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We show that any CRCW PRAM which recognizes k-cliques in n-node graphs in time T re- 

quires at least nn(k’r2) processors independent of its memory size. As a corollary we obtain 

essentially the same trade-off for unbounded fan-in circuits. We also demonstrate a similar but 

weaker trade-off for the memory size of CRCW PRAM’s solving this problem independent of 

the number of processors. These bounds also answer an open question posed in 1131, i.e., they 

show that constant-depth circuits for recognizing k-cliques in n-node graphs require size neck). 

1. Introduction 

There has been much recent success in proving lower bounds for problems in 
models of computation which permit operations on an unbounded number of items 
at unit cost. The first success in this area, namely producing super-polynomial lower 
bounds for constant-depth circuits with unbounded V and A to compute parity, by 
Furst, Saxe and Sipser [lo], were quickly followed by stronger lower bounds for 
such circuits, by Ajtai independently [l] and by Babai [4]. Also, lower bounds which 
produce a constant-depth hierarchy of polynomial-size unbounded fan-in circuits 
were shown by Sipser in [14]. With the exponential lower bounds for such circuits 
given by Yao [17] and subsequently improved to essentially optimal bounds by 
Hastad in [ 11, 121, it has become clear that techniques for dealing with these circuits 
are quite powerful. 

The lower bounds for constant-depth unbounded fan-in circuits actually produce 
lower-bound trade-offs between depth and circuit size. Beame and Hastad [5-71 
have extended these lower-bound trade-offs to the much more powerful priority 
concurrent-read concurrent-write parallel random access machine (CRCW PRAM). 
This CRCW PRAM model has been an important and popular model for the design 
of parallel algorithms. 

In another direction, Razborov [14] and Smolensky [16] extending and simplify- 
ing Razborov’s work have shown strong lower bounds for majority and other sym- 
metric functions on circuits which have unbounded fan-in modulo-p gates in 
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addition to unbounded A and V gates. Their techniques are quite different from 

those used for the other results in that they use approximation by small-degree 

polynomials as opposed to restrictions. 

One property which is shared by all of the Boolean functions for which the above 

lower bounds apply is that any representation of them in conjunctive or disjunctive 

normal form (CNF or DNF) requires long clauses, i.e., clauses whose length is 

polynomially related to the input size. In fact, whereas threshold functions with n” 

thresholds are hard, any threshold function with a logo( threshold can be com- 

puted in constant depth and polynomial size [3]. Since proving bounds on the length 

of clauses in CNF and DNF is in some way a fundamental part of most of the above 

proofs, at first glance one might be concerned that it would be impossible to extend 

the lower bounds to functions that can be represented with short clauses. 

Results by Ajtai [2] and Lynch [13] show that this is not so. In [2], Ajtai proved 

a weak super-polynomial lower bound for deciding if two nodes in a graphh are 

reachable by a path of length log n. Lynch’s bound is a much stronger one. He 

showed that if k~log n, then any unbounded fan-in A, V, 1 circuit which finds 

k-cliques in a directed n-node graph in depth d requires size n’(m). This func- 

tion can be represented in DNF with clauses of size k2510g2n. 

The main result of this paper improves Lynch’s size lower bound and extends it 

to CRCW PRAM’s. That is, we show that any CRCW PRAM which finds k-cliques 

in n-node graphs in time T requires at least na@‘r*) processors independent of the 

memory size. A similar but weaker trade-off is shown for the memory size of 

CRCW PRAM’s solving this problem independent of the number of processors. 

The first bound implies essentially the same trade-off for unbounded fan-in circuits 

and answers an open question posed in [13]. That is, it shows that constant-depth 

circuits for finding k-cliques in n-node graphs require size no@). 

While Lynch uses techniques that have a similar flavor to those in [1,4], our 

techniques extend those in [7,11,12]. We prove our bounds for inputs which are un- 

directed graphs but it immediately follows that they hold for inputs representing 

directed graphs. 

2. Definitions and preliminaries 

We begin with the definitions of the priority form of idealized CRCW PRAM’s, 

of processor and memory cell partitions, and of degrees in the same manner as 

[S-7]. The input to the problems we consider will be undirected graphs so we will 

follow the usual convention of defining our parameters in terms of the number of 

nodes, n, and let m =(z) denote the number of input variables. 

Definition. A CRCW PRAM is a shared memory machine with processors 

P 1, . . . , Ppcn, which communicate through memory cells C,, . . . , C+,. The input is in- 

itially stored in the first m cells of memory, Cr, . . . , C,,,. Initially all cells other than 
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the input cells contain the value 0. The output of the machine is the value in the 

cell C, at time T(n). 

Before each step t, processor Pi is in state qf. At time step t, depending on qf, 
processor Pi reads some cell Cj of shared memory, then, depending on the con- 

tents, (Cj>, and qf, assumes a new state qf+’ and depending on this state, writes a 

value 0 = o(qf+ ‘) into some cell. 

When several processors are attempting to write into a single cell at the same time 

step the one that succeeds will be the lowest numbered processor. 

