
Memoization and DPLL: Formula Caching Proof Systems

Paul Beame�

Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

beame@cs.washington.edu

Russell Impagliazzo�

Computer Science and Engineering

UC, San Diego

9500 Gilman Drive

La Jolla, CA 92093-0114

russell@cs.ucsd.edu

Toniann Pitassi�

Computer Science Department

University of Toronto

Toronto, Ontario

Canada M5S 1A4

toni@cs.toronto.edu

Nathan Segerlind�

Computer Science and Engineering

UC, San Diego

9500 Gilman Drive

La Jolla, CA 92093-0114

nsegerli@cs.ucsd.edu

Abstract

A fruitful connection between algorithm design and
proof complexity is the formalization of the ���� ap-
proach to satisfiability testing in terms of tree-like reso-
lution proofs. We consider extensions of the ���� ap-
proach that add some version of memoization, remembering
formulas the algorithm has previously shown unsatisfiable.
Various versions of such formula caching algorithms have
been suggested for satisfiability and stochastic satisfiability
([10, 1]). We formalize this method, and characterize the
strength of various versions in terms of proof systems. These
proof systems seem to be both new and simple, and have a
rich structure. We compare their strength to several studied
proof systems: tree-like resolution, regular resolution, gen-
eral resolution, and ������. We give both simulations and
separations.

1 Introduction

An abstract propositional proof system can be defined
as a nondeterministic algorithm for accepting propositional
tautologies (or, equivalently, refuting contradictions). We
can also view such a nondeterministic algorithm as a gen-
eral approach to divising deterministic algorithms, where

� Research supported by NSF CCR-0098066 and ITR-0219468.
� Research supported by NSF CCR-0098197.
� Research supported by NSERC and an Ontario PRE Award.
� Research supported by NSF DMS-0100589 and CCR-0098197.

the designer of the deterministic algorithm replaces the non-
deterministic choices with a deterministic rule.

Many of the most interesting and productive algorith-
mic approaches to satisfiability can be classified by such
nondeterministic algorithms. The classic example is the
DPLL backtracking approach to satisfiability. This ap-
proach can be summarized by the following nondetermin-
istic algorithm, whose input is a CNF formula � :

DPLL(�)�
If � is empty

Report satisfiable and halt
If � is contains the empty clause �

return
Else choose a literal �

DPLL(� ��)
DPLL(� ��)�

The key nondeterministic step is when the algorithm
chooses the branching literal �. To create a determinis-
tic DPLL algorithm, a deterministic rule must be given for
this choice. In fact, many such deterministic rules have
been suggested, and the performance, empirically, has been
found to be quite sensitive to the choice of this rule.

Since there are unlimited numbers of deterministic ver-
sions, it seems impossible to exactly analyze all possible
variations. However, the performance of the nondetermin-
istic version of this algorithm can be characterized as a con-
ventional proof system, tree-like resolution. Lower bounds
for tree-like resolution refutations (e.g. [9, 7, 4, 5, 6, 3])

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

then can be used to prove the limitations of any determinis-
tic instantiation.

Recently many variations of DPLL have been intro-
duced (both for satisfiability and stochastic satisfiability).
One recent emerging idea is to cache intermediate results
as the DPLL tree is searched. The technique of clause-
learning, for which there have been many good implemen-
tations [11, 16, 13, 17], can be viewed as a form of mem-
oization of DPLL where the algorithm caches, in the form
of learned clauses, partial assignments that force contradic-
tions. This technique which can be efficiently simulated by
Resolution is studied from the proof complexity point of
view in [2]. More generally, memoization, saving solved
sub-problems, is a modification that is useful in a variety of
back-tracking algorithms. For example, Robson uses mem-
oization to speed up a back-tracking algorithm for maxi-
mum independent set [14].

The methods that we are interested here involve caching
unsatisfiable residual formulas rather than caching partial
assignments. They were first defined in [10] where DPLL-
based algorithms with caching are studied and implemented
to solve large probabilistic planning problems. In that pa-
per, there are no analytic runtime guarantees, although the
empirical results are very promising. Very recently, [1] de-
fine DPLL-based algorithms with caching for counting sat-
isfying assignments and Bayesian inference and give time
and space bounds that are as good as any known algorithm
for these problems in terms of a connectivity measure of the
underlying set of clauses/Bayes network.

Thus while caching in many different guises for DPLL
has been studied in the past, this paper is the first to specif-
ically formalize proof systems for SAT based on adding
memoization of residual formulas to DPLL, and to ana-
lyze the complexity of these systems relative to standard
systems. Many of our results are surprising, since at first
glance it seems that adding memoization to DPLL cannot
strengthen the system beyond Resolution.

In this paper, we present several different ways to in-
troduce memoization into the nondeterministic DPLL al-
gorithm, to get nondeterministic versions of the before-
mentioned algorithmic approaches. We then characterize
the strength of these nondeterministic algorithms in terms
of proof systems. Then we compare these proof systems to
each other and to standard proof systems. This gives a good
sense of the relative strengths of the various approaches.

1.1 Summary of Results

The standard hierarchy of resolution-like proof systems
is: DPLL time (DPLL), which is equivalent to tree-like res-
olution proofs ; regular resolution, (REG); general resolu-
tion (RES); and RES(k), for each � � �. This hierarchy
is known to be strict under polynomial-simuability; in fact,

exponential gaps are possible for each level.
In section 2, we will give three lattices of memoized

DPLL algorithms, the basic lattice, the more powerful non-
deterministic lattice, and the intermediate “reason” lattice.
The basic lattice represent transformations one could make
to incorporate memoization to a generic DPLL algorithm.
These are the “off-the-shelf” proof systems that correspond
to taking your favorite DPLL algorithm and directly adding
on memoization of different kinds, without otherwise mod-
ifying the original algorithm. This has the advantage of
keeping them very close to possibly implementable algo-
rithms.

However, a clever algorithm designer might be able to in-
corporate memoization in a way that could not be simulated
in the basic systems. Our “nondeterministic” systems are
designed to represent the “ultimate limits” of these forms
of memoization. It would be highly non-trivial to incorpo-
rate these features into an existing DPLL algorithm. How-
ever, we feel that any algorithm that somehow incorporated
memoization into DPLL would probably fall into this lattice
somewhere. Thus, bounds on the strength of the nondeter-
mistic lattice are bounds on the potential of the memoiza-
tion technique. The “reason” proof systems fall somewhere
between naive implementation and unbounded cleverness.

