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Abstract. An important extension of satisfiability testing is model-counting, a

task that corresponds to problems such as probabilistic reasoning and comput-

ing the permanent of a Boolean matrix. We recently introduced Cachet, an ex-

act model-counting algorithm that combines formula caching, clause learning,

and component analysis. This paper reports on experiments with various tech-

niques for improving the performance of Cachet, including component-selection

strategies, variable-selection branching heuristics, randomization, backtracking

schemes, and cross-component implications. The result of this work is a highly-

tuned version of Cachet, the first (and currently, only) system able to exactly

determine the marginal probabilities of variables in random 3-SAT formulas with

150+ variables. We use this to discover an interesting property of random formu-

las that does not seem to have been previously observed.

1 Introduction

The substantial progress in practical algorithms for satisfiability has opened up the pos-

sibility of solving many related, and even more difficult, logical problems. In recent

work [10], we introduced Cachet, which applies techniques for practical satisfiability

algorithms to the associated counting problem, #SAT, that requires the computation of

the number of all satisfying assignments of a given CNF formula.

Cachet is an exact model-counting algorithm which combines formula caching [7,

2, 5], clause learning [8, 13, 14], and dynamic component analysis [4, 2, 3]. Cachet was

shown to outperform other model counting algorithms on a wide range of problems.

In [10], the primary focus was on managing the component caching, and integrating

it with clause learning since the combination of the two can cause subtle errors if certain

cross-component implications are not controlled. Handling these problems involved

techniques to flush certain cache entries and to detect and prevent cross-component

implications involving learned clauses.

In this paper we examine a wide range of different techniques for improving the

performance of Cachet, including component-selection strategies, variable-selection

branching heuristics, backtracking schemes, and randomization. Many of these tech-

niques have previously worked well in SAT solvers. In addition to studying these heuris-

tics we also study the impact of using a more liberal but still sound method, suggested

in [10], controlling cross-components implications involving learned clauses.

One major goal of this work beyond improving the performance of Cachet itself is

to determine which of the heuristics from SAT solvers are well-suited for use in #SAT

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 226–240, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Heuristics for Fast Exact Model Counting 227

solvers in general. Our results show that some popular techniques such as randomization

and aggressive non-chronological backtracking perform quite poorly when combined

with component caching as in Cachet and do not appear to be particularly well-suited

to use in #SAT solvers in general.

In the case of variable-selection branching heuristics, we observe that in Cachet the

tradeoffs between heuristics are somewhat different than in the case of SAT solvers.

Based on previous heuristics, we develop a new hybrid branching heuristic, VSADS,

which appears to be a good choice for model counting algorithms involving compo-

nent caching. We also observe that the right application of variable-selection heuristics

is secondary to component selection, and we use a new method for selecting compo-

nents that reduces the amount of wasted effort when the component cache must be

flushed. Our experiments also show that the more liberal method for controlling cross-

component implications has only a relatively small impact on almost all problems.

Finally, we show how our tuned version of Cachet can be extended to compute

all marginal probabilities of variables in random 3-CNF formulas of 150+ variables

(at sufficiently high clause-variable ratios). This allows us to discover a new pattern in

these marginals. At a clause-variable ratio of roughly 3.4 the conditional probability that

a randomly-chosen variable in a satisfying assignment is true is uniformly distributed

between 0 and 1. Moreover we derive curves that allow us to predict these probabilities

at other ratios. Such results may have explanatory power in the analysis of simple DPLL

algorithms.

In the next section we give an overview of Cachet. In Section 3 we discuss the im-

pact of branching heuristics, followed by randomization in Section 4, cross-component

implications in Section 5, and non-chronological backtracking in Section 6. Finally, we

discuss our methods and results in computing marginal probabilities in Section 7.

2 Overview of Cachet

Cachet, presented in [10], is a practical tool for solving #SAT. It is implemented as a

modification and extension of the state-of-the-art SAT solver zChaff [14]. In addition

to the 1UIP clause learning of zChaff, Cachet adds two other features that are critical

to its performance: an explicit on-the-fly calculation of the connected components of

the residual formula at each node in the search tree, and a cache to store the compo-

nents’ model counts so that they do not need to be recalculated when those components

reappear later in the search.