Definition. Let M be a CRCW PRAM. For any processor Pi the processor parti- 
tion, P(M, i, t), of the input set at time step t is defined so that two inputs are in 

the same equivalence class of P(M, i, t) if and only if they lead to the same state of 

processor Pi at the end of time step t. 

For any cell Cj the cell partition, C(M,j, t), of the input set at time t is defined 

so that two inputs are in the same equivalence class of C(M,j, t) if and only if they 

lead to the same contents of cell Cj at the end of time step t. 

Definition. Let f be a Boolean function defined on a set ZG (0, l}“. A Boolean 

formula F represents f on Z if the inputs x E Z satisfy F exactly when f(x) = 1. Let 

the maximum clause length of a DNF formula F be the maximum number of literals 

in any clause of F. The (Boofean) degree off on Z, S(f), is the smallest maximum 

clause length of all disjunctive normal form (DNF) formulas representing f on I. 

We extend this definition to sets of functions $ by letting s(9)=maxfe,J(f). 

Definition. Let A be a partition of a set Zc (0, l}“. Define the degree of A, 6(A), 

to be 6(gA) on I where & is the set of characteristic functions of the equivalence 

classes of A in I. 

In this paper we will need a measure related to the degree defined above. We can 

extend the notion of degree by changing clause “length” to any other monotone 

property of clauses. For the class of inputs we will be interested in undirected 

graphs; we will be interpreting the m input variables as the edges of a graph on n 

nodes in a canonical way. In this case, a useful monotone property of clauses will 

be the number of nodes which are endpoints of edges appearing in the clause. We 

will write this node degree as 6,. For technical reasons we also will need to define 

a modified node degree in which we ignore some specified set V C_ { 1, . . . , n} of the 

nodes, i.e., the monotone property is the number of nodes other than those in V 

which are endpoints of edges appearing in the clause. We write the resulting degree 

measure as S,“. We will use [VI2 for the set of input variables which have both end- 

points in V. 
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Definition. A restriction TC on KC { 1, . . . , m} is a function 71: K -+ { 0, 1, *) where: 

f 

1, means xi is set to 1, 

7-c(i) = 0, means xi is set to 0, 

*, means Xi is unset. 

We define the results of applying a restriction rr to a partition, Am, a function, 

frz9 and a Boolean formula, F rz, in the natural way. If o and 7 are restrictions, 

then (57 is a restriction which is the result of applying o first and then applying 7. 

For any KC { 1, . . . . m} define Proj{K) to be the set of restrictions which assign 0 

or 1 exactly to the input variables in K. 

In several places we will need the following simple observation which parallels 

that contained in [7, Lemma 3. l] and extends that lemma to the more complicated 

definition of 6:. 

Lemma 2.1. Let A be a partition of a set ZC (0, l}“. For every Y c { 1, . ., , n> there 
exists a restriction a~Proj{[V U Y12\[V12} such that S:(A)< IY 1 +6ruy(Ar,). 

Proof. For each o E Proj{ [V U Y12\ [VI*) let g0 be a set of DNF formulas which 

represent the characteristic functions of the equivalence classes in A r0 and which 

have maximum number of nodes other than I/ U Y appearing in each clause at most 

&Vy (A[,). To each clause in g0 append the clause C, which is true on exactly 

those inputs in (0, l}M which agree with o to obtain a set of formulas &. By con- 

struction, the number of nodes other than those in I’ which appear in any clause 

is at most IYI +GVVuy (A r,). Each class in A can now be represented by a DNF for- 

mula which is the disjunction of formulas in various @,. By definition of BVv we 

have 

S;(A) 5 max 
u~Proj{[VUYl~\[vl~} 

gJUY (A rc) f I Y I. 

The lemma follows immediately. 0 

We now include the following definitions and lemmas which are shown in detail 

in [5,7]. 

Definition. We say that an input x E { 0, 1 }” satisfies a Boolean function F : { 0, l}“- 

(0, l} if F(x) = 1. We say that x falsifies F if F(x) = 0. 

Definition. A graded set of Boolean functions is a set 8 of Boolean functions such 

that each FE $2 has an associated positive integer grade, y(F) (or has grade = 03) and 

no two functions of a given grade are simultaneously satisfiable. 

Definition. For any graded set of Boolean functions, 9, the partition determined 
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by ge, (FJ>, on {O,llm is the partition such that x,y~ (0, l}” are in the same 
equivalence class if and only if: 

(a) x and y both satisfy some function FE $9, and x and y both falsify all F’E ?J 
with y(F’) < y(F); or 

(b) x and y both falsify all functions FE $. 

Lemma 2.2. Let 9 be a graded set of Boolean functions. If n is a restriction, then 
(%>r, is the same partition as (9r,> on {O,l}mr,. 

As in [5,7], we note that the above definitions can be carried over easily for 
Boolean formulas which represent the Boolean functions in the obvious way. 
Observe that if S represents SJ on {O,l}“r,, then <g&= ($?>r,. Also, the notion 
of degree applies to graded sets of Boolean functions simply using the natural defini- 
tion of degree for sets of functions. It is easy to see that a graded set of Boolean 
functions $9 can be represented on (0, l}mrz by a graded set of DNF formulas g, 
each with maximum clause length bounded by 6(% r,). 

