¢ [mp;, mf;].
If |my| > |my;| we say that is vertically insertable into H, and if|m;| < |m};| we say
thatl is horizontally insertable into H.

OBSERVATION 3.2. If | is vertically insertable into Hthen with increasing yit inter-
sects the vertical levels in strictly increasing order

ProOoOFE For any region ofA(H), classify its edges asottom edges if they lie below

it, andtop edges if they lie above it. Observe that all bottom edges of a region are of the
same levek, for somek, and all top edges of that region have the same levell. By

the definition of insertability, if intersects a region, then it intersects the bottom of the
region and the top of the region exactly once each. O

OBSERVATION 3.3. Given an arrangement (&) of n lines a data structure can be
built in O(logn) time by rf logn processorswhich allows finding the intersection of a
vertically insertable line with any level of (M) in timeO(logn) by a single processor

PrROOF An ordering is defined on all edges in the arrangement, first by level, then
within levels from left to right. A binary tree is built, with the edges as leaves, in time
O(logn) usingn?/ logn processors. O

The similar observations hold for horizontally insertable lines for increasiagd
horizontal levels.

3.3. The Algorithm

3.3.1. Setup Step Ordering then input lines by the their slopes is done as a sort of
n scalar in timeO(logn) by n processors. Breaking the lines into groupsbliogn
lines can be done in constant timeyrocessors. Each line must now be inserted into
a group ofn/logn lines. Assignn/logn processors to each line. For a specific line
each of its processors finds the intersectiohwith a different line inl’s group. To sort
these intersection points is done as a sor/ &g n scalars by/logn processors in time
O(logn). This gives the following lemma:

LEMMA 3.4. The setup step can be done in timéd@ n) using rf/logn processors

3.3.2. Auxiliary Data Structures We now define splitters, which facilitate the fast
traversal of large regions (those with many edges). The use of splitters first appears in
[7]; it was also used in[3]. If eis an edge ofA(H), let R be the region belowe. The
splitter for ein A(H) is the rightmost edge among the bottom edgd?.¢See Figure 4.)
If R has no bottom edges, then the splitter is undefined for the eddesTdfis occurs
only for the “bottommost” region, which will not be traversed.

We describe how to attach a pointer from every edge to its splitter, in a subarrangement
of n/k lines, in timeO (log n) usingn?/(k logn) processors. Note that such a subarrange-
ment has(n/k)? edges, so there are lagk edges per processor. To begin, every edge
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Fig. 4. Pointers to (downward) vertical splitters.

(except one) sets a pointer to its clockwise neighbor in the region below itself. The ex-
ception is the right-hand infinite edge of the bottommost region, which points to itself.
Thus there is at most one list for every region, whose root is that region’s splitter (except
in the case of the bottommost region). The goal is to have every edge point to the root
of its list. By using list-ranking, we can set each edge’s pointer to the root of its list
within the desired time bounds. Note that the edges of the bottommaost region will all be
pointing at that region’s right-hand infinite edge.

To calculate levels, observe that the level of any edge is one greater than that of its
splitter, except in the case of edges of the bottommost region, which all have level 0. The
right-hand infinite edge of the bottommost edge will bertiat edgefor the purposes of
this step. The starting configuration for making levels is just the result of the construction
of splitters. These pointers are now labeled with 1, unless they point at the root edge, in
which case they are labeled with 0. This gives a tree whose root is the root edge. Again
using list-ranking, along with an Eulerian tour, we can compute the cost of the path from
each edge along these pointers to the root edge in the desired time bounds, which is
exactly the level of the edge.

LEMMA 3.5. Given a subarrangement oflnlines where k< logn, its splitters and
levels can be produced in @gn) time using R/(k logn) processors

3.3.3. Inserting a Line into a SubarrangementAs a result of the ordering done in the
setup step and by merging of consecutive subarrangements, whenever we do an insert the
line will be either vertically or horizontally insertable.v&rtical insert or ahorizontal
insert will be done in each case, respectively. We describe the vertical insert of a line
| into a subarrangeme{(H) of n/k lines, usingn/(k logn) processors; the horizontal
insert is similar.