Although SAT solvers typically eschew explicit computation of residual formulas,

the higher complexity of #SAT complexity means that the sizes of the residual formulas

we can deal with are smaller and the benefits of explicit computation outweigh its costs.

For the #SAT problems that we can solve using Cachet, the entire overhead of main-

taining the residual formulas and calculating connected components is usually roughly

half of the total runtime. The learned clauses are used for unit propagations but not

considered in the component computation, because their large number would make the

component computation much more expensive, and because they would connect sub-

formulas that would otherwise be disjoint components, reducing the advantage of the

component decomposition.
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Cached components are represented explicitly together with their values in a hash

table. The size of this hash table is fixed via an input parameter, and a lazy deletion

scheme based on the age of a cached entry is used to keep the table small.

As shown in [10], there can be a very subtle interaction between the component

decomposition and unit propagation involving learned clauses. To avoid this, in the

original version of Cachet we disallowed any unit propagation inference between two

connected components of the residual formula. However, we also showed that this re-

striction is not strictly necessary and determined the general conditions under which

such cross-component unit propagation is safe.

In the original version of Cachet, we also did not use certain features of zChaff,

including non-chronological backtracking and its VSIDS variable selection heuristic.

Some aspects of non-chronological backtracking as implemented in zChaff are not

suitable for model counting. For example, zChaff uses unit propagation from learned

clauses rather than explicitly flipping values of decision variables, which works for SAT

because all previously explored branches are unsatisfiable; this is not the case for #SAT.

We also happened not to use VSIDS because we were exploring heuristics that took

advantage of the explicit connected component computation.

In this paper we study the range of options usually considered for SAT solvers

and see how they apply in Cachet. These heuristics include branching heuristics

as well as randomization and non-chronological backtracking. We also analyze the

importance of cross-component implications in component caching context. Finally,

we present an extension to Cachet that computes all marginals for satisfiable CNF

formulas.

3 Branching

3.1 The Role of Components in Branching Decisions

At any decision-making point, Cachet explicitly maintains the residual formula deter-

mined by the current variable assignment, in the form of disjoint components. Thus, at

any such point, Cachet can use this partition of variables as part of its branching deci-

sions, information that is not usually available to SAT solvers. Moreover, because these

components are disjoint, each component is largely independent of the others. (There is

some cross-component information available in the form of learned clauses but, as we

will see in section 5, exploiting this information does not have a major impact on the

performance of the algorithm.)

Therefore, we separate branching heuristics into two parts: the choice of component

and the choice of decision variable/literal within that component. The component selec-

tion strategy that the version of Cachet from [10] applied was a pure DFS strategy; that

is, only a child of the most recently branched component can be selected as the next

component to branch on.

If a component is satisfiable, then all of its child components are satisfiable and it

does not matter which child is chosen first; eventually every child component needs

to be analyzed, and cached component values are not helpful to their disjoint siblings.

However, if a component is unsatisfiable, then at least one of its child components must

be unsatisfiable and the values of the others are irrelevant. Naturally, it is preferable
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to find such a child component first to avoid unnecessary work on satisfiable children.

Moreover, not only is the work done on those satisfiable child components useless, but

as shown in [10], the calculated values stored in the cache for these components can

actually be corrupted by the existence of their not-yet-discovered unsatisfiable sibling

and must be explicitly removed from the cache.

Unfortunately, there is no easy predictor for which component will be unsatisfiable.

We tried choosing the component with the largest clause/variable ratio, but that was

not particularly effective. The solution we have settled on is simple: select the smallest

component first, measured by number of variables. Because calculating the value of a

smaller component is easier, if we do indeed have to abandon this work later because

of an unsatisfiable sibling, the amount of wasted effort will be minimized.

We also modified the pure DFS branching order described in [10] so that Cachet at-

tempts to discover unsatisfiable sibling components as quickly as possible. If there are

a number of branchable components available, Cachet selects the smallest component

C and applies the variable branching heuristics to begin the exploration of C. However,

once the first satisfying assignment is found for C, further search in that component is

temporarily halted and search within the next smallest remaining component is initiated

from that point in the search tree. Once the last child component is found to be satisfi-

able its analysis is completed and the algorithm backtracks to complete the next-to-last

child component, etc. If one of the child components is found to be unsatisfiable, the al-

gorithm backtracks to the point in the search tree where the components were generated.