The basic lattice of algorithms are denoted� �� for some
� � �������, which stand for Weakening, Subsumption,
and Restriction. The obvious relationships between these
are that subsets of operations can be simulated by supersets.
The nondeterministic lattice will be denoted � ��

������
. The

nondeterministic versions will be at least as strong as the
deterministic analog, and is again ordered by subset. The
reason lattice will be intermediate between the two. When
T is empty, all three variants will coincide.

The basic lattice will be the most natural viewed as an
extension of DPLL. However, we shall show in section 3
that the nondeterministic lattice can be characterized as a
corresponding set of proof systems, �� � � , with each
� �

�

������
polynomially equivalent to ���� . Thus, it will

be easier to reason about the power of the nondeterministic
systems as proof systems than the basic systems.

We then compare these systems to each other and to the
standard resolution-like proof systems. For the most inter-
esting systems, our results can be summarized in Figure 1.1.

All of the proof systems can be simulated by Depth 2
Frege proofs. We do not know any weaker standard system
that can simulate even basic � �.

2 Memoization and DPLL: Formula Caching

Memoization means saving previously stored sub-
problems and using them to prune a back-tracking search.
In the satisfiability algorithms we consider, this will mean
storing a list of previously refuted formulas and checking

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

Proof Systems it Systems it Systems that cannot

System �-simulates cannot �-simulate �-simulate it

� � DPLL REG (Theorem 4.6) DPLL (Corollary 2.2)

� ���� DPLL REG (Theorem 4.6) DPLL (Corollary 2.2)

� ���
������ REG (Theorem 4.8) - Res(k) (Theorem 4.9)

� �������� REG (Theorem 3.2) - Res(k) (Theorems 3.12,4.10)

� ���
������ REG (Theorem 3.2) - Res(k) (Theorems 3.12,4.10)

� ����
������ RES (Theorem 3.6) - Res(k) (Theorems 3.11/3.12,4.10)

Figure 1. Relationship of various formula-caching proof systems to other resolution-like proof sys-
tems

whether the unsatisfiability of some formula in the list al-
lows us to conclude easily, before branching, that our cur-
rent formula is unsatisfiable.

A pure back-tracking algorithm usually corresponds to
a tree-like proof system, since the recursive refutations are
done independently and not reused. Our original intuition
was that introducing memoization into a back-tracking al-
gorithm would move from a tree-like proof system to the
corresponding DAG-like system. However, the real situa-
tion turns out to be somewhat more complicated. There are
actually several reasonable ways to introduce memoization
into DPLL. None of them seem to be equivalent to DAG-
like resolution, and many move beyond resolution.

The basic idea of the simplest memoized version of the
DPLL algorithm, is as mentioned above to record the un-
satisfiable residual formulas found over the course of the
algorithm in a list and before applying recursion to include
checking the list to see if � is already known to be unsat-
isfiable. This yields the following algorithm where � is the
cache of residual formulas known to be unsatisfiable.

� �(� , �)�
If � is empty

Report satisfiable and halt
// Check if � trivially implies that � is unsatisfiable
If � contains the empty clause � or � is in �

return
Else choose a literal �

Formula-Caching(� ��,�)
Formula-Caching(� ��,�)
Add � to ��

Running Formula-Caching(� ,�) allows one to determine
satisfiability of � as before.

While we present � � as a nondeterministic algorithm,
one can also view it as a simple transformation for deter-
ministic DPLL algorithms. We simply replace the nondeter-
ministic branching rule with the rule used by the DPLL al-
gorithm. (For memory efficiency, an implementation would
probably also add a heuristic to decide whether to cache a
restricted formula, or forget it.) This is a straight-forward
way of adding memoization to DPLL, similar to other uses
of memoization in back-tracking. For example, Robson’s
maximum independent set algorithm maintains a cache of
medium-size subgraphs with known bounds on their maxi-
mum independent sets, and checks if the current subgraph
is in the cache.

We call the nondeterministic algorithm above, viewed
as a proof system, � �. It is obviously at least as power-
ful as DPLL, since the presence of the cache only prunes
branches, never creates them.

In fact we show that it can be exponentially more pow-
erful than DPLL. Ben-Sasson, Impagliazzo, and Wigder-
son [3], generalizing a construction of Bonet et al. [5], de-
fined certain graph-pebbling tautologies ���	
�
� to sepa-
rate tree-like from regular resolution. They showed that for
suitable choices of DAGs�with��	� edges and sets
 and
� the tree-like resolution complexity of these tautologies is
���� �����.

Lemma 2.1. For any in-degree 2 dag � and sets
 and �
such that ���	
�
� is unsatisfiable there is a polynomial-
time � �refutation of ���	
�
� .

This is proved in section 4.

Corollary 2.2. There are formulas refutable in polynomial-
time by � � that require time ���� ����� to refute by the
DPLL algorithm.

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

This shows that � � cannot be simulated by a non-
memoized DPLL, but it does not show that � � is strong
enough to efficiently simulate all of regular resolution. In
fact, we will later show that there are unsatisfiable formu-
las with small regular resolution refutations that � �cannot
efficiently refute.

Once we have the notion that we are checking the for-
mula � against a cache of known unsatisfiable formulas
there are other natural related checks that we might do. For
example, it may be the case that � contains all the clauses
of some formula in the list � and this is nearly as easy to
check as whether or not � is in the list. We call such a test
a Weakening test.

� ��(� , �)�
If � is empty

Report satisfiable and halt
// Check if � trivially implies that � is unsatisfiable
If � contains the empty clause � or � contains

all clauses of some formula in �
return

Else choose a literal �
� ��(� ��,�)
� ��(� ��,�)
Add � to ��

There is another way that the unsatisfiability of � can
trivially follow from that of some formula in �. Given
clauses � and � such that � subsumes �, i.e. � � �,
we have that � is a stronger constraint than �. Therefore
adding a subsumption test to Weakening we obtain an algo-
rithm we denote � ��� where the check whether� trivially
implies � asks if there is a formula � in � such that every
clause of � contains a clause of � . Again this is nearly as
easy to test as membership of � in �.

Weakening and Subsumption are very natural additions
to a memoized backtracking algorithm. Among other bene-
fits, they allow a limited amount of “without loss of gener-
ality” reason in addition to logical implications of the con-
straints, because branches dominated by earlier ones get
pruned. For example, consider a simple back-tracking al-
gorithm for finding an independent set of size �, branching
on a node � with one neighbor �. Without loss of general-
ity, the algorithm should include � in the set. This can be
simulated by the Weakening and Subsumption rules. The
algorithm first branches on whether � � �, then on whether
� � �, exploring the � � � branch first. The branch � � �

forces � �� �, so the sub-problem is to find an independent
set of size ��� in����	 ��. Assume this recursive search
fails. The branch � �� �, � �� � is to find an independent set
of size � in ����	 ��, a strengthening of the failed branch
that gets pruned. The final branch � �� �	 � � � is to find an
independent set of size � � � in � � ��	 �� �
���, again

a strengthening of the failed branch. So only the branch
where � � � gets recursively explored.