Definition. Let M be a CRCW PRAM. Define %((M,j, t) to be the graded set of 
Boolean functions as follows: 

(i) For each positive integer i, the functions of grade i in YS(M,j, t) are the 
characteristic functions of those equivalence classes in P(M, i, t) on which Pi writes 
into cell Cj during time step t. 

(ii) The functions of grade 00 in S(A4, j, t) are all the characteristic functions of 
the equivalence classes in C(M, j, t - 1). 

Lemma 2.3. Let M be a CRCW PRAM. (SZ(M, j, t)) is a refinement of C(M, j, 1) 
on {O,l}m. 

3. Lower bounds for clique 

Definition. Let Clique; be the function which takes as input an undirected n-node 
graph and is equal to 1 if and only if the graph contains a clique on k nodes. 

Theorem 3.1. If M is a CRCW PRAM which computes the Clique: function for 
kl log n in time T= T(n), then for sufficiently large k 

(a) the number of processors p(n) must be at least nk’@9T*) even if the number 
of memory cells is infinite, and 

(b) the number of memory cells c(n) must be at least nk’(43T’) even if the 
number of processors is infinite. 
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We follow essentially the same program for showing lower bounds on CRCW 

PRAM computations as in [5,7]. That is, we show that after certain restrictions 

(which set more input variables as time progresses) are applied to the input 

variables, the processor and cell partitions have only small degree relative to the 

degree required to solve the Clique{ problem. In using restrictions to obtain our 

lower bounds we must maintain a balance between the amount of degree reduction 

that a restriction achieves and the related simplification of the clique function. 

In order to prove the existence of restrictions that satisfy these properties we need 

an appropriate probability space from which to choose restrictions. The distribution 

we use is essentially that introduced by Lynch [ 131 to prove his bounds for the clique 

problem on unbounded fan-in circuits. 

Definition. Let L G { 1, . . . , n}. Define R,& to be a probability space of restrictions 

on [L]’ where for a random Q chosen from R&, a set S c L is chosen at random 

such that independently for each u EL, Pr [u ES] =p and Pr[o g S] = 1 -p and fur- 

ther that 

(1) for each [u, u] E [S12, ~([u, 01) = *; 

(2) independently for each [u, u] $ [S]‘, Pr[@([u, u]) = l] =q and Pr[e([u, u]) = 01 = 

l-q. 

We say that Q(V) = * if and only if I/c S. 

The outline above is now carried out by proving two lemmas. The first tells us 

that many nodes remain unset and the second tells us that the node degrees of the 

partitions do not increase. 

Lemma3.2. Let q=n-8’k, p’s+, and LO={l,...,n}. If n is chosen at random 

from Rk?4 and p/n 2 k for k sufficiently large, then 

Pr[G,(Cliquetr,)< +k] I +. 

Proof. The distribution of the size of the set S in the definition of Rit4 is a 

binomial distribution with expected value p’n. Observe that, as in [7], this random 

variable achieves its mean with probability at least 3 for p’n sufficiently large. 

Therefore, with probability 2 +, TC leaves a clique of unset input variables on p’n L k 
nodes. 

Consider also the probability that n produces a clique of size 1 +k on the edge 

variables that it sets to 1. This probability is easily bounded by 

q’k;2) < nk/2q(k;2) = tnq(k/2- 1)/2)k/2 

=(n.n -2(k-2)/k)k/2 < n-k/4 s $ 

for k sufficiently large. 
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Thus, with probability at least +, II leaves all the variables on a set of at least k 

nodes unset and does not turn on the edges of any clique on +k nodes. Then, in 

order to force CliqueIm to be 1, more than +k of the remaining nodes must have 

all edges between them set to 1. It is easily possible to force a clique by setting all 

the remaining edges to 1 so in this case the node-degree must be more than +k. Thus 

the node-degree of Cliqueir, is at most +k with probability at most 4. q 

Lemma 3.3. Let A4 be a CRCW PRAM just prior to a read or write operation, ah 
of whose processor and cell partitions have node-degree at most r 2 1 with variables 

from (~,,,,I),,~~L. Let A be either an existing processor or cell partition of M or 
a new cell partition resulting from a concurrent write of A4. Choose Q at random 

from Ri,4 wherep,q<+. For s>O we have 

Pr[d,(A 1,) 23-l < [3p(2/q)s+“2rls. 

Using Lemmas 2.2 and 2.3 we can obtain Lemma 3.3 from the following lemma 

by letting F=O and V=0 and noting that in general if p satisfies (p-lx+ l)‘= 2, 

then p< 4xr. The statement of this lemma is more complicated than that of the 

two similar lemmas in [5,7] because of the exact way that, for the restrictions chosen 

at random from Ri,4, the existence of an unset variable can increase the likelihood 

that other variables are unset. 