The amount of work in the satisfiable case is still only the sum of the costs of analyzing

each component and substantial work may have been saved in the unsatisfiable case.

3.2 Variable Branching Heuristics

Good variable branching heuristics can be critical to the performance of DPLL-based

SAT solvers and, since Cachet is a DPLL-based #SAT solver, it is natural that its per-

formance also depends on a good variable branching heuristic. We explore a number

of the different branching heuristics available including dynamic literal count heuris-

tics, conflict driven heuristics, and unit-propagation based heuristics. We also develop

a new heuristic, VSADS, that seems to be well-suited for #SAT. All these heuristics are

currently implemented in Cachet and can be selected by a command line argument. We

first review these heuristics.

Literal Count Heuristics. Literal count heuristics [12], make their branching decision

based only on the number of occurrences of a variable in the residual formula. If the

positive literal +v appears Vp times and the negative literal −v appears Vn times in the

residual formula, using a score for variables v as either Vp+Vn ormax(Vp, Vn) results,

respectively, in the Dynamic Largest Combined Sum (DLCS) and Dynamic Largest In-

dividual Sum (DLIS) heuristics. The highest scored v is selected as the decision vari-

able, and its value is set to true if Vp > Vn, false otherwise. The goal is to eliminate as

many clauses as possible without considering the impact of unit propagation.

Our original version of Cachet used only these simple heuristics, which are easy to

evaluate during component detection. We tried several versions and in our experiments

observed that the best was to choose the highest DLCS score with DLIS as a tie-breaker;

we refer to this as DLCS-DLIS in our tables of results.
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Exact Unit Propagation Count (EUPC) Heuristics. Various unit-propagation-based

heuristics have been widely used since early SAT solvers. Such heuristics compute

the score of a variable by some magic function over the weights of its positive and

negative forms, where a literal’s weight is obtained by considering the amount of sim-

plification it yields in unit propagations. Setting proper parameters for such a function

is a bit of a black art. In Cachet we tested an EUPC procedure similar to that described

for relsat [4]. To compute the score of variable v, the EUPC heuristic in ideal form

will select a literal whose unit propagation will generate a conflict, and otherwise will

choose the best variable score given by the following formula:

score(v) = |UP (+v)| × |UP (−v)|+ |UP (+v)|+ |UP (−v)|

where UP (ℓ) is the number of unit propagations induced by setting ℓ to true. Evaluating

exact unit propagations for many variables is very expensive, so we also use a prepro-

cessing step as described in [4]. That is, for every variable we compute its approximate

score with |UP (+v)| approximated by the number of binary clauses containing literal

−v and |UP (−v)| approximated by the number of binary clauses containing literal+v.

Then the unit propagations and exact scores are computed only for the 10 variables with

the best approximate scores.

Approximate Unit Propagation Count (AUPC) Heuristics. By computing a better esti-

mate of the amount of unit propagation that will take place, the AUPC heuristic, sug-

gested in the paper on Berkmin [6], avoids any explicit unit propagations and can be

computed more efficiently. The idea is simple: to estimate the impact of assigning v = 0
more correctly, not only should the binary clauses containing literal +v be counted, but

the binary clauses touching the literals whose negated forms are in binary clauses with v

should also be counted. For example, if there is a binary clause (−u, v), when estimat-

ing unit propagations resulting from assigning v = 0, all the binary clauses containing

literal +u should be counted too. The score of a variable is defined as the sum of the

scores of its positive form and negative form, and the variable with highest score is

chosen as decision variable.