As the above example illustrates, when we have Weaken-
ing and Subsumption, the order we explore branches mat-
ters. So in additon to a deterministic branching rule, we
would need a heuristic to determine the order of branches
to construct a deterministic version of � ���. Otherwise, it
is as easily implementable as � �.

Finally, we can observe that given an unsatisfiable for-
mula �, the restricted formula ��� will also be unsatisfi-
able. This leads to a more complicated but still polynomial-
time triviality test. Furthermore, it is now the case that when
we derive the unsatisfiability of � from that of � � � there
may be good reason to add � to �.

� ����(� , �)�
If � is empty

Report satisfiable and halt
// Check if � trivially implies that � is unsatisfiable
If � contains the empty clause � or there is

some � in � and literal � such that
every clause of ��� contains a clause of �

Add � to �
return

Else choose a literal �
� ����(� ��,�)
� ����(� ��,�)
Add � to ��

We will see that even this extended test does not suf-
fice to efficiently simulate regular resolution however its
new ideas will be useful. One drawback of this test is that
some potentially useful information about unsatisfiable for-
mulas may available to be learned but may be lost in the
return from a recursive call. For example, if for some for-
mula � the restricted formula � �� has a small unsatisfiable
subformula� and � �� has a small unsatisfiable subformula
� then � will have a small subformula whose restrictions
under � and � contain � and � respectively. However,
� ���� will learn the formula containing all of � , not just
this subformula. In order to take advantage of this kind of
information we can augment the algorithm with a return
value consisting of a formula giving a “reason” that � is
unsatisfiable. We describe this as an extension of � ���.
We will see that this is strong enough to simulate regular
resolution efficiently.

� ���
������

(� , �)�
If � is empty

Report satisfiable and halt
// Check if � trivially implies that � is unsatisfiable
If � contains the empty clause �

return���
Else If there is a � in � such that

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

every clause of � contains a clause of �
return���

Else choose a literal �
��� ��������(� ��,�)
� �� ��������(� ��,�)
� �

�
���

�� � �� �
�
	�

�� ���
Add � to �
Add � to �
return���

Given that we are using a cache of unsatisfiable formulas
to prove that a formula is unsatisfiable, we may wish to ap-
ply the rules such as weakening, subsumption, or restriction
a little earlier in the process so that we can be more effi-
cient at generating formulas that we have seen previously to
be unsatisfiable. We could for example allow the algorithm
to nondeterministically apply weakening at any point in the
algorithm. This is a generalization of the usual pure literal
rule of DPLL which allows one to remove clauses contain-
ing a literal that occurs only positively (or only negatively)
in the formula. (Of course, a bad early choice of weakening
may suggest satisfiability when that is not the case, but the
system will remain be sound for proofs of unsatisfiability.)
Similarly, we can define an algorithm� ���

������
that, as well

as allowing the removal of clauses, also allows the extension
of some number of clauses of � by the addition of extra lit-
erals. Finally, we make the manipulation of� more extreme
by also allowing the repeated addition of some number of
new clauses that contain a literal that does not appear posi-
tively or negatively in � . (That is, after we have added some
such clauses, removed other clauses, and extended existing
clauses, we are allowed to repeat this process.) We denote
this system by � ����������. (This last rule seems the most un-
natural, but it allows one to “forget” a variable branched on;
this seems essential to simulating general resolution.) We
give a description of � ����������; the other algorithms can be
obtained by deleting appropriate lines.

� ����
������

(� , �)�
If � is empty

Report possibly satisfiable and halt
//Non-deterministic reverse weakening
Remove some subset of clauses of � (possibly none)
//Non-deterministic reverse subsumption
For each clause of � , add some variables (possibly none)
//Non-deterministic reverse restriction
Some number of times,

choose a literal � that does not occur in � ,
add �� to some subset of clauses of � ,
and add a set of clauses all containing � to � .

// Check if � trivially implies that � is unsatisfiable
If � contains the empty clause � or � is in �

return

Else choose a literal �
� ����������(� ��,�)
� ����������(� ��,�)
Add � to ��

If this completes without reporting that � is possibly sat-
isfiable then � will be unsatisfiable. It is immediate that as a
refutation system � �������� is at least as powerful as � ��.
It could possibly be more powerful, since the weakened for-
mula is remembered for later use. Similarly, � ���

������
ef-

ficiently simulates � ���, and � ���������� efficiently simu-
lates � ����. Furthermore, based on results of the next
two sections we can show that essentially without loss of
generality all of the modified formulas created during these
algorithms can be taken to be sub-formulas of the original
input formula being refuted.

It may seem that some of these new systems allowing
nondeterministic manipulation of � itself are a little unnat-
ural. However, we shall see that they correspond directly
to some extremely natural inference systems for unsatisfi-
able CNF formulas that we define in the next section. Also,
reasoning about such systems covers many algorithms that
prune searches based on reasoning that identifies unneces-
sary constraints , e.g, the pure literal rule or its general-
ization to autarchs ([12]), or deleting a node of degree 2
or less from a 3-coloring problem. While such weaken-
ing only guides the choice of branching variables in a pure
back-tracking search, caching the simplified formula may
make a more dramatic difference. In fact, we shall see that
� ��

������
, the simplest of these extensions of the basic � �

algorithm, is surprisingly powerful; in particular it is ca-
pable of refuting formulas that are hard for systems more
powerful than resolution.

3 Contradiction caching inference systems

We now define several inference systems for unsatisfi-
able formulas that are closely related to some of the formula
caching algorithms in the previous section. The objects of
thes proof systems will be conjunctive normal form (CNF)
formulas. CNF formulas will be assumed to be sets of
clauses and clauses will be assumed to be sets of literals so
the order of clauses and of literals within each clause is im-
material. In the following, �� 	�
 denote literals which can
be variables or their negations, �� � will denote CNF for-
mulas and ���� will denote clauses. (A clause also can
be viewed as simple case of a CNF formula.) The (unsatis-
fiable) empty clause will be denoted �. Given a formula �
and literal � (or �), the formula ��� (respectively ���) de-
notes the simplified CNF formula in which all clauses con-
taining � (respectively �) have been removed and all clauses
containing � (respectively �) are shortened by eliminating
that literal. More generally given a sequence of literals �	
,

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

for example, we write ����� � ������� and for a clause �
we identify � with the sequence of negations of the literals
in� and define ��� to be the restriction of � in which every
literal of � has been set to false.