A vertical insert is done in two passes, calledversals, the first downward and
the second upward; we describe the downward pass. A subarrangeméalinés has
n/k levels. Assign a processor to every lay level, and also to level/k. Subscript
the processors by successive positive integers in order of the levels to which they are
assigned. Each procesd®ffirst finds the intersectiog of | with its level, and computes
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Fig. 5. Example of downward and upward traversals.

the intersectionp; of | and the line containing;. Let R be the region belove . The
processor now begins a clockwise traversal of the boundaR: @his cannot actually

be done edge-by-edge, as it would take too long for large regions. Instead, the processor
immediately jumps to its splitter, and then the clockwise search proceeds as it would in
the sequential case. If this traversal reaches an €dghkich intersects, the process is
started over, and so on. The processor stops when it reachesr encounters an edge
whose containing line intersedt®elow p; _;.

The upward pass is now done, traversing boundaries counterclockwise, using the
appropriate redefinition of splitters, etc. (See Figure 5.) What needs to be proven is that
this takes timeéd (log n), and that each intersection point afith the lines ofH is found
by either the downward or upward pass. This is enough to give the sorted order of the
intersection points.

LEMMA 3.6. The above algorithm inserts a line into a subarrangement of sizem
time O(logn) using ri(klogn) processors

PrROOFE The allocation of processors takes constant time. Consider prod&sadrere
1 <i < n/k. For P to find the intersection df with its level takes timeD(logn), by
Observation 3.3. The following argument is due to GoodricHj.[

Divide the setH of lines Hapove Hoetween @aNdHpeiow, as the lines intersettbovep;,
betweenp; andp;_; inclusive, or belowp; _;. Note that in the downward traversal, edges
whose containing lines are idapoveare never encountered (they are jumped over), and
at most one edge whose containing line idHigy o is encountered (then the processor
stops its traversal). The cardinality éfyemeenis less than log, by the allocation of
the processors. Consider the standard sequential traversal which would be performed
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when inserting into A(Hpewveen.- The number of edges encountered in such a traversal
is O(logn). The number of edges encountered in our traversal is no greater than the
number in such a sequential traversal, hend@@®gn). Thus the traversal takes time
O(logn).

If the downward traversal by process8rreachesp;_;, or the upward traversal by
P,_, reachesy;, then all the intersection points betwepnand p; _; have been found.
If the upward and downward traversals each terminate by reaching an edge contained in
Habove@nd Hpelons respectively, then make the following argument. Consider the region
formed by the lines 0Hapove U Hpelow Which containsp; and p;_;. If the boundary of
this region is followed from top to bottom in the clockwise direction, starting ffpm
then the edges encountered will first all be contained in liné&gf,e then all contained
in lines of Hyeiow. This is also true in our traversal, so in the case under consideration
the two traversals will have “passed” each other. Thus all intersection points have been
found. O

3.3.4. Merging Sorted Lists In the third step of each phase, every line must merge
k/logk sorted lists using the processors assigned to it:

LEmMmMA 3.7. Let k < logn. k/logk sorted lists of length ik can be merged in time
O(logn) using n'logn processors

PrOOF Abalanced binary tree is formed with the lists at the leaves. The lists are merged
in rounds, so that each round reduces the depth of the tree by one. Thus therekare log
rounds. Each round can be completediflogn/logk) time usingn/logn processors.

This is done by slowing down the optimal wo@k(log logn) merging algorithm16]. O

3.4. Higher-Dimensional Arrangements Given a setH of n hyperplanes irRY, the
d-dimensional arrangemei(H) is the subdivision oR? generated byd. An optimal
worst-case sequential algorithm for constructihgH) is given in [L2], which runs in
O(n%) time. We show that our two-dimensional arrangement algorithm can be used to
solve thed-dimensional problem i@ (log n log* n) time usingn®/ log n processors (thus
is within O(log* n) of optimal). The algorithm begins by computing the projection of
the problem onto each of the two-dimensional planes formed by the intersectiendf
hyperplanes. Each of these two-dimensional arrangement problems is solved, and then
the results are combined to build the higher-dimensional structure dftlti@ensional
arrangement. The combining process taRe&®gn) time withn®/ logn processors, so if
a faster two-dimensional algorithm is uséd], [15], the run time of thed-dimensional
algorithm is also improved.

