Optimal Bounds for Decision Problems
on the CRCW PRAM

PAUL BEAME

University of Washington, Seattle, Washington
AND

JOHAN HASTAD

Royal Institute of Technology, Stockholm, Sweden

Abstract. Optimal Q(logn/log logn) lower bounds on the time for CRCW PRAMs with polynomially
bounded numbers of processors or memory cells to compute parity and a number of related problems
are proven. A strict time hierarchy of explicit Boolean functions of # bits on such machines that holds
up to O(logn/loglogn) time is also exhibited. That is, for every time bound 7 within this range a
function is exhibited that can be easily computed using polynomial resources in time T but requires
more than polynomial resources to be computed in time 7 — 1. Finally, it is shown that almost all
Boolean functions of » bits require logn — loglogn + Q(1) time when the number of processors is at
most polynomial in #. The bounds do not place restrictions on the uniformity of the algorithms nor on
the instruction sets of the machines.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices): Modes of Computation—
parallelism; F.1.3 [Computation by Abstract Devices]: Complexity Classes—complexity hierarchies,
relations among complexity measures; F.2.3 [Analysis of Algorithms and Problem Complexity]: Trade-
offs among complexity classes

General Terms: Theory, Verification

Additional Key Words and Phrases: Concurrent-write, lower bounds, parallel random-access machines,
parity, sorting

1. Introduction

One of the most widely used models of parallel computation is the parallel random
access machine (PRAM). In this model any processor can access any memory
location at a given time-step. The most powerful form of the PRAM, the CRCW
PRAM, in which both concurrent read and concurrent write accesses are allowed,
has received particular attention both from designers of algorithms and from those

The work of P. Beame was supported by a University of Toronto Open Fellowship and by National
Science Foundation grant PYI-25800. The work of J. Hastad was supported by an IBM Postdoctoral
Fellowship and supported in part by NSF grant DCR MCS-85-09905.

This research was done while P. Beame was at the University of Toronto and while both authors were
at the Massachusetts Institute of Technology.

Authors’ present addresses: P. Beame, Computer Science Department, FR-35, University of Washington,
Seattle, Washington 98195; J. Hastad, Royal Institute of Technology, Stockholm, S-100-44, Sweden.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1989 ACM 0004-5411/89/0700-0643 01.50

Journal of the Association for Computing Machinery, Vol. 36, No. 3, July 1989, pp. 643-670.

644 P. BEAME AND J. HASTAD

studying the Iimitaiions of parallel machine compuiation. Despite the significant
interest, the only nontrivial lower bounds for decision problems on CRCW PRAMs
that do not have drastic restrictions placed on either their processor and memory
resources or on the instruction sets of their processors are due independently to
Beame [3] and to Li and Yesha [13]. The lower bounds are for parity and related

prnblpmc and are far from o nnhmql In both of these bounds no restriction is nlanpd

11115 Gl jér-3

on the instruction set of the processors, no limitation is placed on how much
information a single memory location may store, and the resources allowed are
only polynomially bounded. We cali a machine with these properties an abstract
or ideal PRAM.

In this very general setting we prove the first optimal bound for any non-
trivial decision problem on the CRCW PRAM by showing a time lower bound of
Q(logn/loglogn) for parity that matches the known upper bound. This lower
bound holds even in the cases when only one of the two resources, processors or
memory cells, is bounded by a polynomial in the input size. Because parity
constant-depth reduces to a large number of problems, this Q(log n/loglog n)-time
lower bound for the CRCW PRAM applies to a wide variety of interesting functions
that include sorting or adding » bits, as well as multiplying two #-bit integers.

Also, by looking at the so-called “Sipser” functions, which are defined by
circuits, we obtain a very sharp time hierarchy for CRCW PRAMs of polynomlal-
bounded resources. That is, for every time bound 7'(rn) at most log #/(3 loglogn) —
O(logn/(loglog n)*> we exhibit a family of functions which is computable in time
bound T with n processors and memory cells, but which cannot be computed just
one step faster by any machine with a polynomial bound on the number of
processors even with no bound on the number of memory cells. A similar separation
holds for machines with a polynomial bound on the number of memory cells even

withaonut a hound on the numhber of nracessars
WiuiOul a4 cOunaG on Ui NUmodcty O1 proCoSsS0Ts.

The proofs of both these results follow lines similar to the proofs in [2] and [3]
and involve new lemmas that generalize the key lemmas used in Hastad’s un-
bounded fan-in circuit lower bounds [10] and [11].