We define several related proof systems for showing that
CNF formulas are unsatisfiable based on the following in-
ference rules.

1. Axiom: � �

2. Branching: ���� ��� � � where � is any variable and �
is any CNF formula.

3a. Limited Weakening: � � � � � where � is any CNF
formula.

3. Weakening: � � � � � where � and � are any CNF
formulas.

4. Subsumption: ��� � ��� where � � � are clauses
and � is any CNF formula.

5. Restriction: � � ��� where � is any literal and � is any
CNF formula.

Note: Another way to look at the Branching rule is to
begin with any two CNF formulas �� and ��, neither of
which contain a variable �. Let ���� � ����� be the set of
common clauses of the two formulas and let ��� � �������
for � � �� �. Then the rule allows us to infer any CNF
formula � that for each � � ��� contains the clause �� ���,
for each � � ��� contains the clause �� � ��, and for each
clause� � ���� contains some subset of ��� ������ ���
��	 that includes � or both the other two clauses.

A CC (contradiction caching) refutation of a CNF for-
mula � is a sequence ��� 	 	 	 � �� � � of CNF formulas
such that each�� for �
 � follows from �� , � � � using one
of the proof rules (1)-(3a): Axiom, Branching, and Weak-
ening. If in addition we allow some forms of the Weakening
rule (3), the Subsumption proof rule (4), or the Restriction
proof rule (5) we denote the system by some combination
of CC+ some combination of letters W, R, and S.

In addition to these proof systems we will also discuss
several other proof systems, DPLL, which is tree-like res-
olution, REG, which is regular resolution, ��, which is
general resolution, and ����� for integer �
 � which is
an extension of resolution that permits �-DNF formulas in-
stead of clauses.

Given a proof system � for refutating an unsatisfiable
CNF formula and let �� �� � be the minimum length of a
refutation CNF formula � in system � .

It is clear that the basic CC proof system can efficiently
simulate the execution of any DPLL algorithm and thus can
polynomially simulate tree-like resolution proofs. (The Ax-
iom and Limited Weakening together simulate the action at

the leaves and the Branch rule simulates the action at the
internal nodes of the proof.) Therefore we easily have

Lemma 3.1. For any unsatisfiable CNF formula � ,
����� �
 � � ��	

�� �.

We can also see that CC+W has the full power of regular
resolution.

Theorem 3.2. For any unsatisfiable CNF formula � ,
����� �� �
 � � ����� �.

Proof. Let ��� 			� �� � � be a regular resolution refuta-
tion of � . By standard arguments, this refutation yields a
directed acyclic graph � with a single root corresponding to
clause � that forms a read-once branching program, whose
leaves are labeled by clauses of � , and whose internal nodes
are labeled by variables and whose edges are labeled 0 and
1, that is the d.a.g. analog of the DPLL search tree for an
unsatisfied clause. Furthermore, for each clause � in the
refutation, on every path � from the root to � the partial
assignment defined by � falsifies (every literal of) �.

For each clause � in the refutation, define � ���� to be
the set of variables queried at descendants of the node cor-
responding to � in � . By the read-once property of � , any
variable in � ���� cannot appear on any path from the root
to � in � . For each such clause �, define ��� to be the
CNF formula consisting of the clauses of � �� having vari-
ables only in � ����.

We will show how to derive the sequence
����

� 	 	 	 � ����
� ��� which will be enough to

derive � in one more step since � is (at worst) a weakening
of ���.

If � is a clause of � , i.e. a leaf in the proof, then ���

contains the empty clause and we can derive it in two steps
using the Axiom and Weakening.

Suppose� � ����� is the resolvent of ����� and ���
�� in the proof and that we already have derived �������

and �������.
Since every literal in � � �� � �� appears on ev-

ery/some path from the root to the node of � corresponding
to �, no variable in � or � appears in � ��� � �� or in
� ��� � ��. Therefore ������� does not contain any vari-
able from � and ������� does not contain any variable
from �. Therefore ��������� � �������.

Now every clause of ������� � ��������� is a clause
of � �������� by definition. Furthermore, since � ��� � ��

is a subset of � ����, each clause of ������� is also en-
tirely defined on � ����. Therefore by one step of Weaken-
ing from ������� we derive the CNF formula consisting
of the clauses of � �������� � �� ����� that only contain
variables in � ����. Similarly by one step of Weakening
from ������� we can derive the CNF formula consisting
of the clauses of � �������� � �� ����� that only contain

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

the variables in � ����. Finally, using the Branching rule
we derive ��� .

Our definition of the complexity of the size of refuta-
tions in CC, CC+W, CC+WS, CC+WR, etc. requires a little
more justification since we only count the number of lines
in our proofs and we are allowing arbitrary CNF formulas
for these lines. It is not clear a priori that the total number
of symbols in these proofs will be polynomial even if the
size of the original formula is small and the number of lines
is small.

We say that a CNF formula � is a sub-formula of an-
other CNF formula � if every clause of � is contained in
some clause of �. We say that a CNF refutation system
� has the sub-formula property if there is some constant �
such that for any unsatisfiable formula � there is a refuta-
tion of � of size at most � � �� �� � such that every line is a
sub-formula of � . If � � � then we say that the proof sys-
tem has the exact sub-formula property. Resolution clearly
has the exact sub-formula property and it is immediate that
CC and CC+W have the exact subformula property since �
is a sub-formula of any � and for Branching and Weaken-
ing the given formulas are sub-formulas of the derived for-
mula. However, the same result is not obvious for CC+WS
or CC+WR since both Subsumption and Restriction have
the converse property. Nonetheless we have:

Lemma 3.3. CC, CC+W, CC+WS, CC+WR have the sub-
formula property; for CC, CC+W and CC+WS this is the
exact sub-formula property.

Proof. For any CNF formulas � and � let �� be the for-
mula � with all clauses that are not contained in some
clause of � removed. Given any refutation ��� 	 	 	 � �� � �

of CNF formula � , we claim that ��� � 	 	 	 � �
�
� � � is a

CC+S refutation of � , where we possibly may repeat a ���
line as some ��� instead of deriving it by an inference rule.
The Axiom is immediate so we consider the other cases of
the inference rule used:
Weakening: Clearly, an inference � � � �
 can be re-
placed by an inference �� � �� �
� if
� is non-empty
and simply by repeating �� otherwise.
Branching: Consider a formula � derived from ��� and
��� by Branching. By assumption we have already derived
�����

� � �� �� (��� is a sub-formula of � by definition)
and similarly ������ � �� �� and so we can use Branching
to derive �� . (Observe that if variable � does not appear in
� then no inference is required.)
Subsumption: Suppose that ��� � ��� is the inference
where � � �. If � is contained in a clause of � we have
������ � �� �� � �� �� � ������ using Subsump-
tion. Otherwise, ������ � �� � �� ��� � ������

using Weakening if � is contained in a clause of � or sim-
ply copying �� if � is not.