In representing the solution to the arrangement problem, we need to represent the
topological structure of the arrangementdidimensions an arrangement consistk-of
faces, fokk = 0 throughd. (A k-face is &-dimensional region bounded by hyperplanes
of H.) We assume that the arrangement is in general position so that the intersection of
k hyperplanes is & — k)-flat. The standard representation of the topological structure
is the incidence graph. The incidence graph has a vertex for each face, and an edge
between &-face and ak + 1)-face if thek-face is contained in thé& + 1)-face. A
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detailed discussion of the structure of arrangements can be fouhd if\[vertex in the
arrangement is the intersectiondfiyperplanes. Itis important later that an arrangement
vertex is incident to a constant numberkefaces.

We begin our construction of the arrangementidimensions by computing the
intersection of each set af — 2 hyperplanes. Each one of these intersections gives a
two-dimensional plane. For each of these planes we compute the intersection with the
remaining hyperplanes and solve the two-dimensional arrangement problem. There are
(d E 2> problems, so we allocat@ (n?/ logn) processors to each problem. This allows
us to compute the incidence graph for all of the zero- and one-dimensional fages. If
andw are vertices of the arrangement, we say they are neighbors if they are incident to
a common one-dimensional face.

We begin by creating records for the faces of the arrangement. Each verteates
a set of records for all of the faces incident to it. Each face is represented by a number
of records. The key step in the algorithm is to pick a canonical representative for each
face. We do this by attaching each face to the lexicographically minimal (lexmin) vertex
that it is incident to. We now describe our algorithm for identifying the lexmin vertex
adjacent to each face. Each vertex has a set of records of the(forf, wherev is
the vertex andf is a face. We create a directed graph on these ordered pairs which has
outdegree at most one. ifis adjacent to the facé, the processor associated with
chooses a vertex such thatw is a neighbor ob, w <jex v, andw is adjacent tof . The
processor creates an edge frém f ) to (w, f). If there is no such vertex, thanis the
lexmin vertex adjacent td. After constructing this graph, we identify the lexmin vertex
adjacent to each face by traversing each of these trees to its root. (This can be done by
an Eulerian tour and list-ranking. In order to set up the Eulerian tour, we use the fact the
each vertex has a bounded number of neighbors.) After we have identified a canonical
vertex for every face, we can construct the edge lists for the intersection graph. If the
k-face fy is adjacent to thek + 1)-face fy 1, the canonical vertex fofy identifies this
adjacency. We then do another list traversal to bring together all &-faees adjacent
to fx,1. This traversal is done using the same links as were set up to identify the lexmin
vertices associated with the faces. Since list ranking can be daddagn) time with
linear work, the algorithm runs in the claimed time bound.

4. On-Line Algorithm. We now present the second main result of the paper: an opti-
mal randomized algorithm for the on-line version of the two-dimensional arrangements
problem. The on-line problem is to construct an arrangement by inserting lines one at a
time. We must complete the insertion of one line before starting the insertion of the next
line. We do not know the position of a line before we begin inserting it. The sequential
algorithm for constructing an arrangement builds the arrangement one line at a time, so
it solves the on-line problem. We give an optimal randomized parallel algorithm for the
problem. The algorithm inserts a line into an arrangemenmt lafes in O(logn) time
usingn/logn processors. The algorithm is foran EREW PRAM. Our algorithm relies on
making random choices. The results of the algorithm are always correct, and it succeeds
ininserting a line irclog n time with high probability. Since we are using this algorithm

to insert a sequence dflines, it is important that our performance guarantee is “with
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Fig. 6.Inserting a line with independent subtraversals.

high probability,” so that we can say it is very likely that all of the insertions succeed
within the time bound.

Our on-line algorithm for the problem works along the same lines as the sequential
algorithm. The sequential algorithm inserts a limeto an arrangement by traversing the
faces adjacent tio This algorithm works since the number of segments on faces adjacent
tol is O(n), and we can move from segment to segment in constant time. For a parallel
version of this algorithm, we perform the traversal starting from many intersections along
| simultaneously as shown in Figure 6. For a Imé the arrangement, we can locate
where the intersection df andl fits in h’s sorted list of intersections i@ (logn) time
by binary search. We can then traverse the faces adjacérdtéoting fromh. Since
it takesO(logn) time to find the starting point for a traversal, we can afford to start
from n/logn points. We choose our starting points by selectihlpgn lines from the
arrangement at random. We would like to perform the subtraversals from each of the
starting points, but we run into a major difficulty. The total length of the traversal is
O(n), so they have average lengii(logn). However, it is possible that a moderately
large number of subtraversals have length greater ¢hagn, so it is not possible to
complete them irD(logn) time. This difficulty arises for two distinct reasons:

(1) The arrangement may have large faces.
(2) When we seleat/logn elements out of set of sizg some of the gaps between
selected elements will be larger thalog n.