Variable State Independent Decaying Sum (VSIDS). The VSIDS selection heuristic is

one of the major successes of Chaff [9, 14]. It takes the history of the search into account

but does not analyze the residual formula directly. (This is the reason for the word

‘Independent’ in its name.) Initially, all variable scores are their literal counts in the

original formula. When a conflict is encountered, the scores of all literals in the learned

conflict clause are incremented. All variable scores are divided by a constant factor

periodically. The idea is to give a higher priority to the literals satisfying recent conflict

clauses, which are believed to be more important and necessarily satisfied first. An

advantage of VSIDS is its easy score-computing procedure, because it does not require

any information from the current residual formula. In fact zChaff does not need to

maintain a residual formula.

After many decaying periods, the influence of initial variable scores and old conflicts

decay to negligible values and variable scores only depend on recent conflict clauses.

If there are very few recent conflicts, then most variables will have very low or even

0 scores, thus decision-making can be quite random. For SAT-solving purposes, this is
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Problems variables clauses solutions DLCS VSIDS VSADS EUPC AUPC

Circuit

2bitcomp 6 150 370 9.41E+20 121 43 15 92 112

2bitmax 6 252 766 2.07E+29 189 22 2 21 35

rand1 304 578 1.86E+54 9 X 23 10 16

ra 1236 11416 1.87E+286 3.2 X 3.4 8.2 3.9

rb 1854 11324 5.39E+371 7.1 X 7.5 23 7.9

rc 2472 17942 7.71E+393 172 X 189 736 271

ri 4170 32106 1.30E+719 206 78 119 1296 1571

Grid-Pebbling

grid-pbl-8 72 121 4.46E+14 0.10 0.10 0.06 0.21 0.15

grid-pbl-9 90 154 6.95E+18 1.1 0.44 0.35 0.35 0.27

grid-pbl-10 110 191 5.94E+23 4.6 0.58 0.37 12 3.2

Logistics

prob001 939 3785 5.64E+20 0.19 0.13 0.06 0.11 0.06

prob002 1337 24777 3.23E+10 30 10 8 16 21

prob003 1413 29487 2.80E+11 63 15 9 20 35

prob004 2303 20963 2.34E+28 116 68 44 32 133

prob005 2701 29534 7.24E+38 464 11924 331 456 215

prob012 2324 31857 8.29E+36 341 X 304 231 145

flat-200(100) 600 2337

average - - 2.22E+13 102 4.5 4.8 4.6 6.8

median - - 4.83E+11 63 2.8 2.9 2.7 3.9

uf200(100) 200 860

average - - 1.57E+9 21 7.1 7.2 3.0 4.8

median - - 3074825 18 6.6 6.5 2.5 3.7

Fig. 1. Runtime in seconds of Cachet on a 2.8 GHz Pentium 4 processor with 2 GB memory

using various dynamic branching heuristics (X=time out after 12 hours)

not a serious problem, because it probably means the formula is under-constrained and

thus easily satisfied. However, in the context of model counting, it is often the case that

there are few conflicts in some part of the search tree and in these parts VSIDS will

make random decisions.

Variable State Aware Decaying Sum (VSADS). VSADS combines the merits of both

VSIDS and DLCS. It is expressly suited for Cachet and can benefit from both conflict-

driven learning and dynamic greedy heuristics based on the residual formula. Since all

literal counts can be obtained during component detection with little extra overhead,

there is no reason for the algorithm not to be “Aware” of this important information for

decision-making when most variables have very low VSIDS scores. The VSADS score

of a variable is the combined weighted sum of its VSIDS score and its DLCS score:

score(V SADS) = p× score(V SIDS) + q × score(DLCS)

where p and q are some constant factors. Within a component, the variable with the best

VSADS score is selected as decision variable. With this derivation, VSADS is expected

to be more like VSIDS when there are many conflicts discovered and more like DLCS



232 T. Sang, P. Beame, and H. Kautz

when there are few conflicts. We report experimental results for p = 1 and q = 0.5, but

the runtime is not particularly sensitive to these precise values.

Experimental Results. Figure 1 shows the results of different heuristics on a num-

ber of benchmark problems, including logistics problems produced by Blackbox, sat-

isfiable grid-pebbling problems [10], and benchmarks from SATLIB including circuit

problems, flat-200 (graph coloring) and uf200 (3-SAT). The last two sets each contain

100 instances, and the average runtime and the median runtime are given respectively.