Restriction: Suppose that � � ��� is the inference where �
is a literal. By definition of restriction, each clause of �� ��
is contained in a clause of �� and thus is contained in a
clause of � . Furthermore each such clause is also a clause
of ��� so ������ contains all clauses of �� ��. In particu-
lar, this means that we can first derive �� �� by Restriction
from �� and then derive ������ by Weakening from �� ��.
This could possibly at most double the number of steps in
a CC+R refutation so the sub-formula property for CC+R
holds with � � �.

Therefore, given a CNF formula � with bounded clause
size as input and a polynomial size CC, CC+S, or CC+S
refutation of � , there is one with at most a polynomial num-
ber of symbols.

The following shows that the addition of the Restric-
tion rule is sufficient to efficiently simulate the Subsump-
tion rule which justifies eliminating separate consideration
of CC+WRS.

Lemma 3.4. If � � � are clauses then there is a �� �
� derivation of � � � from � �� of length ��� � ��.

Proof. We prove this in the case that � � � � �. The
result follows by repeating this process to reduce � to �
one literal at a time. First apply Weakening to ��� to yield
�����. Then apply Restriction to yield ��������� �
�� � ���� since ��� is satisfied and eliminated from the
formula. We can also apply Restriction to � � � � � to
derive �� �� � ���� � �� � ���� since ��� � � � ���
and restriction distributes over conjunctions. (Here we use
our view of CNF formulas as sets of clauses to eliminate
duplicates.) Applying Branching to ������� and �������
yields � � � in a total of 4 steps as required.

Corollary 3.5. If � is an unsatisfiable CNF formula in �
variables then �������� � � �� � �����	�� �.

Theorem 3.6. For any unsatisfiable CNF formula � ,
������� � � � � ��
��� �.

Proof. Given a resolution derivation 	 � ��� 	 	 	 � �� from
a CNF formula � we show how to produce a CC+R deriva-
tion 	� of length at most �� that contains ���

� 	 	 	 � ���

.
Observe that for � � �, � �� � � and this implies the
lemma since � is the final clause in a resolution refutation
of � .

We have two cases to consider for our induction depend-
ing on the rule used in 	 to derive the last clause.
(a): If� is a clause of � then� �� contains the empty clause
�. Therefore we can begin with � � and derive � �� by one
step of Limited Weakening to add all the remaining clauses
of � �� .
(b): If � follows via resolving clauses � � � and � � �

(where � does not appear in � or � and � � � � �)

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

then by induction we have a CC+R refutation of length at
most ��� � �� that derives � � � ���� � � ��� and � �
� ���� � � ���. We repeatedly apply Restriction using the
elements of��� to derive��� � � ������ � �� �������
similarly we apply repeated Restriction using the elements
of � � � to derive � �� � � ������ � �� �������. Now
we can apply the Branching rule with � � � �� � � ����
to obtain � �� . Since � � � contains at most � � � dis-
tinct variables there were at most � � � Restriction steps
and one Branching step to yield total refutation size of at
most ��.

Given a CNF formula � in variables ���	

 	 ��� and
an integer �, we can define a new formula � ���� in
variables ����� � � ���	 � � ���� by replacing ev-
ery clause � � � by a conjunction of clauses corre-
sponding to � with the substitution �� � ���� � � � � �
���� and distributing the result to form clauses. That
is, if � and � are the indices of variables occurring
positively and negatively in � then � is replaced by
�

����			��� �������� �

��
��
 ����� �

�
���

�
����� ����

�
. Note

that if � has size � then it is replaced by at most �� clauses
each of size at most ��.

Lemma 3.7. If � is any of the systems CC, CC+W,
CC+R, CC+WR then for any unsatisfiable CNF formula � ,
� ��

����� 	 � � � �� �.

Proof. Given a formula caching refutation � of � of length
� we show how to derive all clauses of ����� using at most
�� inference steps. Consider the rules used in the course of
the refutation �.
(1) Clearly ����� � �.
(2) If the inference rule in � is Weakening�
 ��� and we
have already ����� then we get �����
 ����������� also
by Weakening and the latter is �� � ������ by definition.
Further, if the Weakening inference in � is Limited then the
same will hold true in �����.
For the Restriction and Branching rules we will drop the
variable subscript for notational convenience.
(3) If the inference rule in � is Restriction then we have two
cases depending on whether the restriction literal is positive
or negative. (i) If the rule applied is �
 ��� and � is
positive (i.e. the substitution is � � �� �

 � ��) then
given ����� we apply a sequence of � restrictions:

�����
 ��������
 ����������
 � � �
 ����������			��

and this is precisely �����
����. (ii) If the rule applied is

�
 ��� the substitution is � � �� �

 � �� then given
����� we apply the single restriction �����
 ��������
(for any � � ���) and claim that the latter is �����

����. For
any clause � of � containing �, every clause of ����� will
contain �� and thus be eliminated. For any clause � of �

containing �, the set of clauses of ����� containing �� will
be of precisely the right form when shortened.
(4) Suppose that clause � � � follows from ��� and ���
using Branching and the substitution is � � ���

���. For
� � ���, let �� � ��������			�� and �� � ��������			������ .
As above, �� � ��������			�� � �����

����. Furthermore, as
above � � �����

���� � �������� for any � � ���. Since
� contains no occurences of ��	

 	 �� for � � ��� we can
also write � � ����			����

� ����������			����
� �� . We

wish to derive ����� from �� and � � �� �

 � ��. To
do this we apply the Branching rule � times, deriving ����

from �� and �� using variable ��, ���� from ���� and
���� using variable ����, etc. until finally we obtain the
desired clause using the branching rule applied to �� and
��.

We can state an even more general result that allows ar-
bitrary disjoint substitutions of variables. For � a formula
in ���	

 	 ��� and � � ���	

 	 ��� be a sequence of
Booleans functions with �� � �		 ���� � �		 ��. We can de-
fine a new formula � ��� in variables ���� � � ���	 � � �����
in which each �� is represented optimally in CNF and DNF
(depending on whether �� appears positively or negatively
in a clause of �) and the result expanded canonically into
clauses in some fashion. It is not hard to show that the num-
ber of lines in a proof of � ��� is at most the number of lines
in the original proof multiplied the maximum over all of
the optimal read-once branching program size of ��.