The on-line problem is broken into two parts. The first part is to insert a line into the
arrangement. Inserting a linento the arrangement means that we construct a list that
contains the intersectionslofvith the other lines in sorted order, and, for each hineve
insert the intersection point dfandl into h’s list of intersections. The second part of the
computation is to update the data structure to reflect the addition of thie lite data
structure represents the lines both as a planar subdivision, and as lists of intersections.
The subdivision allows the segments bounding a face to be traversed in order. The faces
are represented as doubly linked lists of edges. Large faces have binary trees embedded
in them which allow us to determine the intersection points of a line with a face in time
that is logarithmic in the face size. The other representation of the arrangement gives the
intersections along each line in sorted order. This information is used in both a random
access fashion as well as to perform binary search. For the purpose of discussionitis best
to think that for each line we have an array that gives its intersections with other lines
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in sorted order. The actual data structure is more complicated, since it must be updated
in essentially constant time. We postpone out discussion of the intricacies of the data
structure until after our presentation of the algorithm.

Mainldea We beginwitin/logn starting points for our traversal. This givesusogn

tasks to perform with total execution time boundedcly We haven/logn processors
available. We could complete all bab/logn of the tasks by executing each task for
clogn/e time. However, we cannot afford to leave this many incomplete tasks (our
algorithm will complete all bun/log®?n of the tasks). The main idea is to redefine
the traversal so that each of the subtraversals can be accelerated by a fagtoy of
assigningSprocessors to it. This allows us to transform our problem into one consisting
of n/log n tasks with a total execution time boundeddyy Sto be scheduled am'Slogn
processors. By using the Cole-Vishk#} §cheduling algorithm we can complete all but
n/Slogn of the tasks iMD (logn) time. After we have completed the subtraversals, there
is a substantial cleanup phase in which we identify and place all of the intersections.
However, it is redefining the traversal and applying Cole-Vishkin scheduling that is the
key to the solution.

Traversal Algorithm We describe our algorithm as if the lihavere horizontal. The
algorithm begins by selectinglogn lines at random from the arrangement, and then
computing a sorted list of their intersections wiitlor convenience we also select the
lines that have the leftmost and rightmost intersections witkle denote this subset of
lines byH = h, ..., hy and the set of intersection points & . . ., gm Whereg; is the
intersection oh; with | and the intersections are ordeigd. . ., g, from left to right.

The full traversal consists of a set of subtraversals, wherétthsubtraversal is a
path P from g; to g +1. The angle between consecutive segments on a subtraversal is
less than 18Q so following the subtraversal from left to right corresponds to a series of
right turns. The segments need not arise from adjacent intersections in the arrangement.
Thus, if the segmentp;, p,) of the lineh is a portion of a subtraversal, thénmay
have intersections with other lines betweggnand p,. Figure 7 gives an example of a
subtraversal.

We define thdengthof the traversal to be the total number of intersections that are
encountered during the construction of its subtraversals. This includes both the inter-

i+]

[ e\ 1 [ Ja N

Fig. 7. SubtraversaP, .
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sections that form the endpoints of the segments and intersections that are interior to
segments. The total length of the traversal must be bounded for some constard,
so that we can construct it within our resource bound.

In order to have a traversal algorithm that we can efficiently parallelize, we process
the intersections along a linelmfocks By this we mean that if we are at the intersection
v on the lineh, we consider the neX intersections alonf simultaneously to decide
which segment to traverse when we ledweNe assignS processors to the traversal
(whereS = /K), and achieve a speedup of a factor®bver the time for a single
processor.

Constructing a Subtraversal The subtraversal algorithm finds a p&Hromq; to g1
foreach . We constructthe path by stepping along the lines of the arrangement, turning
clockwise at intersections, except when the intersection is with a line that inteksects
betweerg; andg; 1. We implement this algorithm in a manner that allows us to achieve
a limited parallelism on the traversal. Suppose that firfes been identified as being
part of the traversal starting from the intersection dfi and some other line. We need to
decide which line follows in the traversal. We examine the fitstintersections along

h following p. Our choice of the next line is basically the one that allows us to make
as sharp a turn as possible without selecting a line that intedskeete/eery; andg; ;.