Lemma 3.4. Let % be a graded set of DNF formulas on input variables 

~X~u,“l~[U,UlE~Ll~\[Vl z with maximum number of nodes referred to in any clause 
bounded by r2 1 where I/c L c (l,..., n}. Let Q be a random restriction chosen 
from R&. Let F be an arbitrary function on (0, l}“. Then, if ($7 re> is the parti- 
tion determined by g r,, for any s? 0 such that s + / V / I w, we have 

where /I> 0 satisfies 

[P-‘(2/min{q, 1 -q})w+r’2p/(l -p)+ l]‘= 2. 

Proof. We first note that we only need to consider finite graded sets of formulas 

(i.e., 1% 1 is finite). This follows since there are only a finite number of different in- 

put strings and so only a finite number of ways in which some formula in ~9 can 

be satisfied and all smaller ones falsified. Also, it is trivial to see that the lemma 

holds for s=O or /3? 1 so we can assume that s>O and PC 1. 

The rest of the proof proceeds by induction on the total number of clauses in the 

formulas in ‘SJ. The intuitive idea is that as we work along the clauses one by one: 

if Q falsifies a clause, then we are left with essentially the same problem as before; 

if Q does not, then, given that fact that it does not, it is much more likely that .Q 

satisfies the clause (and thus ensures that the remaining partition has only one class) 

than e leaves any input variable in the clause unset. 
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In this proof for readability we will write aV( $2) instead of S~(<‘??>). 

Base case. There are no clauses in the formulas in 9. In this case the formulas 

are all identically 0 and so all inputs are equivalent with respect to %. Thus the parti- 

tion determined by $2 re consists of a single class so 6”(9 re> = 0 and the lemma 

holds for g. 

Induction step. Assume that the lemma holds for all graded sets of formulas $2’ 

with fewer clauses than the formulas of g. Let FJ be a formula in ?3 which has 

lowest grade among those formulas in $2 which are not identically 0; let Ct be a 

clause of F,. We can analyse the probability by considering separately the cases in 

which Q does or does not force clause C, to be 0. The failure probability, the prob- 

ability that 6 “(% re> _ >s, is an average of the failure probabilities in these two 

cases. Thus 

p+Ywr,)23 / r-$ = oAe(v) = *I 

The first term in the maximum is Pr[&“(EJr,>rs 1 (FvC,)[,=OAQ(V)= *I. Let Fr 

be F, with clause C, removed; thus F, = Cl V p, and p, # Fl. Let @ be the same as 

$3 with formula F, replaced by F, . In this case C, r, = 0 so F, re =& r, and thus 

(grQ)=(GrQ). I n other words, when Cir,=0, the lemma requires a bound on 

Pr[aV( ‘8 re) 1s 1 (Fv C,>r, = 0 A Q(V) = *]. Since @ has one fewer clause than 92 

does, the inductive hypothesis implies that this probability is at most /I”. 

The estimation of the second term in the maximum is more difficult. Let Tc L 

be the set of nodes appearing in clause C, and let E c [T12 be the set of edge 

variables appearing in Ci. By hypothesis /T 1 5 r. Let eE be the restriction of Q to 

the edge variables in E. The condition that C, r, #0 is equivalent to the condition 

that Crr,,#O. Let Y be the subset of the nodes in T \ V which are endpoints of 

edge variables to which ee assigns *; we denote the event that Y is this subset by 

*“(Q& = Y. Then 

= yi~,VPr[Sv(Wr~)~sA*v(eE) = Y 

lFre=OAC1re,#OA@(v)=*l. (1) 

Consider the case in which Y = 0. Then es sets every variable in E \ [VI2 and since 

$2 has no variables from [VI’, the value of C, is forced by ee. But since we already 

know that Ci reE#O we must have C, I,, = 1. In this case every input satisfies F, r, 

and since F, has lowest grade we know that all inputs are equivalent with respect 

to the (?3 re>. It follows that a’(% re> = 0 so the term corresponding to Y= 0 has 
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probability 0. The sum in (1) then becomes 

= c Pr[6v(~rQk.m*V(eE) = Y 
YCT\v,Y#O 

lFr,=oAc,r,,#oA~(~)=*~ 

= c Pr[6’(%[,)2s 
YcT\V,Y#0 

)Fr,=OAC,r,,#OA@(v)=*A*V(@E)=Y] 

xPr[*V(@E)=Y/Fre=OAC,r,,#OA@(l/)=*] (2) 

by simple conditional probability. 
We tackle the latter term in each of these products first. If we let e&Y) = * 

denote the event that every variable in E fl [Y12 is unset by @E, then elementary 

probability yields 

Pr[*V(@E) = Y IF&= oAcl~,,#oA@(v) = *I 

~Pr[@E(Y)=*~F~,=OAC,~,,fOA@(I/)=*]. 

Claim. 