Note: We did not include Subsumption in Lemma 3.7
but it is also possible to simulate subsumption proofs with
a somewhat weaker bound. The issue is that for a single
clause �, ����� may produce a large number of clauses
so the reduction of these clauses to the clauses of �����

for � � � may involve a large number of individual Sub-
sumption inferences. (In total, by the subformula property
the number of such clauses is bounded in terms of the size
of the target formula so if the original proof is polynomial
size the new proof will be as well.)

Corollary 3.8. Let ��� be a family of unsatisfiable CNF
formulas.

 If ��� has polynomial-size DPLL proofs then �� �����
has polynomial-size CC proofs.

 If ��� has polynomial-size regular resolution proofs
then �� ����� has polynomial-size CC+W proofs.

 If ��� has polynomial-size resolution proofs then
�� ����� has polynomial-size CC+R proofs.

We first use this corollary to show that CC can efficiently
prove the pebbling tautologies mentioned in the previous
section.

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

Lemma 3.9. Given a directed acyclic graph� of in-degree
2 with � edges and subsets � and � of its vertices, if
�������� is unsatisfiable then ������������ � � ����.

Proof. (Sketch) The contradiction �������� has two vari-
ables per vertex 	,
�� and
�� and the statement that 	 can
be pebbled is represented by the clause �
�� �
���. The tau-
tology represents the statement that (1) all nodes in � can
be pebbled (2) if both of a nodes’ predecessors can be peb-
bled then so can the node itself (3) no node in � can be
pebbled. We observe that this formula is derived by disjoint
substitution �� �
�� �
�� from a simpler formula ������
where we represent the ability to pebble node 	 by a sin-
gle variable �� . That is �������� � �

����
����� . The formula

������ can be proved unsatisfiable in a linear number of
steps by unit propagation following a topological sort from
� to � . Therefore it follows immediately in CC. By the
closure property of CC under disjoint substitution (this is �
instead of � but the same result follows either by negating
variables and using the result for ���� or directly from the
read-once branching program generalization of Lemma 3.7)
�������� also has a linear size proof in CC.

We now use Corollary 3.8 together with results of [15]
to separate the CC+R proof system from ����� for any
constant �.

In order to separate ������� from �����, Segerlind,
Buss, and Impagliazzo [15] define an unsatisfiable CNF
formula ��� ��� for any undirected graph � (describ-
ing for the graph ordering principle on �) and prove that,
although ��� ��� always has polynomial-size resolution
refutations, there is an infinite family of graphs � such that
for any constant �, ��� ��������� requires exponential-
size ����� refutations. More precisely, given � � �����
with �� � � � define ��� � �� variables ���� for all � �� 	

which are intended to represent a transitive, irreflexive, anti-
symmetric relation on the vertices of �. Thus we have
clauses ����� � ����� for antisymmetry and ����� � ���� �
����� for transitivity for all distinct �� 	� � � � . The graph
ordering principle for � states that any such relation must
have an element that is locally minimal in �. Thus to rep-
resent the negation of this principle for each 	 � � we add
the clause

�
������	 ���� .

Theorem 3.10 ([15]). For any positive integer �, there are
constants � � � and �� � �, and an infinite family of graphs
��� such that ��� ��� has resolution refutations of size
���
� where � � ����, ��� ������� has ����� refu-
tations of size ���
�, ��� ��������� has size ���
� but
requires ����� refutations of size ����

�
� �.

Theorem 3.11. For any positive integer �, there are for-
mulas with polynomial-size CC+R refutations that require
exponential-size ����� refutations.

Proof. Consider the family of polynomial-size formulas
��� ��������� given by Theorem 3.10. Since the for-
mulas ��� ��� have polynomial size resolution refu-
tations, by Theorem 3.6 and Lemma 3.7 the formu-
las ��� ��������� have polynomial-size CC+R refuta-
tions. On the other hand by Theorem 3.10 they require
exponential-size����� refutations.

We can observe that not only does ��� ��� have
polynomial-size resolution refutations but these refutations
are in fact regular resolution refutations to derive the fol-
lowing:

Theorem 3.12. For any positive integer �, there are for-
mulas with polynomial-size CC+W refutations that require
exponential-size ����� refutations.

4 Formula caching search and contradiction
caching inference systems

Theorem 4.1. � � and CC are polynomially equivalent
refutation systems.

Proof. To show that CC can efficiently simulate � �, ob-
serve that in an execution of � �, each recursive call adds
precisely one formula to � and each such formula � is
derivable either because it contains the empty clause 	 and
therefore follows from the Axiom of CC via one step of
Limited Weakening, or as the result of � �� and � �� being
in � and therefore follows via one Branching step.

For the reverse direction, let � be the goal formula for
CC (and input for� �). For simplicity we will take the result
of every Limited Weakening rule as an additional axiom in
the CC proof so we have a proof whose only inference rule
is Branching. By the sub-formula property of CC, w.l.o.g.
every formula in the CC proof is a sub-formula of � and
thus every subformula is a restriction of � by some partial
assignment � and each non-axiom node is associated with
a variable involved in the branching. Draw the DAG of in-
ferences in this simplified CC proof directed from the goal
formula back to the leaves. The � �algorithm will follow
a depth-first traversal of this proof and choose its branch
variable according to the variables labeling the nodes in the
DAG it encounters. Whenever it traverses a forward edge or
a cross edge with respect to the DFS tree, by construction
the associated formula will already be in the cache �. The
number of recursive calls is equal to the number of edges in
this proof DAG.

Corollary 4.2. For any in-degree 2 pebbling graph � and
sets � and � there is a polynomial-time � � refutation of
�������� if this is contradictory.

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

However, this simulation does not extend to all of regular
resolution. In particular, consider the family of �� formu-
las, defined in [6], which separate regular resolution from
tree resolution. These were the inspiration for the ���
formulas defined above. In particular for any � the ���
formula includes all clauses of ��� ���� where �� is the
complete graph on � � ��� ���� �� together with totality
clauses �	����	���� for each
 �� �. As shown in [6], like the
formulas ������� above, these formulas have polynomial-
size regular resolution refutations but require exponential-
size tree resolution refutations.

Write � ��� � iff � follows from � solely via Weak-
ening and Subsumption. We observe the following simple
properties of ��� .

Proposition 4.3. (a) ��� is transitive, i.e. if � ��� �
and � ��� � then � ��� � .

(b) If � ��� � and � ��� � then � �� ��� � .

(c) For any literal 	, if � ��� � then ��� ��� � ��.