Despite being a simple combination of VSIDS and DLCS, VSADS frequently out-

performs each of them alone by a large margin. The superiority of VSADS over VSIDS

is particularly evident in cases in which VSIDS does not even finish. This is likely

because of the random decisions that VSIDS makes when there are few conflicts. In

most instances VSADS also significantly improves on DLCS alone. Unit-propagation-

count based heuristics EUPC and AUPC are often quite good too, especially on flat-200,

uf200 and some logistics problems, but VSADS usually outperforms them and seems

to be the most stable one overall. For the remainder of our experiments we report on

results using the VSADS heuristic.

4 Randomization

Randomization is commonly used in SAT solvers and appears to be helpful on many

problems. In fact, every heuristic discussed before can be randomized easily. The ran-

domization can be either on a tie-breaker among variables with the same score or a

random selection of variables whose scores are close to the highest.

We expected that randomization would be somewhat less of a help to #SAT search

than for SAT search. One of the major advantages that randomization gives SAT solvers

is the ability to find easily searchable portions of the space and avoid getting stuck in

hard parts of the space. #SAT solvers, however, cannot avoid searching the entire space

and thus might not benefit from this ability. However, it was a little surprising to us

that randomization almost always hurts model counting. Figure 2 shows the impact of

using randomized VSADS on some problems. VSADS-rand computes variable scores

the same way as VSADS does, but it selects a decision variable randomly from the

variables whose scores are within 25% of the best score. On the first three problems,

we ran VSADS-rand 100 times and used statistical results. Since there are already 100

instances of randomly chosen problems in flat-200 and uf200, we just run VSADS-rand

on each problem once. We tried a number of other experiments using other fractions and

other heuristics such as EUPC but the results were similar. It is very clear that the effect

of randomization is uniformly quite negative. In fact the minimum runtime found in

100 trials is often worse than the deterministic algorithm.

While we do not have a complete explanation for this negative effect, a major rea-

son for this is the impact of randomization on component caching. Using randomiza-

tion would seem to lower the likelihood of getting repeated components. Consider the

search tree on formula F in which there are two large residual formulas A and B that

have many variables and clauses in common but are not exactly the same. Since A and

B have similar structure, a deterministic branching heuristic is likely to have similar
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Problems grid-pbl-10 prob004 2bitcomp 6 flat-200(100) uf200(100)

VSADS 0.37 44 15 4.8 / 2.9 7.2 / 6.5

VSADS-rand

average 6.8 433 54 7.0 12

median 3.7 402 54 3.7 11

maximum 29 1073 81 N/A N/A

minimum 0.24 145 38 N/A N/A

STDEV 7.7 200 12 N/A N/A

Fig. 2. Runtimes in seconds of VSADS versus randomized VSADS on selected problems

variable scores and make similar choices that could easily lead to cache hits involving

subproblems of A and B. A randomized heuristic is more likely to create subprob-

lems that diverge from each other and only leads to cache hits on smaller subformulas.

Although our experiments showed similar total numbers of cache hits in using random-

ization, there seemed to be fewer cache hits at high levels in the search tree.

5 Cross-Component Implications

As discussed in our overview, in combining clause learning and component caching

we only determine components on the residual formula, not on the the learned clauses.

Learned clauses that cross between components can become unit clauses by instantia-

tions of variables within the current component. Unit implications generated in this way

are called cross-component implications.

In [10], it was shown that cross-component implications can lead to incorrect val-

ues for other components. To guarantee correctness cross-component implications were

prohibited; each unit propagation from learned clauses was generated but if the variable

was not in the current component the unit propagation was ignored.

However, it was also shown that any implications of literals within the current com-

ponent that result from further propagations of the literals found in cross-component

implications are indeed sound. In prohibiting all cross-component implications, these

sound inferences that could help simplify the formula were lost.

In the current version of Cachet such sound implications of cross-component unit

propagation are optionally allowed by maintaining a list of cross-component impli-

cations. Cross-component implications are detected at the unit-propagation stage, and

stored in the list. When branching on a component, it is checked to see if it contains

any variable in the list. If the current component has been changed by previous cross-

component implications, before branching on it, a new component detection is per-

formed over it, which will update the related data structures correctly. This solution

is easy to implement but the overhead can be high, for every element of the cross-

component implication list needs to be checked at every decision-making point. For-

tunately, the ratio of cross-component implications is very small, at most 0.14% of all

implications in our tested formulas, so the overhead is negligible.