We also prove a tight O(logn) lower bound on the time to compute almost
all n-bit Boolean functions on CRCW PRAMSs with polynomial numbers of
Processors.

A preliminary version of these results appeared in [5]. Many of these results also

Favin o mmart ~ftha Geot anthavr’eo Dh T dicgartats on ral
1ULIlL a4 palt ul lllC 1St AUtNnoI's ./, Qisseriauon =1

Tictnsis 8ty Donbl on.
L HL)[UI_}/ Uj trie r'rooiem

Much of the lower bound work for CRCW PRAMs has been based on their close
relationship to unbounded fan-in circuits. These were defined by Furst et al. [9]
largely as a tool for trying to get an oracle to separate the polynomial-time hierarchy
from PSPACE. Stockmeyer and Vishkin [15] showed that simple CRCW PRAMs
can simulate unbounded fan-in circuits with essemially the same number of
processors as the circuit size and the same time as the circuit depth. In fact, by
restricting the instruction set of the CRCW PRAM to a limited set that includes
addition, comparison, indirect addressing and a few related instructions, Stock-
meyer and Vishkin also showed that unbounded fan-in circuits can easily simulate
restricted CRCW PRAMSs. The size of the resulting circuit is polynomial in the
number of processors multiplied by the time and its depth is only a constant factor
larger than the time. Using the latter result and a Q(log*n) lower bound of Furst et

Al LS

ai. [7_] on e ut:pm 01 pOlyHOIIlldl size unbounded fan-in circuits compuung pany,

Optimal Bounds for Decision Problems on the CRCW PRAM 645

Stockmeyer and Vishkin [15] obtained lower bounds for this restricted form
of CRCW PRAM.

Because disjunctive normal-form formulas are unbounded fan-in circuits of
depth two it follows that all Boolean functions may be computed in two steps using
exponential resources on the CRCW PRAM. However, it is not reasonable to be

rrgiing avineittamdialle enay meAaAso Ao o A s asaa ne anlla Wit taalunmamainl cacatien

umug CApUllclllldlly llldlly PLULCHOULD allud lllClllUly’ COILD. VV itn punyuuuual 1cauu1\,e
bounds, CRCW PRAMSs can compute any function with formula size " in time
O(log n/loglog n), using an algorithm based on an upper bound of size n%" and
depth O(log n/loglog n) for unbounded fan-in circuits given by Chandra et al. [7].

Since Stockmeyer and Vishkin’s paper, the lower bounds for unbounded fan-in
circuits have been significantly improved. Ajtai, extending [1], and L. Babai (private
communication) derived Q(vlog n) depth lower bounds for polynomial size circuits
computing parity. Yao [16] markedly improved these results by showing truly
exponential size lower bounds for circuits of constant depth but this improvement
did not increase the depth lower bound beyond Q(+vlog#n). Finally, Hastad [10]
using some techniques similar to those used by Yao, obtained an Q(log n/loglog »)
depth lower bound for polynomial-size circuits computing parity, which matches
the bound from the algorithm of Chandra et al. However, the CRCW PRAM lower

bounds that Fn"nur usine Stvv“mﬁyﬂr and V‘Shkln S c1mn]anon are ch" not entﬂ'elv

satisfactory since the bounds rely in an essential way on the specific restriction that
is placed on the instruction set. Some operations that are prohibited in this model
seem to be perfectly reasonable ones.

Abstract CRCW PRAMSs can be shown to be much more powerful than these
restricted machines; because of their equivalence with unbounded fan-in circuits,
restricted CRCW PRAMSs with polynomially many processors require exponential
time to compute almost all Boolean functions whereas an abstract PRAM only
takes O(logn) time without even using its power of concurrent reads or writes.
Nevertheless, for certain specific functions we shall see that, by using direct
techniques, lower bounds as strong as those derived for these restricted CRCW
machines can be obtained for the most powerful model of CRCW PRAM.

By applying and modifying the techniques of {9], Beame [2] derived the first
nontrivial lower bound that applies to the CRCW PRAM model described here.
He showed that any CRCW PRAM computing the parity function with n°"
memory cells and an unbounded number of processors requires time Q(+/loglogn).
Later, using the main lemma in [10], Beame [3] obtained ihe foliowing: any CRCW
PRAM thatﬂc&mputes the parity function with n°" processors (in fact with as
many as 1’ %" processors for some § > 0) and unbounded memory requires time
Q(vlog n). With the same techniques, an Q(vlog 1) lower bound is easily shown for
common-write CRCW PRAMs (for definitions, see Section 3) that have no bound
on the number of processors but have a bound of O(n 2‘S Og"\ on the num-
ber of cells for some § > 0.