Pr[pE(Y) = * 1 Fr, = 0 A cl r,, + 0 A@(v) = *I 

[p/(1 -P)l’yJ 
I 

min~q,~_q}lYl’lVi+(!-)’ 

To see this consider any Q which satisfies Q&Y) = * A Fr, =OA C1re,# 

CIA@(V)= *. By definition, the unset edge variables in C, must be from 
[Y U V12\ [V12. We define a new restriction p which is obtained from ,Q by setting 
the variables in [Y U V12\ [VI2 that are in E to 0 or 1 in the unique way that does 
not immediately force clause C, to 0. Q still forces F to 0 and still satisfies p(V) = *. 
Thus p satisfies the last three conditions in the probability in question but not the 
first. 

In changing Q to p, the set S of starred nodes in the definition of Rkq has had 
the nodes in Y removed from it making Q more likely than Q by a probability factor 
of [(l -p)/p]l’l. However, in the other aspect of the change to p, some variables 
in [Y U VI2 \ [ VI2 have had their values forced to 0 or 1. For each variable, the pro- 
bability that it is set as required is at least min{q, l-q}. There are at most 
j Y 1 . 1 V) + (‘;I) of them and their probabilities are independent so this requirement 
decreases the likelihood of @ by a factor of 

min{q, 1 -q}lyl~l~l+( 5’). 

Thus 

We1 -< [P/Cl -PP 
Pr[Q] - min{q, 1 -q}lYI~lVI+(‘~‘)’ 



12 P. Beame 

Finally, we see that the operation which takes Q to p is uniquely invertible given Y; 

namely, take all variables in E which have both endpoints in Y U I/ and make them 

unset. The conditional probability we wish to estimate is by definition the quotient 

of the probability that a restriction satisfies all four conditions divided by the prob- 

ability that it satisfies the last three. Thus the probability in question is at most the 

above bound on the probability ratio of Q and p and the claim follows. 

Now we look at the first term in each product in (2). The condition that C,[c,# 

0 A *V(~E) = Y A @(I’) = * exactly specifies eE = & since it means that every vari- 

able in E \ [V U Y]’ is set to 0 or 1 in the way which does not force the value of C, 

to 0 and that every variable in [V U Y12 is set to *. We let F’ be FV G where Gr, = 0 

if and only if Q sets the variables in E \ [V U Y12 in the unique way that does not 

force clause Ct to 0. Thus 

Pr[6V(~re)LsIFr,=OAC1r,,#OA*V(@E)=YA@(v)=*] 

= Pr[6”(gr,)Zsl F’re = OA*v(@E) = YA&v) = *]. 

Now, the condition *‘(Q~) = Y means that the variables in [Y12 are unset by Q and 

that the variables in E \ [Y U VI2 are all set by Q. The latter part of this condition 

is implied by the condition F r, = 0. Thus we do not change the events by rewriting 

the probability as 

Pr[6V(~rr,>rs/F’r,=OA@(vUY)= *]. 

If IY 1 ss, then, by Lemma 2.1, 

Pr[6V(~rr,)rs)F'r,=or\e(vur)=*] 

I Pr[~oEPToj{[Y U v]~\]vI~), 6vur((9rr,)rQ)~S- IYI 

IF’r,=OA@(VUY)= *] 

5 c Pr[6 
oEPrOJ’{[Y u vl*\w) 

Vur((9ro)re)= IYI 

IF’r,=OA@(VUY)=*]. (3) 

Because of the fact that o sets all input variables in [Y U VI’\ [V12, E does not 
contain any variables in [V12, and since F’ r, = 0 we know that oe sets all the input 

variables in E and thus forces the value of Cr. If C, rcQ= 1, then all inputs in 

((g [&,> are equivalent and thus 6 vuy((~r~)rQ)=O~~- 1YI. Otherwise C,r,,=o 

and then ((~~r,)~Q)=((~~,)~Q) since Zyr,Q8=F,r,,r. Thus the sum in (3) is 

equivalent to 

c Pr[6 
(i~Proj{[VUY]*\[W} 

vuy((~r~)rQ)=- IY I 

IF’r,=OA@(IUY)= *I. 

Because @To has strictly fewer clauses than 9, has no inputs in [V U Y12, and since 

s-IYI+II/uYI=s+lvI_ <w we can apply the inductive hypothesis to bound the 
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probabilities in each term in this sum by p”- 1” For each Y the number of terms . 

in the above sum is at most 

IProj{[VU Y]2\[1/]2}1 =21yl.lvl+(‘:‘) 

so we obtain a total bound of 

2lYl+l+(:)p~+A. 

If 1 Y 1 >s, then we simply make the pessimistic assumption of failure, i.e., that 

the degree of the resulting partition is too large. Since /3< 1 and s - 1 Y / < 0 we cer- 

tainly have 1 <psPry’. Thus 

Pr[6V(~rr,>Is/Fr,=o~c,r,,+o~*V(eE)= YA@(V) = *I 

is at most 

Finally, substituting these bounds in (2) we obtain a total failure probability of 

at most 

c [P/(1 -PIP 
YcT\V,Y+O min{q, 1 -q}lyl~l~/+(‘~‘) 

2lyl~i~l+(: ,pM, 

I c I( 2 l~l+lyl~2 

YLT,Y#O min{q, I- 4) > 
p/(1 _p) 1 “‘/jw 

c K 
2 w+rr/2 

I 
YLT,Y#O min (4,1- 4) > 

p/(1 _p) 

I 

IY’/Js- IYI 

=$ (‘I’)[ 
(2/min{q, 1 - q})W+r’2P i 

PU -P) I 

= P[(P-‘(Umin{q, 1 - q})W+“2p/(1 -p)+ l)lTl - 11 

5 Ps[(PP1(2/min(q, 1 -q})w+“2p/(l -p)+ l)‘- 11 

= P” 

using the definition of /I. Thus the lemma holds for $J and by induction we have 

proved the lemma. 0 

The following composition lemma is essential in allowing us to use Lemmas 3.2 

and 3.3 in tandem. 