Figure 3 shows the impact of cross-component implications. We ran experiments

on a much larger suite of problems than are listed; all those not shown have fewer than
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Problems cross-component total time without time with

implications implications cross-implications cross-implications

2bitcomp 6 13 3454480 15 15

rand1 6195 5131281 23 23

grid-pbl-8 25 5713 0.06 0.06

prob001 49 16671 0.06 0.06

prob002 225 474770 8 8

prob003 133 426881 9 9

prob004 8988 6575820 50 44

prob005 20607 39391726 482 331

prob012 3674 31862649 313 304

flat-200(100)

average 277 1010086 4.9 4.8

median 239 767136 2.9 2.9

Fig. 3. Runtime in seconds of VSADS with and without cross-component implications

5 cross-component implications, mostly none. There was one instance in which the

speedup using cross-component implications was 46%, but most others were negligible.

We conclude that cross-component implication is not an important factor in general.

6 Chronological vs. Non-chronological Backtracking

Non-chronological backtracking is one of the most successful techniques used in SAT

solvers. When a clause is learned, the search backtracks to the highest level in the search

tree at which the learned clause yields a unit propagation. All decisions made between

the level at which the clause is learned and the backtrack level are abandoned since

they are in some sense irrelevant to the cause of the conflict found. Since no satisfying

assignments have yet been found in that subtree, the only information lost by this aban-

donment is the path from the backtracking destination to the conflict point, which does

not take much time to recover.

However, in the model counting scenario, a direct implementation of the above non-

chronological backtracking scheme would abandon work on subtrees of the search tree

in which satisfying assignments have already been found and tabulated, and this tab-

ulation would have to be re-computed. This is even worse in the component caching

context in which the conflict found may be in a completely separate component from

the work being abandoned. Moreover, redoing dynamic component detection and cache

checking has an even more significant cost.

As discussed earlier, the basic version of Cachet does have some form of non-

chronological backtracking in that finding unsatisfiable components can cause a back-

track that abandons work on sibling components. In contrast to this we use the term far-

backtracking to refer to the form of non-chronological backtracking described above.

We considered two forms of far-backtracking, the full original far-backtracking and

one in which the backtrack moves up to the highest level below the far backtrack level

at which the subtree does not already have a satisfying assignment found. This latter
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Problems # of far total #conflicts total #conflicts time with time w/o

backtracks with far-back w/o far-back far-back far-back

Circuit

2bitcomp 6 930 1212 1393 15 15

2bitmax 6 1031 1501 1222 6 2

rand1 1270 2114 4095 18 23

ra 0 0 0 3.4 3.4

rb 101 176 220 9 7.5

rc 353 502 511 199 189

ri 13010 13070 10212 164 119

Grid-Pebbling

grid-pbl-8 75 122 286 0.15 0.06

grid-pbl-9 275 388 773 0.22 0.35

grid-pbl-10 355 506 730 1.8 0.37

Logistics

prob001 355 506 730 0.07 0.06

prob002 1968 2042 2416 10 8

prob003 2117 2176 2022 14 9

prob004 5657 6694 5492 1062 44

prob005 26233 31392 21951 10121 331

prob012 12020 13563 15677 2860 304

flat-200(100)

average 6884 6958 7119 4.9 4.8

median 5150 5188 5105 3.0 2.9

uf200(100)

average 24101 24144 26469 7.5 7.2

median 23014 23067 25778 6.9 6.5

Fig. 4. Runtimes in seconds and number of backtracks using VSADS in Cachet with and without

far-backtracking

approach eliminates the problem of abandoned satisfying assignments but it does not

backtrack very far and creates additional overhead. It did not make a significant differ-

ence so we do not report the numbers for it.