It was shown by B. Chor (private communication) and Li and Yesha [13] that a
simuiation of abstract CRCW PRAMs by unbounded fan-in circuits can be
combined directly with Hastad’s circuit lower bound to obtain the Q(vlog n) lower
bound. However, this simulation does not yield the above lower bound for the
common-write model with an unbounded number of processors. The simulation
states that any CRCW PRAM solving a decision problem on » Boolean inputs

using n(n\ nrocessors and T(n\ time can be simulated hv an unbounded fan-in

Siilg PR OULESSULNS il Laiz U0 siiiiuaaiva Qi BLUVWIIOOU QT

circuit of size p(n)? """ and depth O(T(n)).
Beame [3] and Li and Yesha [13] have also independently shown optimal bounds
on the time needed by CRCW PRAMSs to compute functions whose many-bit

646 P. BEAME AND J. HASTAD

output i1s required to appear in a singie memory cell. However, as was noted in
[3], such an output requirement is somewhat artificial and the lower bounds
disappear if each bit of the output is allowed to appear in a separate memory cell.

3. Definitions and Preliminaries

Definition. A CRCW PRAM is a shared memory machine with processors
Py, ..., Py, which communicate through memory cells C,, ..., C.,,. The
values of the input variables x,, ..., X, are initially stored in the first n cells of
memory C,, ..., C,, respectively. Initially all cells other than the input cells
contain the value 0. The output of the machine is the value in the cell C, at
termination.

Before each step ¢, processor P; is in state ¢;. At time step ¢, depending on ¢/,
processor P; reads some cell C; of shared memory, then, depending on the contents,
(C)), and ¢/, assumes a new state ¢'*' and depending on this state, writes a value

v = v(¢'*") into some cell.

When several nrocessors are attemntine to write into a sinele cell at the same
wnen several proCessoers are atiempung 1o 1€ INT{C a Singie Ceil at ing same

time step the one that succeeds will be the lowest numbered processor. (A CRCW
PRAM is defined to be a common-write machine if, whenever several processors
are attempting to write into the same cell at a given time step, they all try to write
the same value.)

The CRCW PRAM defined above has been called the PRIORITY CRCW
PRAM and is the most powerful version of CRCW PRAM normally considered.
Thus lower bounds for this model will apply to any standard model of CRCW
PRAM.

In studying the progress of CRCW PRAM computations, what is important is
the set of inputs which lead to a given value in a memory cell or a given state of a
processor at a particular time step. The computation then may be viewed as
operating not on actual values so much as on the partitions associated with them.

Definition. Let M be a CRCW PRAM. For any processor P; the processor
partition, P(M, i, t), of the input set at time step ¢ is defined so that two inputs are
in the same equivalence class of P(M, i, t} if and only if they lead to the same state
of processor P; at the end of time step ¢.

For any cell C; the cell partmon C(M J» 1), of the mput set at time ¢ is defined
so that two lllpulb are in the same cqulvalcuuc class of L,UVI,J, L} if and or}y ifthf‘:‘y'

lead to the same contents of cell C; at the end of time step .

At time) the cpll r\arhhr\nc for the first n» memory cells have exactly two
Al ume U, 1n€ ceu parutions ior (n¢ urst 27 memory C€us nave €x two

equivalence classes, one consisting of those inputs for which the value of the
variable in the cell is 0, the other consisting of those inputs for which the value of
that variable is 1. Initially all other processor and cell partitions have only one
equivalence class consisting of all the inputs.

We now look at a measure of the complexity of partitions that was used in [2]
and [3] to prove lower bounds for CRCW PRAMs.

Definition. Let fbe a Boolean function defined on a set 7 C {0, 1}”. A Boolean
formula F represents fon I if the inputs x € [satisfy F exactly when f(x) = 1. Let

the maximum clause length of a DNF formula F be the maximum number of
literals in any clauge of F. The (Rnn/pnn\ n’po,rpp of fnn I. 8(). i1s the smallest

maximum clause length of all dlSJunCUVC normal form (DNF) formulas represent-
ing fon I. We extend this definition to sets of functions % by letting 6(%) =
maxse. ~ 6().