If none of the intersections allows a suitable clockwise turn, then we consider the next
K intersections alon. We give a more complete specification of the selection process
below. We allocateS = /K processors to this. Assuming that the intersections of
are stored in an appropriate data structure, we can process each block of intersections in
O(S) time.

We now give a precise version of the traversal algorithm. The complications in the
traversal algorithm arise because we must guarantee that it has @agthThe sub-
traversal fronm; to g, is divided into deft subtraversabnd aright subtraversalThe
left subtraversal begins @ and proceeds clockwise until a line is encountered that
intersectd to the right ofqg; 1, and the right subtraversal beginsgat; and proceeds
counterclockwise until a line is encountered that intersetdshe left ofg;. Since the
subtraversals are mirror images of each other, we concentrate on the left traversal.

The algorithm for constructing the left subtraversal maintains a current line and a
current intersection. We begin with the current linehaand the current intersection as
g - We examine the lines that give rise to the niéxintersections along the current line
h. There are several cases that can occur:

1. If one of the lines intersectsto the right of or afg;, 1, then the left subtraversal is
finished. We call the first of these lines tledt boundary

2. Case 1 does not occur and one of the lines is a membgYe choose the first such
line h" as the current line, and the current intersection becomes the intersedtion of
andh.

3. Casesland2donotoccur, and one ofthe lines intefsggt$elow” the intersection
of h andh;_.;. We choose the ling’ that has the “lowest” intersection with 1, as
in Figure 8. (The lowest point o ,; is the intersection dfi; . ; andl. We consider
the lineh;_; to wrap aroundtoco).

4. Cases 1-3 do not occur. We advance the current interséctiotersections alonp.
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Fig. 8. Selection of the next intersection.

Ifthe left boundary intersects the right subtraversal, then the full subtraversal is formed
by following the left subtraversal, then following the left boundary, and then following
the right subtraversal (in reverse) from its intersection. If the left boundary does not
intersect the right subtraversal, then the lemma below shows that the right boundary
intersects the left subtraversal, so that the full subtraversal is formed by following the
right subtraversal, then the right boundary, and then the left subtraversal.

LEMMA 4.1. The left boundary intersects the right subtraversal or the right boundary
intersects the left subtraversal

ProoFE Ifthe right boundary does notintersect the left subtraversal, then the left bound-
ary intersects the right subtraversal, as shown in Figure 9. O

We choose a block size & = logn. We now prove that the amount of work done
in computing all of the subtraversals@(n).

9 Gy

Fig. 9. Left boundary intersecting the right subtraversal.
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THEOREM4.2. The total amount of work performed during the construction of the
subtraversals is @).

The proof that the amount of work is linear has to account for all of the intersections
that are examined. Using the same analysis as for the sequential algorithm itis immediate
that Case 2 arise®(n/logn) times, so Case 2 accounts f0rn) intersections in total.

The key to the proof is to show that Case 3 accounts for @1ly) intersections. It is
possible for a line to be encountered by many of the subtraversals. Our argument is that
only a few lines that are encountered duringittideft subtraversal are ever encountered
again.

LEMMA 4.3. Let X be the set of lines involved in Cadtersections during theth
left subtraversalAt most2 logn lines from X are involved in Casintersections of
subsequent left subtraversals

PrROOF Letbhy, ..., by be the blocks of intersections examined during the construction
of theith left subtraversal. We denote the line traversed when bipdk examined
by g;. Let X; be the bundle of lines associated wiihthat intersech; ; below the
intersection ofy; andh;1 (see Figure 10). The key to the proof is that the bundles are
ordered in the sense that fpr< j’, to the right ofh; 4, the lines inX; are above those
in Xj.. It is sufficient to prove this folj’ = j 4+ 1. Let p be the intersection ofj 1
andh; ;. We show that ifg’ € X; andg” e Xj,1, theng’ is strictly aboveg” on the
right-hand side oh;, ;. This is true because the slopegfis greater than the slope of
g’ andg’ intersectsh;; abovep while g” intersectsh; ;1 below p. This is shown in
Figure 11.