Lemma 3.5. Let LC_{l,..., n} and O~p,,p~,q~l. Choose o at random from 
Ri,,4, then choose ‘5 at random from Rk14 where L, is the set of nodes in L that 
are unset by o. The distribution of or is exactly the same as the distribution of a 
n chosen at random from RkIPz,4. 
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Proof. In the case of either distribution, once it is decided to set an edge variable, 

its probability of being set to 0 is 1 -q and to 1 is q, independent of all other edge 

variables. Thus, we merely have to show that the distributions of the sets of nodes 

which are chosen to be unset by (TT and by 71 are identical. It is easy to see that for 

each node in L, for either distribution, the probability that it is chosen to be unset 

is p1p2 independent of all the other nodes. The lemma follows. Cl 

Proof of Theorem 3.1. Let Lo be the set of all nodes, { 1, . . . . n}. The basic method 

of the proof will be to choose random restrictions from R$y for appropriate 

choices of q and p’ so that after t steps the node-degrees of the’processor and cell 

partitions will be too small to have computed Clique;. In order to do this we will 

in fact keep q fixed and let p’ decrease as p’ for appropriately chosen p. This will 

amount to revealing a random graph with edge probability q step by step with the 

portion of the graph still unknown being all edges on a set of p’n nodes after 

time 1. 

Part (a). Recall that we wish to show that to compute Clique,” in time T= T(n) 
the number of processors p(n) L n k’(89T2) independent of the number of memory 

cells. 

Claim. Let a = log,p(n) = logp(n)Aog n, let s = 1/2ak/ll, let p = ne4m, and let 
q = n-*/k. For t20 and a random n, chosen from Rz4, with probability at least 
1 -t/n, 

maxS,(P(M,i,t)r,,)~s, 
i 

max6,(C(M,j,t)r,,)Is. .i 
First we see how this claim implies the desired result. Observe that if a2 jk or 

TL log n, then we are done. Otherwise, assume that k< npT. Consider a random 

nr chosen from RiF,q. By Lemma 3.2, with probability at least a, Cliqueir,, has 

node-degree at least Sk. However, by the claim, with probability at least 1 - (log n)/n 

~,(C(M, 1, T)r&s< 3k. 

Because the two failure probabilities sum to strictly less than 1 we can choose 717. to 

be a restriction satisfying both these properties, contradicting the fact that M com- 

putes Clique$ in T steps. Therefore the assumption is false and pT< (k/n) 5 n-m 
for n sufficiently large. Thus Tflz l/l/% or ark/(89T2) which is as required 

for Part (a). 

We now show the claim by induction on t: 
Base case. At time 0 the processor partitions all consist of a single class with 

resulting degree of 0 and for each cell Cj, C(M,j, 0) is a partition which depends 

on at most one input bit, so 6,(C(M,j,0))~ 1~s for k sufficiently large. Thus no 

is good with probability 1 as required by the claim. 
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Induction step. Let t 2 0. Assume the claim holds for t. By Lemma 3.5, a random 

zl+r chosen from @!+I,~ has the same probability distribution as xte where n, is 

chosen at random from Rkf4 and then Q is chosen at random from RpL,‘4 where L, 

is the subset of nodes which are starred by rr,. Now by the induction hypothesis 

with probability at least 1 -t/n, n, satisfies 

4(P(M, i, t)rrr,)ls, 

We now assume that n, satisfies this condition and we will show that n,@ will keep 

the degrees of the processor and cell partitions small with probability at least 

1 - l/n. This will imply that ret+, is good with probability at least 1 - (t + 1)/n as 

required by the claim for t + 1. 

During the (t + l)-st step of the machine, each processor first reads some cell bas- 

ed on its current state and based on the value read it changes to a new state. Thus, 

for each i, the cell Cj which processor Pi reads depends only on the equivalence 

class in P(M,i, t) containing the input. Also, this equivalence class and the 

equivalence class in C(M,j, t) containing the input determines the new state of the 

processor. Therefore each equivalence class in P(M, i, t + 1) is an intersection of an 

equivalence class in P(A4, i, t) and one in C(M,j, t), for some j. Then 

4(p(M 6 t+ a,) 5 4mM 6 or,,) + my &(COf,j, t)rn,) 
Is+s = 2s. (a.1) 

Note that the actual number of cells has no effect on the degrees of the partitions 

resulting from reads and state transitions. 