Optimal Bounds for Decision Problems on the CRCW PRAM 647

The terminology of degree is derived from the standard way of writing a formula
with the Boolean V as addition and the Boolean A as multiplication and then
viewing the resulting formula as a polynomial. This should not be confused with
the degree of a polynomial in the finite field of two elements where the exclusive-
OR rather than the V is the appropriate additive operation.

In the notation of many lower bound proofs for monotone formulas, we could
define the prime implicants and prime clauses of a Boolean function f. (Prime
clauses are essentially prime implicants of f.) These have been described as
minterms and maxterms, respectively, in the notation used by Yao [16] or Hastad
[10]. Observe that the degree of a function and the length of its longest minterm
or maxterm may differ because its longest minterm may be longer than the longest
clause in an optimal DNF formula representing it. Consider the function fdefined
by the DNF formula x, x>x; + X, x;xs. It has a minterm x,x3Xx4Xs, which is larger
than &(f).

Definition. Let A be a partition of a set I € {0, 1}". Define the degree of A,
6(A), to be 6(F;) on I where %, is the set of characteristic functions of the
equivalence classes of 4 in /.

The major proof technique of the lower bounds for parity on unbounded fan-in
circuits is the use of restrictions to set some of the input bits. Using restrictions
permits a simplified description of the results of computations but does not
drastically reduce the difficulty of the function being computed. The main idea
behind using them is that, although apparently complex operations like the OR of
n bits are computed in one step, by setting relatively few inputs to 0 or 1 the results
of these operations are simple. In the case of the OR of # bits, setting a single input
to 1 makes it trivial.

Definition. A restriction = on K € {1, ..., n} is a function =: K — {0, 1, =}
where:
1 means Xx; is set to 1,
w(i) =40 means X; is set to 0,
* means Xx; is unset.

We define the results of applying a restriction = to a partition, Al ., a function, /7.,
a Boolean formula, FT,, a circuit, CT,, as well as sets of these objects, €T, etc., in
the natural way. If ¢ and r are restrictions, then o7 is a restriction that is the result
of applying ¢ first and then applying 7. For any K C {1, ..., n} define Proj[K] to
be the set of restrictions that assign 0 or 1 exactly to the inputs in K.

Definition. If a circuit D is CI, for some restriction w, then we say that C
contains D and the gates of C that remain undetermined in D will be said to take
on the value = in C when = is applied.

In several places we need the following simple observation.

LemMMA 3.1. Let A be a partition of a set I C {0, 1}". Forevery KC {1, ..., n},
there exists a restriction ¢ € Proj[K1 such that 6(A) < | K| + 8(AT,).

ProOF. For each ¢ € Proj[K] let %, be a set of DNF formulas that represent
the characteristic functions of the equivalence classes in A, and that have
maximum clause length bounded by 6(4Tl,). To each clause of every formula
in %,, append the conjunctive clause C, which is true exactly on those inputs in
{0, 1} that agree with o, to obtain a set of formulas .%,. By construction, the

648 P. BEAME AND J. HASTAD

£~ PPN lanva smaasimaiima olasian langth khasindsd AF |l Mool
formulas in J(, nave maximum clausc lengin oounaca u_y U\/Ila/ + |n |. icarry

the set of inputs that satisfy any formula in %, is contained in a single equivalence
class of Al and therefore is contained in a single equivalence class of 4. Further-
more, every input in 7 satisfies some formula in .%, for an appropriate ¢ € Proj[K].
Thus each class in A is a union of sets of inputs that satisfy formulas in some %,
and so can be represented by a DNF formula with maximum clause length

dll catliteyd oliiidid AL IIlaAflilURIL LidUMC 5t

bounded by
max &6(Al,) + | K|.

a€ Proj[K]
The lemma follows by the definition of the degree of 4. O

The hard part in showing that restrictions simplify the results of CRCW PRAM
computations is naturally the very powerful concurrent write operation since the
read operation is simply the interaction of individual processors with single cells.
It will be useful to define an abstraction of this operation in order to be able to

decerihe canvenie the actinne of rectricti tha naw call nartitinng that
UbD\zllUb L«UllV\zlllUllLl_y Lll\z a\,uuuo Ul lbDLllbLlUllo Ull L1l LIVYY LA pcu LlLlUllD Lllat

result from the concurrent writes. It also will turn out that, in describing the effects
of restrictions on the processor partitions, we use a special case of this abstraction.