If > 1<j<k IXj| < 2lognthe lemmais trivial, so suppose thal_; ., |X;| > 2logn.
Let j’ be the largest index such that Ibg< Zj,sjsk [Xj] < 2logn. Such aj’ exists
since| X;| < logn. We claim that only lines irXj, . .., Xx can be involved in any sub-
sequentintersections. In order to intersect adjire X; for j < j’, more than log lines
must be encountered. Since there are onlynlogersections per block, this means that
more than one block would have to be involved. However, the first block that contains

gj+1

Fig. 10.A bundle of lines.
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Fig. 11.0Ordering of lines.

any of the intersections frorX;., . .., Xy would cause the traversal to remain below the
line g. O

We can now complete the proof of Theorem 4.2 using an accounting trick. We need
to account for the total number of Case 3 intersections. Sugpasa line involved in a
Case 3 intersection during thtn subtraversal. If this is the first Case 3 intersection for
h’, we bill it to h’, otherwise we bill it to the traversaf the previousase 3 intersection
for h'. Each line gets billed at most once, and each traversal gets billed at most,2 log
so the number of intersections @(n).

Cole-Vishkin Scheduling The traversal algorithm defines a set of subtraversals be-
tween adjacent pairs of points in the ggt. . ., gm. We view each of these subtraversals

as a task that we need to execute. It is not necessary to complete all of the tasks within
O(logn) time, since we can have a cleanup phase that processes a small number of the
subtraversals by a different method. If we were to assign one processor to a subtraversal
of lengthk, we could complete it irD(k) time. However, if we assigi® processors
(where S is much smaller than the block siz€), we can complete the subtraversal

in O(k/S) time. Our approach is to group the processors together in groups oBsize
referred to asuperprocessorsThis gives us/logn tasks to execute on/Slogn su-
perprocessors, with a total processing requiremer@ @fS). We haveO(logn) time
available and want to complete as many tasks as possible. What we have gained by
grouping the processors, is that we are now able to load balance; when a processor
completes a task, it can then move on to some uncompleted task. A direct application of
the Cole-Vishkin deterministic scheduling algorithgéh $ays that inO(logn) time we

can execute all of the tasks of size less théogn. Since tasks of size less thatogn
correspond to subtraversals of length less th&logn, this allows us to traverse most

of the paths. If we are able to complete the subtraversal betgyeserdqg; ;1 we say that
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the gap(qi, gi11) is covered and if we are not able to traverse the segment, we say the
gap isuncovered

LEMMA 4.4. If we choose S= log*2n, then after the traversal is completiaere are
O(n/log®?n) uncovered gaps

PrOOF  Since the sum of the lengths of the subtraversals is atomastd we complete
all paths of length lo§? n or less, there are at masi/ log®? n subtraversals we do not
complete, leaving at mostv log®? n uncovered gaps. O

Covered and Uncovered GapsWe now use the traversal to fimdlog?3n roughly

equally spaced points alohgWe run the sequential algorithm independently from each
one of these points to complete the insertioh &fe construct a séd of approximately
n/log?®n lines by assigning lines independently kbwith probability 1/log’®n and
including the two lines having the leftmost and rightmost intersectionsiwitfe must
locate wherd intersects each of the lines bf. This means that, for eadhe H, we

must determine where the intersection @ndh falls in the list of intersections fon.

If | intersectsh in a covered gap, we can use information gained during the traversal
to locate the traversal quickly, otherwise we must perform a binary search to locate the
intersection point. We address both of these cases below. Figure 12 shows Ies in
intersecting covered and uncovered gaps.

We actually choose the setbefore the execution of the traversal algorithm described
above. When we are doing the traversal we can test each intersection we encounter as to
whether or not it is with a line in the sét. Suppose we encounter an intersection with
the lineh € H when we are traversing betwegrandg; 11 and suppose thatintersects
| atg which is betweery, andgq;.;. We must determine where the intersectepwill
go inh’s list of intersections. On the traversal we encounter an intersection pain
with some segment of the traversal. The number of intersections bepweeaaig along
his bounded by lo§? n. This means that we could use a binary search to locate where

~
Lines from H

el

Fig. 12.Covered and uncovered gaps.
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belongs inO(log logn) time2 We can thus place all of the intersections betwieand
the lines ofH that fall in covered gaps within our time and processor bounds.

We handle the intersections that occur in uncovered gaps by binary search. During
the traversal we identify all of the lines &f that intersect in covered gaps, so we are
left only with the lines that intersect in uncovered gaps. We perform a binary search on
each of these lines to locate the intersection WitWe must show that we do not have
too many of these lines that intersect uncovered gaps.