(d) For any literal 	, if � ��� � �� then �� ��� �
where �� �

�
	���	 � ��.

Proof. Parts (a) and (b) follow immediately from the defini-
tion. Suppose that 	 is a literal and � ��� � . If � � ���
then neither 	 nor 	 appears in � and either � or �� � 	�
appears in �. If � � � then there is some � � � with
� � � � � � ��. If ���	� � � then there is some � � �
with � � ���	� and thus ��� � � and ��� � � ��. Thus
(c) follows. For part (d), consider a clause �	 � �� in ��.
Since � � � there is a � � � �� with � � �. Then
� � �	 � �� � �	 � ��, and since either � � � or
�	 � �� � � there is clause of � contained in �	 � ��.
Thus �� ��� � .

Let ��
�������� be the formula obtained from � after
applying unit propagations to � .

Lemma 4.4. If � ��� � then there is a restriction � such
that ��
 ��� ��
�������� and ��
 has no unit clauses.

Proof. Assume that � �� ��
�������� for otherwise the
lemma follows immediately with ��
 � ��
��������.
Otherwise let � be the set of assignments that are made dur-
ing unit propagation on � . By the proposition above we
have ��
 ��� ��
��������. If 	 is a unit clause in ��

then, since � �� ��
��������, ��
�������� must contain
	 as a unit clause which is a contradiction.

We will be interested in formulas � � ����� and � �
����� such that � ��� � . Using Lemma 4.4 we will only
need to study this when � and � have no unit clauses and
� does not contain the empty clause.

Observe that if � � ����� has no unit clauses and does
not contain the empty clause then � must be transitively

closed and so we can identify � with a partial order �� on
� .

Given a partial order �� on � define

	 �� � �� � � �
 �� ��.

	 �
�
������ � �
 � �
� � �� � ��
�,

	 ������� � �� � �
 � �
�
�������
 �� ��, and

	 �������� to be �� restricted to � � �������.

Lemma 4.5. If � � ����� ��� � � ����� and � and
� do not contain � or any unit clause then �������� �
������ �.

Proof. For any pair �� � � � , if � and � are incompara-
ble in �� then � contains the clause �	��

�
	��� which

must also appear in � since � does not contain � or a unit
clause. Therefore � and � are incomparable in �� .

Since � does not contain � or a unit clause, � contains
a non-minimality clause �� �

�
������ 	��� of size at least

2 for each
 � �
�
������. Therefore � must contain a
clause �� � �� with at least two positive literals whose last
coordinate is
. This can only be the non-minimality clause
�� �

�
����� � 	��� and thus
 � �
�
���� � and �� � �.

Since any � �� �� is incomparable to
 in ��, it must be in-
comparable to
 in �� so � �� �. Therefore �
�
������ �
�
�
���� � and each such minimal element has �� � �.
Furthermore by definition ������� � ����� �.

If � �� � and �� � � � � ������� then there is some
 �
�
�
������ such that
 ��� �. Therefore
 is incomparable
to both � and � in ��. Therefore � will contain two clauses
of size 2 that are the restrictions of the transitivity clauses
for the triple �
� �� ��, namely �	��� � 	��� and �	�� �
	����. These clauses must also appear in � and the only
possible sources for them are the same transitivity clauses
in ���. Therefore � �� �.

Therefore for all �� � � � � ������� � � � ����� �,
� �� � if and only if � �� � and thus �������� �
������ �.

Theorem 4.6. Any � ���� refutation of ��� requires at
least ���� nodes.

Proof. We show that there are at least ���� distinct residual
formulas in any such refutation, with the property that no
two of them can be inferred using Weakening, Subsumption
and Restriction from the same residual subformula.

For any restriction ! such that ����� does not infer� via
unit propagation, the transitive closure, !�, of the relation
defined by ! forms a partial order ��� . Call a branch point
in an � ���� execution novel if (1) the residual formula
����� at the branch point does not infer � by unit propa-
gation and (2) it branches on a variable 	��� such that
 and

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

� are in different connected components of the Hasse dia-
gram associated with ��� . Observe that if only �� � novel
branch points have been made on a path then �������� � �.
Furthermore, every consistent branch can be extended un-
til it contains at least � � � novel branch points and the
restrictions � defining these branches are inconsistent with
each other. Therefore there are at least ���� of them at
the novelty level � � � and their transitive closures � all
have �	
����� ��� and disagree about the relative order
of some pair of elements.

Let � � ���� be the residual formula at a novel
branch point and assume that � ���� infers � us-
ing Weakening, Subsumption, and Restriction. Therefore
� ��� � for � � or �� for some literal �. Ap-
plying Lemma 4.4 we obtain a formula �� � ���� for the
restriction �� such that
����	����� � � ��� , �� ���

����	�����, and �� does not have an empty or unit
clause. Let � be the restriction that is the combination of
�, ��, and � and let � be the restriction that is the combi-
nation of � and ��. By construction � and � correspond to
partial orders on ��� � � � � ��. By Lemma 4.5 we must have
��� �	
����� � �	
����� ���.

Now if is added to � before � in the execution of
� ���� then either is in the subtree below � or there
is some variable ��	
 on which � and � disagree. If the
latter were to occur, the corresponding extended restrictions
� and � would retain this disagreement, and �� and ��

would disagree about the relative order of � and �. This
would contradict the requirement that �����. Therefore
any such clause would have to be in the subtree below
� . Since these subtees are disjoint for every pair � and
� � of our set of clauses at novelty level �� �, the theorem
follows.

Corollary 4.7. CC does not polynomially simulate regular
resolution.

Thus even the strongest of the basic formula caching sys-
tems is not strong enough to efficiently simulate regular res-
olution. In fact, these systems cannot efficiently simulate
the ordered regular resolution method defined in the origi-
nal paper of Davis and Putnam [8] since, as shown in [6], the
formulas �� are provable in ordered regular resolution.

However, when we augment formula caching by having
it return the reason for unsatisfiability as well as the mere
fact of unsatisfiability, we can efficiently simulate regular
resolution (and much more).

Theorem 4.8. � ���
����� linearly simulates regular resolu-

tion.

Proof. We follow the general pattern of the proof of Theo-
rem 3.2. See the proof of that lemma for the notation we use
here. The sequence of branches followed by the � ���

�����

algorithm will follow a depth-first search of the regular res-
olution d.a.g. refuting � . We prove by induction that if a
node in this d.a.g. labelled by clause � is reached for the
first time then � ���

������� �� � �� returns a formula � whose
variables are in � ���� and such that � ��� ��� . (On
subsequent visits, � will suffice to prevent the algorithm
from descending below this node.)