Definition. We say that an input x € {0, 1}" satisfies a Boolean function
F: {0, 1}7 = {0, 1} if F(x) = 1. We say that x falsifies F if F(x) =

Def nition. A graded set of Boolean functions is a set ¥ of Boolean functions
uch that each F € £ has an associated positive mfeoer arﬂrlp v(F) (or has grade

o) and no two functions of a given grade are 51mu1taneously satlsﬁable.

uc_/uuuuh For any graded set of Boolean functions, &, the partition determined
by &, (£), on {0, 1}” is the partition such that x, y € {0, 1}" are in the same

equivalence class if and only if:

(a) x and y both satisfy some function F € £, and x and y both falsify all F' € &
with y(F’) < y(F), or
(b) x and y both falsify all functions F € &,

I et us check that this is an equivalenc

WS VIIVUA QU LIRS a5 Qal Lyua Y

of the relation above are obvious. The tr: an51t1v1ty is a simple consequence of the
fact that the definition of a graded set of functions excludes the possibility that two
functions of a given grade are simultaneously satisfiable. For technical reasons the
following straightforward lemma is convenient.

LEMMA 3.2. Let & be a graded set of Boolean functions. If = is a restriction,
then (€)1, is the same partition as {(Z1.) on {0, 1}"T..

We note that in the obvious way the above definitions can be carried over easily
to Boolean formulas that represent the Boolean functions described. Observe that
if & represents £ on {0, 1j"T,, then {(F){, = (&)I,. Also, the notion of degree
applies to graded sets of Boolean functions since it is defined for sets of functions.
It is easy to see that a graded set of Boolean functions & can be represented on
{0, 1}"T, by a graded set of DNF formulas .%, each with maximum clause length
bounded by 6(£T,).

Optimal Bounds for Decision Problems on the CRCW PRAM 649

Definition. Let M be a CRCW PRAM. Define £(M, j, t) to be the graded set
of Boolean functions as follows:

(i) For each positive integer i, the functions of grade | in Z(

CALA PRSIV L2834 42 LUV AUAVUVS Vi plalal b S

charactenstlc functions of those equivalence classes in P(M, i,)
writes into cell C; during time step .

(ii) The functions of grade « in £ (M, j, t) are all the characteristic functions of the
equivalence classes in C(M, j, t — 1).

LemMmA 3.3. Let M be a CRCW PRAM. (£(M, j, t)) is a refinement of
C(M, j, t)on {0, 1}".

ProOOF. The way in which a partition is determined by a graded set of functions
imitates the priority write operation of the CRCW PRAM. Condition (b) in the
definition of the partition determined by a graded set of function cannot occur
here since every input satisfies the characteristic function of some equivalence class
in C(M, j, t — 1). Condition (a) in this definition corresponds to one of two cases.
Either the input causes processor P; to write and P; is guaranteed to succeed since
no lower-numbered processor attempts to write, or no processor writes and thus

the previous value in the cell remains (we view this as the cell writing its old value
back to lfQPlf\ Note that, if the processors always write everything they know along

CA U LTI AN G, Liiv P UNOSOUL S5 Qavy 1ILL LYLL Y UILLE LV)Y RUIUY arVlly

with their processor id when they write, the two cons1dered partitions are equal. O

7
J3

The general method we employ for showing lower bounds on CRCW PRAM
computations for decision problems is as follows. We show that after certain
restrictions (which set more inputs as time progresses) are applied to the inputs,
the processor and cell partitions have only small degree relative to the degree
required to solve the problems. In using restrictions to obtain our lower bounds,
we must maintain a balance between the amount of simplification that a restriction
achieves and the number of inputs it sets.

4. Tight Lower Bounds for Parity

THEOREM 4.1. If M is a CRCW PRAM that computes the parity function in
time T = T(n), then for sufficiently large n

(a) the total hardware h(n) = p(n) + c(n) must be at least 21"/>"'"™=21,

(b) the number of processors p(n) must be at least 21°9"""=2 even if the number
of memory cells is infinite, and

(¢) the number of memory cells c(n) must be at least 21120/ T'=21 oyop if the
number of processors is infinite.

For the proofs of each of the parts of this theorem we define restrictions , for
each step ¢ of the computation such that after step ¢ and after =, is applied, the cell
(and processor) partitions all have degree less than the number of unset variables.
The lower bound follows since setting variables of parity just leaves a smaller parity
function (or its negation) and any representation of parity in DNF has clauses that
depend on all the unset variables.