Figure 4 shows the comparison of Cachet with and without far-backtracking. Even

with far-backtracking enabled, some of the backtracks are the same as they would be

without it, and we report the number of far backtracks separately from the total num-

ber of backtracks that are due to conflicts in the case that far-backtracking is turned

on. (In SAT algorithms all backtracks are due to conflicts but in model counting most

backtracks involve satisfiable left subtrees.)

While far-backtracking occasionally provides a significant improvement in runtime

when the input formula is indeed unsatisfiable, overall it typically performed worse than

without far-backtracking. As a result, we do not use far-backtracking as the default but

we allow it as an option.
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7 Computing All Marginals

We now show how our basic exact model counting algorithm Cachet can be modified

to compute marginal probabilities for all variables, that is, the fraction of satisfying as-

signments in which each variable is true. Although Cachet does not maintain explicit

information about the satisfying assignments found, we can maintain enough statistics

as we analyze each component to determine the overall marginal probabilities. The ba-

sic idea requires that each component is associated not only with a weight representing

the fraction of all assignments that satisfy it but also with a vector of marginal proba-

bilities for each of its variables.

In Figure 5 we show a simplified recursive algorithm marginalizeAll that returns

the count and passes up the marginal probabilities as well as the count. In this sim-

plified version, the left branch is assumed to correspond to the assignment v = 0

Algorithm marginalizeAll

marginalizeAll(Φ,Marginals)
// returns satisfying probability of formula φ
// marginals of all variables are returned in vectorMarginals as well

if Φ is empty, return 1

if Φ has an empty clause, return 0

LeftV alue = RightV alue = 1/2 // initializing

initializeV ector(LeftMarginals, 0)
initializeV ector(RightMarginals, 0)
select a variable v in Φ to branch // branching

extractComponents(Φ|v=0)
for each component φ of Φ|v=0
LeftV alue × = marginalizeAll(φ,LeftMarginals)

for each variable x ∈ Φ
if x ∈ Φ|v=0
LeftMarginals[x] × = LeftV alue // adjusting

else

LeftMarginals[x] = LeftV alue/2
LeftMarginals[v] = 0
extractComponents(Φ|v=1)
for each component φ of Φ|v=1
RightV alue × = marginalizeAll(φ,RightMarginals)

for each variable x ∈ Φ
if x ∈ Φ|v=1
RightMarginals[x] × = RightV alue // adjusting

else

RightMarginals[x] = RightV alue/2
RightMarginals[v] = RightV alue
Marginals = sumV ector(LeftMarginals,RightMarginals)
Marginals / = (LeftV alue+RightV alue) // normalizing

return LeftV alue+RightV alue

Fig. 5. Simplified version of algorithm to compute marginal probabilities of all variables



Heuristics for Fast Exact Model Counting 237

and the parameter Marginals is passed by reference. Variables in different compo-

nents are disjoint, so their marginals can be calculated separately but finally need to

be adjusted by the overall satisfying probability. The marginal of any variable that has

disappeared in the simplified formula is just equal to half of the satisfying probabil-

ity by definition. For the decision variable, only its positive branch should be counted.

LeftV alue+RightV alue is the satisfying probability of Φ and the normalizing factor

for all marginals of Φ.

Though described in a recursive fashion, the real implementation of this algorithm

works with component caching in the context of non-recursive backtracking that it in-

herits from zChaff. Moreover, in this simplified version we have ignored the issue of

unit propagations. Variables following via unit propagation do not appear in the formula

on which a recursive call is made so their marginals are not computed recursively but

must be set based on the fraction of satisfying assignments found in the recursive call.

The details of this calculation and extension to using arbitrary weights is addressed in

[11] where Cachet is extended to handle Bayesian inference.

The overhead of computing all marginals is proportional to the number of variables

in the components, rather than the total number of variables, because at a node in the

search where the model count is returned, only those relevant variables need to be exam-

ined. But it may need a significant amount of memory for caching the marginal vectors.

In this way, we are able to compute all marginals quite efficiently, usually with only

10% to 30% extra overhead if the problem fits in the memory.