The induction starts at the leaves. If � labels a leaf in the
proof then � � � , ��� � �, and the algorithm returns �.
If � � �� � �� is the resolvent of �� � �� and �� � ��
which label its children then by the induction hypothesis
we have that � ���

����� has returned a formula � defined
on � ��� � �� such that � ��� ������� and defined
on � ��� � �� such that ��� �������.

By the argument in the proof of Lemma 3.2,
������� ��� �� ����� and thus by transitivity ���

�� �����. Similarly, ������� ��� �� ����� and thus
� ��� �� �����.

Applying Proposition 4.3(d), we have
�
����� �

�� ��� � �� and
�
����� � �� ��� � �� . Propo-

sition 4.3(b) then implies that the clause � returned by
� ���

����� satisfies

� �
�

���

�� ��� �
�

���

�� � �� ��� � �� �

Now since � ��� � �� and � ��� � �� are subsets of � ����
and � � � ����, every variable in � is a subset of � ����.
The inference � ��� � �� depends only on the clauses of
� �� that contain variables appearing in � so we can remove
all clauses of � �� that have variables outside � ���� while
maintaining the inference. Thus we have � ��� ��� as
required. The theorem follows immediately.

Thus, in particular, for any graph � ���
����� can effi-

ciently refute �� ��. By a similar idea to that used in
Lemma 3.7, given a refutation of a formula � in � ���

�����,
we can obtain an � ���

����� refutation of � ���� of size at
most �� � times that of � by replacing each branch on a
variable �� of � by a sequence of branches on the variables
!�	
 such that �� is replaced by

��

�� !�	
 . Applying this to

the �� �������� formulas defined in Theorem 3.10, we
obtain:

Theorem 4.9. For any positive integer , there are formu-
las with polynomial-size � ���

����� refutations that require
exponential-size "��� � refutations.

We conclude by showing the equivalences between the
more powerful nondeterministic formula caching systems
and the contradiction caching proof systems.

Theorem 4.10. The following pairs of refutation systems
are polynomially equivalent:

	 CC+W and � ��������

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

� CC+WS and � ���
������

� CC+WSR and � ����
������

(which is polynomially equiv-
alent to � ���������)

Proof. In each case one can observe that the CC proof rules
of Weakening, Subsumption and Restriction can reverse the
result of the corresponding nondeterministic tinkering with
the residual formula � in the � �system. Thus it is easy to
see that the systems involving CC can efficiently simulate
the corresponding systems involving � �.

The reverse simulation is a little trickier. As in the previ-
ous theorem we prune the proof DAG involving CC by tak-
ing the results of Limited Weakening as leaves. We again
follow a DFS of the proof DAG directed from the goal for-
mula to the leaves. Observe that in this DAG all nodes have
out-degree 1 except the Branching nodes. Whenever we
reach the result of a Branching inference we choose the as-
sociated variable and make the recursive call as we would
in plain CC. Otherwise we observe that we can follow the
path of out-degree 1 inferences back either to an axiom or to
a Branching inference. It is easy to check that the nondeter-
ministic tinkering with � allowed in the � �-based system
can simulate this path. That is, Weakening and Subsump-
tion and Restriction can be simulated since each of the ma-
nipulations of � allowed in the � �extension permits one
to reverse the corresponding inference rule.

References

[1] F. Bacchus, S. Dalmao, and T. Pitassi. DPLL with
Caching: A new algorithm for #SAT and Bayesian infer-
ence. Technical Report TR03-003, Electronic Colloquium
in Computation Complexity, http://www.eccc.uni-
trier.de/eccc/, 2003.

[2] Paul Beame, Henry Kautz, and Ashish Sabharwal. On the
power of clause learning. In Proceedings of the 18th IJCAI,
2003. To appear.

[3] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson.
Near-optimal separation of treelike and general resolu-
tion. Technical Report TR00-005, Electronic Colloquium
in Computation Complexity, http://www.eccc.uni-
trier.de/eccc/, 2000.

[4] E. Ben-Sasson and A. Wigderson. Short proofs are narrow –
resolution made simple. In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing, pages
517–526, Atlanta, GA, May 1999.

[5] M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johansen. On
the relative complexity of resolution refinements and cut-
ting planes proof systems. SIAM Journal on Computing,
30(5):1462–1484, 2000.

[6] M. L. Bonet and N. Galesi. A study of proof search algo-
rithms for resolution and polynomial calculus. In Proceed-
ings 40th Annual Symposium on Foundations of Computer
Science, New York,NY, October 1999. IEEE.

[7] V. Chvátal and Endre Szemerédi. Many hard examples for
resolution. Journal of the ACM, 35(4):759–768, 1988.

[8] M. Davis and H. Putnam. A computing procedure for quan-
tification theory. Communications of the ACM, 7:201–215,
1960.

[9] A. Haken. The intractability of resolution. Theoretical Com-
puter Science, 39:297–305, 1985.

[10] S. M. Majercik and M. L. Littman. Using caching to solve
larger probabilistic planning problems. In Proceedings of the
14th AAAI, pages 954–959, 1998.

[11] João P. Marques-Silva and Karem A. Sakallah. Grasp – a
new search algorithm for satisfiability. In Proceedings of the
International Conference on Computer-Aided Design, pages
220–227, San Jose, CA, November 1996. ACM/IEEE.

[12] B. Monien and E. Speckenmeyer. Solving satisfiability in
less than �

� steps. Discrete Applied Mathematics, pages
287–295, 1985.

[13] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lin-
tao Zhang, and Sharad Malik. Chaff: Engineering an ef-
ficient SAT solver. In Proceedings of the 38th Design Au-
tomation Conference, pages 530–535, Las Vegas, NV, June
2001. ACM/IEEE.

[14] J. M. Robson. Algorithms for maximum independent sets.
Journal of Algorithms, 7(3):425–440, 1986.

[15] N. Segerlind, S. Buss, and R. Impagliazzo. A switching
lemma for small restrictions and lower bounds for �-DNF
resolution. In Proceedings 43nd Annual Symposium on
Foundations of Computer Science, Vancouver, BC, Novem-
ber 2002. IEEE.

[16] Hantao Zhang. Sato: An efficient propositional prover. In
Proceedings of the International Conference on Automated
Deduction, LNAI, volume 1249, pages 272–275, July 1997.

[17] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz,
and Sharad Malik. Efficient conflict driven learning in a
boolean satisfiability solver. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 279–
285, San Jose, CA, November 2001. ACM/IEEE.

Proceedings of The 18th IEEE Annual Conference on Computational Complexity
ISBN 0-7695-1879-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