In order to prove the existence of restrictions that satisfy these properties we
need an appropriate probability space from which to choose restrictions. This
distribution was introduced by Furst et al. [9] and has been used in several
subsequent lower-bound proofs for unbounded fan-in circuits.

650 P. BEAME AND J. HASTAD

Definition. LetKC{l,...,n}. Define RS to be a probability space of restrictions
on K where, for a random p chosen from R,’,‘, independently for each i € K,

p(i) is = with probability p and p(i) is 0 or 1 with equal probability (1 — p)/2.

The outline above is now carried out by proving two lemmas. The first tells us
that many variables remain unset and the second tells us that the degrees of the
partitions do not increase.

LemMMma 4.1, Let LCH{L,...,nland 0 <p <1 such that p(1 — p)| L| is at least
my for some absolute constant mo. Choose p at random from R};. The probability
that p leaves at least p| L | inputs unset is greater than %

PrOOF. The number of unset inputs is given by the binomial distribution on
| L | with expected value p| L |. A version of the Demoivre-Laplace limit theorem,
Bollobas [6, Theorem 6(ii), page 13] implies that if p(1 — p)| L| grows with | L|
then, as | L| increases, the probability that at least p|L| + 1 inputs are
unset approaches 3. Thus for some finite value my, if p(1 — p)| L| is at least m,
this probability will certainly exceed 5. O

LEMMA 4.2. Let M be a CRCW PRAM just prior to a read or write operation,
all of whose processor and cell partitions have degree at most r = 1 with variables
SJrom {x;}ie;. Let A be either an existing processor or cell partition of M or a new
cell partition resulting from a concurrent write of M. Choose p at random from R}.
For s > 0 we have

Priés(Al,) = s] < (6pr)*.

Using Lemma 3.3 we obtain Lemma 4.2 from the following lemma, which is
the key generalization of the main lemma of Hastad [10], by noting that if 8
satisfies (87'x + 1)’ = 2 then 8 < xr/In 2 < 3xr/2,

LEMMA 4.3. Let & be a graded set of DNF formulas on inputs {x;}ic; with
maximum clause length bounded by r = | where L C {1, ..., n}. Let F be an
arbitrary function on {0, 1}". Let p be a random restriction chosen from R}. Then,
if (Z1,) is the partition determined by ZT,, for s = 0 we have

Pris(&rl,y) = st FI, = 0] = B,

. 2
<6(1 i 1) &

Proor. We first note that we only need to consider finite graded sets of formulas
(i.e., |] is finite). This follows since there are only a finite number of different
input strings and so only a finite number of ways in which some formula in & can
be satisfied and all smaller ones falsified. Also, it is trivial to see that the lemma
holds for s = 0 or 8= 1 so we can assume that s>0and 3 < I.

The rest of the proof proceeds by induction on the total number of clauses in
the formulas in & The intuitive idea is that as we work along the clauses one by
one: if p falsifies a particular clause, then we are left with essentially the same
problem as before; if p does not falsify the clause then, given the fact that it does
not, it is much more likely that p satisfies the clause (and thus ensures that the
remaining partition has only one class) than p leaves any input in the clause unset.

In this proof for readability we write § (£) instead of 6({Z£)).

where 8 > 0 satisfies

Optimal Bounds for Decision Problems on the CRCW PRAM 651

Base Case. There are no clauses in the formulas in & In this case the formulas
are all identically 0 and so all inputs are equivalent with respect to & Thus the
partition determined by £T, consists of a single class so 6 (£T,) = 0 and the lemma
holds for £

Induction Step. Assume that the lemma holds for all graded sets of formulas
2" with fewer clauses than the formula of £ Let F, be a formula in & that has
lowest grade among those formulas in & that are not identically 0; let C, be a
clause of F;. We can analyze the probability by considering separately the cases in
which p does or does not force clause C, to be 0. The failure probability, the
probability that 5 (&T,) = s, is an average of the failure probabilities in these two
cases. Thus

Pr[s(#T,) = s| FI, = 0] < max(Pr[5(2T,) = s| FI, =0 A G\, = 0],
Pr{s(Zl,) = s| F[, =0 A C;I, # 0]).