We will show that the probability is very small that a Q chosen at random from 

RL’ p,4 fails to keep the node-degree 5s for a single processor or cell partition and 

then we will sum the probabilities over all appropriate processors and memory cells 

to get the desired result. There is a complication because we do not have an a priori 
bound on the number of memory cells for which Q has to keep 

&(C(M,j,t+ l)r,,,k=. This will not hurt us, because, by the inductive 

hypothesis, any memory cell Cj which is not written into on any input in (0, 1 >“m, 

already satisfies 6,(C(M, j, t + l)r,,) 5s. 

After ret is applied, all partitions have variables only from L,. Therefore by Lem- 

ma 3.3, if we choose a Q at random from Rk;q, for each memory cell Cj which is 

written into by some processor on an input in (O,l}“r,,, we have 

Pr[G,(C(M, j, t + I)[& 2.~1 I (6ps(2/q)*“)“. (a-2) 

For each processor Pi by (a. 1) we already have 6,(P(M, i, t + l)rzl) I 2s. Since 

P(M, i, t + l& depends only on the input variables in L,, again by Lemma 3.3 we 

have 

Pr[G,(P(M, i, t + l)r,,,) IS] 5 (6ps(2/q)2”)” 

as was the case for cell partitions. 

(a.3 
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Equation (a.1) implies that, for inputs in {O,l}“r,,, the classes in the new state 

partition of each processor have characteristic functions represented by DNF for- 

mulas with maximum clause length bounded by 2s. Since a DNF clause of length 

12s is satisfied by a fraction of at least l/22’ of the possible inputs, each class in 

the partition P(M, i, t+ l>r,, consists of a fraction of at least 1/22s of the possible 

inputs. This means that, for inputs in {O,l}‘rz,, each processor can only be in one 

of 22s states and therefore can write into at most 22s different cells. Therefore the 

total number of cells for which Q must work is at most 22”p(n). 

The argument above means that (a.2) must be applied in at most 22”p(n) places 

and (a.3) must be applied in p(n) places. Thus the total probability that either 

maxi 6,(P(M, i, t + 1) rrr,J L s or maxj 6,(C(M,j, t + 1) rz,J L s is bounded by 

(22s + l)p(n)(6ps(2/q)2”)“< 5Sp(n)(6ps(2/q)2”)” 

s 
<p(n)p n 

8&k+ 3s*/log n ,p~n~n-4s~n11s2/k 

=r?O@ -4a+2a=p(n)n-2a( l/n 

since p(n) 1 n. Thus the total failure probability is strictly less than l/n and the claim 

follows for t + 1. By induction the claim for Part (a) is proved. 

Part (b). Recall that we wish to show that to compute Clique; in time T=T(n) 
the number of memory cells c(n)2 nk’(43T2) independent of the number of pro- 

cessors. 

Claim. Let a = log,c(n) = log c(n)/log n, let s= (a2k)1’3, let p = n-(7’2)(a’k)“3, and let 
q = n-8’k. For OIts $&k/a)1’3 - 2 and a random rcCt chosen from Rkfg, with prob- 
ability at least 1 - t/n, 

max 6,(P(M, i, t)m,) sst, 
i 

max h(wf,.L t)r,l)5s. 
.i 

First we see how this claim implies the desired result. Observe that if al +k or 

Tr $(k/a)1’3 -2, then we are done. Otherwise, assume that k5 np’. Consider a ran- 

dom zr chosen from Rjjv4. By Lemma 3.2, with probability at least 4, Cliqueir,, 
has node-degree at least +k. However, by the claim, with probability at least 

1 - (log n)/n 

~,(C(M, 1, T)r&s< +k. 

Because the two failure probabilities sum to strictly less than 1 we can choose zr 

to be a restriction satisfying both these properties, contradicting the fact that A4 

computes Clique; in T steps. Therefore the assumption is false and pr5 (k/n)I 
n-(343/344)“” for n sufficiently large. Thus $T(a/k)1’3z(343/344)1’3 and so 
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343T3a/8kz 343/344 from which we obtain a2 k/(43T’) which is equivalent to the 

statement for Part (b). 

We now show the claim by induction on t: 
Base case. The base case follows for similar reasons to those in Part (a) except 

that we must note that in fact the initial processor partitions have degree 0 which 

is now strictly necessary. 

Induction step. Let 0 I t 5 $(a/k)1’3 - 3. Assume the claim holds for t. By Lem- 

ma 3.5, a random ret+, chosen from R$I,, has the same probability distribution 

as n,~ where n, is chosen at random from Rgq and then Q is chosen at random 

from Rj;9 where L, is the subset of nodes which are starred by z,. Now by the in- 

duction hypothesis with probability at least 1 -t/n, rt satisfies 

We now assume that ret satisfies this condition and we will show that rc,~ will keep 

the degrees of the processor and cell partitions small with probability at least 

1 - l/n. This will imply that rct+r is good with probability at least 1 - (t + 1)/n as 

required by the claim for t + 1. 