7.1 Marginals of Random 3-CNF Formulas

In this section we show how the extension of Cachet for computing all marginal prob-

abilities allows us to study new features of random 3-SAT problems. This problem has

received a great deal of interest both algorithmically and theoretically. It is known ex-

perimentally that there is a sharp satisfiability threshold for random 3-SAT at a ratio

of roughly 4.3 clauses per variable. However, the largest proved lower bound on the

satisfiability threshold for such formulas is at ratio 3.42 [1] using a very restricted ver-

sion of DPLL that does not backtrack but makes irrevocable choices as it proceeds. (In

fact, almost all analyses of the lower bounds on the satisfiability thresholds for random

3-SAT are based on such restricted DPLL algorithms.)

In Figures 6 and 7 we show the the experimental cumulative distribution of

marginals of random 3-CNF formulas of 75 and 150 variables respectively at differ-

ent ratios. The plots are the result of running experiments with 100 random formulas

at each ratio, sorting the variables by their marginals, and taking a subsample of 150

equally-spaced points in this sorted list for ease of plotting the results. Thus the X-axis

represents the fraction of all variables considered and the Y-axis represents the marginal

probability that a variable is true in satisfying assignments of the formula in which it

appears. (Although this is plotted in aggregate, individual formulas have similar plots

to these aggregate plots.)

For a cumulative distribution derived in this manner (sometimes called a QQ or

quantile-quantile plot), a uniform distribution would be represented as a straight line

from (0, 0) to (1, 1). Moreover, we can read off simple properties from these plots.
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Fig. 6. Cumulative distribution (QQ plot) of marginal probabilities of variables in random 3-CNF

formulas of 75 variables at various ratios
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Fig. 7. Cumulative distribution (QQ plot) of marginal probabilities of variables in random 3-CNF

formulas of 150 variables at ratios ≥ 3.4

For example, for 75 variables at ratio 4.1, more than 20% of variables were virtually

always false in all satisfying assignments and a similar fraction were virtually always

true. Since randomly chosen formulas are chosen symmetrically with respect to the
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signs of their literals, we should expect that the cumulative distribution functions will

be symmetric about the point (0.5, 0.5) as is borne out in our experiments.

Our experiments show, not surprisingly, that at low ratios the biases of variables

are rarely extreme and that variables become significantly more biased as the ratios

increase. At the lowest ratio, 0.6, in Figure 6, a constant fraction of variables do not

appear in the formula so the flat section of the curve shows that a constant fraction of

variables is completely unbiased at marginal probability 0.5.

In other plots of curves for fixed ratios and varying numbers of variables, we ob-

served that the shape of the curves of the cumulative distribution function seemed to

be nearly the same at a given ratio, independent of the number of variables. For exam-

ple, at ratio 3.9, the lack of smoothness in the plots due to experimental noise almost

compensated for any differences in the shapes of the curves.

One interesting property of these cumulative distribution functions is the precise

ratio at which the marginal probabilities are uniform. As can be seen from both the

75 variable and 150 variable plots, this point appears to be somewhere around ratio

3.4, although it is a bit difficult to pinpoint precisely. Above this ratio, the marginal

probabilities of variables are skewed more towards being biased than unbiased. It seems

plausible that the distribution of marginal probabilities is particularly significant for the

behavior of non-backtracking DPLL algorithms like the one analyzed in [1]. Is it merely

a coincidence that the best ratio at which that algorithm succeeds is very close to the ratio

at which the distribution of variable biases becomes skewed towards biased variables?

8 Conclusion

Many of the techniques that apply to SAT solvers have natural counterparts in exact

#SAT solvers such as Cachet but their utility in SAT solvers may not be indicative of

their utility in #SAT solvers.

We have shown that popular techniques for SAT solvers such as randomization and

aggressive non-chronological backtracking are often detrimental to the performance of

Cachet. We have developed a new hybrid branching heuristic, VSADS, that in conjunc-

tion with a careful component selection scheme seems to be the best overall choice

for Cachet. Furthermore, based on experiments, more sophisticated methods for cross-

component implications appear to be of only very marginal utility.

Finally, we observed that #SAT solutions are merely the start of what can be ob-

tained easily using Cachet by demonstrating the ability to obtain interesting results on

the marginal probabilities of random 3-CNF formulas.
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