LR LA Y sS4 Jvile

The first term in the maximum is Pr{é(&[,) = s|(F vV C)I, = 0]. Let Fi be F,
with clause C, removed: thus F, = C, V F, and F, # F,. Let £ be the same as &
with formula F, replaced by F,. In this case C\l, = 0 so F,[, = F 7, and thus
(2T1,) = (£r,). In other words, when C \[, = 0, the lemma requires a bound on
Pr{6(£T,) = s|(F V C)I, = 0]. Since Z has one fewer clause than £ does, the
inductive hypothesis implies that this probability is at most 3°.

The estimation of the second term in the maximum is more difficult. Let 7C L
be the set of variables appearing in clause C,. By hypothesis | 7| < r. Let p be
the restriction of p to the variables in 7. The condition that C,l, # 0 is equivalent
to the condition that C\,, # 0. We analyze the cases based on the subset Y of the
variables in T to which p, assigns =; we use the notation =(pr) = Y to denote
the event that the variables in T which are assigned * by pr are exactly those in Y.
Then

Pr[o(&T,) =z s|FI, =0 A Cf,, # 0]
= ¥ Pr[s(Fl,)y=s A «(or)=Y|FI,=0A Cf,, #0]. (1)
YCT

Consider the case in which Y = ¢. Then p; sets every variable in T so the value
of C, is forced by p;. But since we already know that Cil,. # 0 we must have
Cil,, = 1. In this case every input satisfies F,l, and since F, has lowest grade we
know that all inputs are equivalent with respect to the (ZT,). It follows that
8(2T,) = 0 so the term corresponding to Y = ¢ has probability 0. The sum in (1)
then becomes

Pr[5(2T,) = s| FI, =0 A C/f,, # 0]
= Y P&l =5 A x(pr) = Y|FI,=0A Cf,, #0]

YCT,Y#¢

= S {Pr[6(&T,) = s|F[,=0ACf, #0A s(p7) = Y]
YCT.Y#¢
X Pr{#(pr) = Y|FI[, =0 A C/f, # 0]} (2)

by simple conditional probability.

We tackle the latter term in each of these products first. If we let p(Y) =
denote the event that every variable in Y is unset by p, then elementary probability
yields

Prl«(pr) = Y| FI, =0 A C{l,, # 0] < Pr[p;(Y) =« | FI, =0 AN CT,, #0].

652 P. BEAME AND J. HASTAD
Then following Hastad [10, Lemma 3, page 12}, we have

2p 1Yl
Pr[pr(Y)=*IFrp=0/\C1rpT?(-'O]S<1_+—p> .

Now we look at the first term in each product in (2). The condition that
Cil,, # 0 A =(pr) = Y exactly specifies pr (which is pl) since it means that every
variable in T\Y is set to 0 or 1 in the way that does not force the value of C, to 0
and that every variable in Y is set to . We let F” be F V G where GI, = 0 if and
only if p sets the variabies in 7'\Y in the unique way that does not force ciause C,
to 0. Thus

Pr[6(&T,) = s|FT, =0 A C/l,, # 0 A (pr) = Y]
=Pr[6(&T,) = s|F'I,=0A #(pr) = Y].
Now, the condition *(p7) = Y means that the variables in Y are unset by p and
that the variables in 7'\ Y are all set by p. The latter part of this condition is implied
by the condition F'l, = 0. Thus we do not change the events by rewriting the
probability as

Pr[s(&T,y = s| F'T,=0 A +(py) = Y],

where py is p restricted to the variables in Y. The condition *(py) = Y means that
every variable in Y is unset by p.
If | Y| = s, then, by Lemmas 3.1 and 3.2,

Pr{s(&l,y = s| F'T, =0 A (py) = Y]

< Pr{36 € Proj[Y], 8((&T),) =s— | Y| |F'T, =0 A x(py) = Y]

s Y P&y zs— Y| |F'T,=0A «(py) = Y]
c&ProjiYl

= Y Prs(ET)N,y=s—|Y||FT,=0A +(py) =7Y] (3)
a€ProjlY]

where p’ is the restriction of p to set L’ = L\Y. This last equality holds because p’
sets exactly the same inputs that p does.