By the same reasoning as that leading to equation (a. 1) it is clear that the new pro- 

cessor partitions resulting from reads and state transitions satisfy: 

a,(P(M, 6 t+ l)r,,) 5 Wwf,i, t)rir,)+max4(c0f,j, t)r,,) 
j 

sst+s=s(t+l). (b.1) 

Thus, even before Q is applied, the processor partitions satisfy the conditions re- 

quired. 

For each memory cell Cj, since the new processor partitions have degree at most 

s(t + 1) by (b. 1) and since the old cell partitions have degree at most s, using the same 

reasoning as Part (a), we have 

Pr[G,(C(M,j, t + q-,,,I L S] < [3ps(t + 1)(2/q)s+s(r+ 1)/2~s 

= [3ps(t + l)(2/q)s(‘+3)‘2]s 

< [P2 
s(t+3) 

4 
-s(/+3)/2 s 1 5 [P2 

s(t + 3)n4s(t + 3)/k 1 s 

5 [Pn 
4s(t + 3)/k + s(t + 3)hg n 1 5 

5 bn 5S(! + 3)/k 1 s since k I log n 

_ n-(7s/2)(a/k)“‘n5s2(r+ 3)/k 
(b.2) 

Because t + 3 I $(k/a)1’3, 5s2(t + 3)/k< $a and since s(a/k)1’3 = a the probability 
in (b.2) is at most n -2a = l/~(n)~~ l/(nc(n)) since c(n) in. There are c(n) cells, so 

the total probability that maxjS,(C(M,j, t+ l)r,,,>LS is at most l/n. Thus the 
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total failure probability is strictly less than 1 /n and the claim follows for t + 1. By 

induction the claim for Part (b) is proved. 0 

Corollary 3.6. If M is a CRCW PRAM which computes the Clique; function for 
kl log n in time T= T(n), then 

(a) if the number of processors p(n) = no(‘), then T(n)> Q(l/k) even if the 
number of memory cells is infinite, and 

(b) ij” the number of memory cells c(n) =n’(‘), then T(n)zQ(k”3) even if the 
number of processors is infinite. 

Proof. From Theorem 3.1(a), for n sufficiently large we have p(n)znk’@9rZ). 
Since p(n) = no(l) there is a constant cl such that cl 2 k/(89T2) and so Tz J/‘-S fi 
as required for part (a). 

From Theorem 3.1(b), for n sufficiently large we have c(n)? nk’(43T’). Since 

c(n) = no(‘) there is a constant c2 such that c2 2 k/(43T3) and so T> (~~/43)“~. k”3 
as required for part (b). 0 

There is an obvious constant-time algorithm to compute Clique; using neck) pro- 

cessors and memory cells to check for each of the no@) cliques on k nodes. The 

following corollary shows that this algorithm achieves an asymptotically optimal ex- 

ponent . 

Corollary 3.7. Any CRCW PRAM which computes the Clique: for kllog n in 
constant time O(1) requires both the number of processors and the number of 
memory cells to be nick’. 

Proof. Substitute T= O(1) into Theorem 3.1(a) and (b). 0 

Using a standard simulation of unbounded fan-in circuits by CRCW PRAM’s we 

obtain lower bounds for unbounded fan-in circuits as well. 

Corollary 3.8. Any unbounded fan-in circuit of depth d computing the Clique; 
function of n inputs where kllog n and n is sufficiently large requires size 

nk/(89dz) 

In particular, unbounded fan-in circuits of constant depth require size neck) to 
compute Clique;. 

4. Lower bounds for other graph problems 

Amongst graph problems of the form “is graph G a subgraph of the input 
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graph?” which includes the Clique; function described in Section 3, it appears 

that, under certain conditions, similar lower bounds will follow using Lemma 3.3. 

The conditions seem to be based on the concept of the probability threshold of a 

graph property as described in [8,9]. If we consider a random n-node graph with 

fixed edge probability, the probability threshold of a graph property is the value of 

the probability q’ around which the property changes from being almost certainly 

not true of the random graph to being almost certainly true of the graph. 

The lemma that one would need corresponding to Lemma 3.2 would seem to re- 

quire that q’ be an upper bound on the value of the probability q to be used in the 

restrictions from Ri, 4. In order to be useful, Lemmas 3.3 and 3.4 depend on q not 

being too close to 0. Many interesting graph properties have thresholds which are 

too small for these lemmas to say anything interesting, but Erdiis and Renyi have 

shown a number of other problems which have probability thresholds in the range 

for which the methods of the previous section should work. In particular, these in- 

clude the subgraph problems mentioned above, where the graph G is any “balanc- 

ed” connected graph on k nodes and I edges; see [9] for more details. 

By reductions from the parity problem, lower bounds can be proved for many of 

the subgraph properties which have probability thresholds that are too small for the 

techniques above. However, a problem for which neither technique works is the 

problem of the existence of a path of length log n in a graph. Ajtai [2] has shown 

a nonpolynomial lower bound for constant-depth circuits solving this problem but 

the bound is a very weak one, for polynomial-size circuits it can produce no better 

than an Q(log*n) depth lower bound. It would be interesting to obtain a significantly 

better lower bound for this problem. 
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