LEMMA 4.5. The numbers of lines of H that intersect uncovered gaps is bounded by
n/logn with high probability

ProOOE The key to the proof is to show that the total size of the uncovered gaps is
bounded by// log*® nwith high probability. The uncovered gaps arise from first selecting

a random set ofi/ logn intersections which define all of the gaps, and then performing
traversals to determine which are covered or uncovered. To show that the uncovered
gaps contain no more tharlog®n intersections, we use the fact that the number of
elements in the largest log®?n gaps is bounded by/log*® n with high probability.

The selection of the séd is done by choosing each line with probability 1/3Ga. If

we select elements from a set of size at mm$wg*’ n each with probability 1/log°n,

then with high probability, using Chernoff bounds, the resulting set has size bounded by
2n/logn. O

After considering both covered and uncovered intervals, we have a s&bgf®n
points alondg and want to step along the arrangement from each of these points. The
one remaining obstacle that we have is that the arrangement may have some large faces.
In order to speed up the traversal along large faces, we assume that for each face of the
full arrangement we have a balanced binary tree which gives us the segments adjacent
to the face in clockwise order. The operation that we perform on afasegiven the
linel and a segmery; wherel entersf, find the segmers, wherel leavesf. It is easy
to see that we can fing in time logarithmic in the number of segments bounding
using the binary tree. The/ log?® n points define a set af/ log?’® n tasks where a task
corresponds to traversing the bounding faces until the next point in the set is found. The
total amount of work to execute these task©ig). We can apply the Cole—Vishkin
scheduling algorithm to execute all of the tasks that take fewerdlagm units of work
(when we encounter a long task, we just execute itfogn units, and then give up if
it is not complete). We must now show that almost all of the tasks take less tbgn
time units. We can then have a cleanup phase to take care of the remaining tasks.

LEMMA 4.6. The amount of work in tasks not completed iogn time units is bounded
by 2n/logn with high probability

3 The data structure that we give actually supports this operati@yiog® n) time, which is sufficient for
our result.
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PROOF There are two things that can cause the tasks to take too long: either the gaps
between elements &1 can be large, or the faces that are being covered can be too large.
We first set aside all of the tasks that have more thaMfogntersections with. It is

easy to show that the number of intersections in the gaps that are larger tH4n log

is bounded byn/logn with very high probability. If a face is very large (of siré),

then, even with a binary tree, traversing the face can take more time than we can afford.
As long as faces have size less tHan= 2009"°n time, we can traverse them in time
O(log®n). We set aside all tasks that contain faces of size greateikh&ince there
areO(n/K) faces of that size, the number we set aside is very small. It follows that the
amount of work associated with the tasks we set aside is at mbisigh. O

5. Data Structures. One of the interesting aspects of this problem is that the data
structures that arise are nontrivial. Data structures have not played a major role in the
development of parallel algorithms. A review of parallel algorithms shows that in most
cases lists and arrays have been sufficient. An explanation of why the data structures are
more complicated in this problem than most others is that, since it is an on-line problem,
the number of processo(a/logn) is much smaller than the number of data items that

it is necessary to keep track @2 (n?)).

The key to our data structure is to maintain for each lisergedlist of intersections.

(Our data structure also maintains some geometric information, but this is not a source
of difficulty.) For every insertion of a line we must add one intersection to each list.
We must do this inO(logn) time with n/logn processors. If we only had to worry
about the insertion this would not be a difficulty, since we are supplied with an adjacent
intersection to each intersection that we add. The difficulty is that we must be able to
perform binary search on these lists of intersections. We need to be able to perform
binary search on an entire list @(logn) time, and need to be able to perform a search
between elements separated byfbgelements in tim® (log'® n). The natural solution

is to use some form of balanced tree to represent the list, however, that |€adedgam)
worst-case time for an insert. We give a data structure that supports the needed operations
within our resource bounds. Our data structure is based on a balanced binary tree with
a higher branching factor closer to the leaves. An alternate approach would be to adapt
the persistent data structures of Driscatllal. [10]. Our data structure is substantially
simpler than theirs, since we neither support the full range of operations they describe,
nor are our resource requirements as tight.

We represent each of tielists as a balanced search tree. After we insert a new line
into the arrangement, we must update each of these lists by adding one intersection.
We haveO(logn) time to perform the update usimglogn processors. This means the
average time for an insert must 8&1). The difficulty is that the rebalancing operations
might takeO (logn) time each, which would exceed our resource bounds. Our solution
is to give a data structure where omlfiogn of the inserts také® (logn) time, and the
remainder can be done @ (1) time. Our data structure is a balanced binary tree, except
that the bottom 12 levels have a branching fact(ﬂD(JIbgl’6 n). Figure 13 illustrates our
data structure. We refer to each of the subtrees formed by the bottom 12 levelnak a
tree Whenever we perform an insert, we just put the item into the appropriate small tree,
and rebalance the small tree. This can be done in constant time provided that the set of
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Fig. 13.Balanced tree with higher branching at lower levels.

values in a tree node is represented as a linked list. After eventhoigsert into a list,
we choose the largest of the small trees in that list, and can rebalance the binary tree
above that small tree. The key lemma to prove is that the small trees never get too big.

LEmmA 5.1. If we are allowed to split a small tree after evdogn inserts then no
small tree has more thadlog? n leaves

PrROOF Whenever we rebalance, we can split one of the small trees into two small trees
of half the size. A simplified way of modeling this is to assume we have a set of buckets.
We place logh elements into the buckets, and then get to empty one of the buckets. Since
we are attempting to minimize the number of elements in a bucket, we naturally choose
the bucket containing the largest number of elements to empty. The question is, after
we have inserted elements, what is the maximum number of elements that a bucket
could contain. For every bucket that hpkbgn elements, we can identify one bucket
containing atleagtj — 1) log n elements that we emptied. This means that to get a bucket
containing log n items, we must have emptie®%" buckets. The detail that we must fix

up is that instead of emptying buckets, we split a bucket into two equal-sized buckets.
The trick that we use is to assume that we start withuckets each containing 16g
elements. We now argue that after insertingew elements, we will have no bucket with
more than 2 logn items. We can view bucket splitting as emptying, since after a bucket
is split, it will contain fewer than logn elements. O

Since we only rebalance every loth insert, the work done to insert a line@(n),
so it can be done i®(logn) time withn/logn processors.

Each insertion into a small tree is done in constant time. The small trees are B-trees
with interior nodes having degree betweklog!’® n and lod’® n. Each node in the tree
is represented by a doubly linked list. When we insert an element, we are given a pointer
to a neighboring element, so it takes constant time to splice the element into the list.
When we insert an element, we might have to split a node in the tree. We split a node by
maintaining a pointer to the center element in the node. Since the height of the small trees
is bounded by a constant, we can rebalance in constant time. We can maintain pointers
to the central element of a node by an amortized computation. We only need the central
pointer when a node has size 6@, so after a node is split, we haddog"®n inserts
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before the next split, so we compute the central pointer by traversing the nodes one step
at each insert.

It is straightforward to perform binary search@logn) on these trees. If we make
sure the small trees have close to'{6g elements per internal node, then it is straight-
forward to do a binary search between two elements separat®dlog” n) elements in
O(log"®n) time. It is also important to have the internal nodes close to full so that the
traversal can be done in blocks.

6. Deletion. The problem of deleting a line from an arrangement is much easier than
insertion. We delete a line by traversing the adjacent faces, startingifiogn equally
spaced intersections. Since we are given the line, all the difficulties of finding these
starting points are avoided. We augment the data structure described above to handle
deletes in a straightforward manner. We do not rebalance the trees for deletes. If we have
m lines in the arrangement and a totalrofnserts have been executed, a line can be
inserted or deleted in tim@® (logn) usingm/ logn processors.

There isroom for improvement in this result, since we would like the cost of operations
only to depend on the number of elements in the arrangement, and not on the history.
We leave open the problem of performing insertion and deletion on an arrangement of
sizem in time O(log m) usingm/log m processors.

7. Conclusions. We have demonstrated a very efficient parallel algorithm for the prob-
lem of computing arrangements of lidedimensions. This algorithm runs on a CREW
PRAM in near-optimal time and total work. We have also shown an EREW PRAM
algorithm for an on-line version of the two-dimensional arrangements problem that is
randomized and operates in asymptotically optimal time and total work. This latter al-
gorithm shows some of the interesting problems that arise when dealing with parallel
algorithms for on-line problems, particularly in the need for nontrivial data structures.
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