Because the probabilities on L’ are independent of those on Y, the condition on
py does not affect the probabilities for p’ so it can be eliminated without changing
the probabilities in (3). Furthermore, because the probabilities on L’ for p chosen
at random from R are the same as those for a p’ chosen from R, the sum in (3)
1s equivalent to

T Prs(ET)L)=s— | Y IF'T, =0] 4)
a€Proj(Y]
where p’ is a restriction chosen at random from R/

Since ¢ sets all inputs in Y and F'T,. = 0 we know that gp’ sets all the inputs in
T and thus forces the value of C,. If C\l,,- = 1, then all inputs in ((£T,)[,) are
equivalent and thus o6{((&T)l,) = 0 = s - |Y[. Otherwise
Cil,,, = 0 and then ((ZT),) = (ETHI,.) since F\l,, = Fil,,. Thus the sum
in (4) is equivalent to

S Pr(ET), y=s—|Y]||F'T, =0].
cEProj[Y]
Because T, has strictly fewer clauses than £ and because it only has input variables
from L’ we can apply the inductive hypothesis to bound the probabilities in each

Optimal Bounds for Decision Problems on the CRCW PRAM 653

term in this sum by 8*7'¥!, For each Y the number of terms in the above sum is at
most [Proj[Y]| = 27! so we obtain a total bound of 27181,

If | Y| > s, then we simply make the pessimistic assumption of failure, that is,
that the degree of the resulting partition is too large. Since < lands— | Y| <0
we certainly have | < 21718171 Thus

Prl(ET,) = s|FT, =0 A Cfl,, #0 A +(p;) = Y]

is at most 2!V
Finally, substituting these bounds in (2) we obtain a total failure probability of

at most
yngm <1_2.f—p>m2“"ﬂs~m
37t
|tz)" -]
ﬁs[(ﬁ_(l%p_) + 1)r - 1]

— BJ

using the definition of 8. Thus the lemma holds for £ and by induction we have
proved the lemma. O

IA

PROOF OF THEOREM 4.1. Let m, leave every input unset. We define restrictions
i, T2, ... 50 that w,.; = m,p,4, and p,, is a restriction defined on K, where X, is
the set of inputs unset by =,.

Part (a). Recall that we wish to show that any CRC\(\:A PRAM computing parity
in T steps requires total hardware, A(n), at least 2((1/297""=2],

CLAaM. Let s = logdh(n). Fort = | we can choose =, so that
1
- =(—1)
| K| = 75 n(24s)™7%,
max 6(P(M, i, 1)l)= s,
max 8(C(M, j, D)I,) < s.
J

First we see how this claim implies the desired result. In order to compute parity
in 7 steps, the degree of the partition in the first cell must be equal to the number
of unset bits, that is, 6(C(M, 0, T),,) = | Kr|. Then the claim implies that s =
(1/12)n(24s5)~""" or equivalently (24s)” = 2n = n. Solving this for s and sub-
stituting s = log4h(n) yields 24 log4h(n) = n'/” or h(n) = 20/29n"'=2,

We now show the claim by induction on ¢:

Base Case. At time 0 the processor partitions all consist of a single class and
for each cell C;, C(M, j, 0) is a partition that depends on at most one input bit so
0(C(M, j, 0)) = 1. After the read in step 1, each processor P; reads one memory
cell so the new state of the processor depends only on one input bit and

654 P. BEAME AND J. HASTAD

o C(,"l) memorv cells. the

ILUCIVL Y LUiLS,

y exi
whose partmon has degree larger than s, after p phed 18 bound d a
c(n)/4h(n) < 7. Thus the probability that max; 6(C(M, J,» DI,) = s is at least %
Since s = 1 we already know that max, 6(P(M, i, 1)) < s even before =, is applied.
Also, by Lemma 4.1, for » sufficiently large, the number of variables in K, left
unset by p is at least the expected value of 7/12 with probability at least 5. Thus
the probability that p satisfies all these conditions is strictly positive and we can let
m, = p, be one of the restrictions for which all the conditions hold. The base case

FAllnusrn
1TULIIU WD,

Induction Step. Let t = 1. Assume the claim holds for ¢, We shall show that it

holds for ¢t + 1. During the (; + 1)st sten of the machine, each processor first reads

11UIGS 1V v ASuERAE v (e Y Jot Sl Ul UL IIIQUIIIIIT, Lauiz pPrullssUr 1iist itau

some cell based on its current state and based on the value read it changes to a
new state. Thus, for each i, the cell C; which processor P; reads depends only on
the equivalence class in P(M, I, t) containing the input. Also, this equivalence class
and the equivalence class in C(M, j, 1) containing the input determines the new
state of the processor. Therefore each equivalence class in P(M, i, t + 1) is an
intersection of an equivalence class in P(M, i, t) and one in C(M, j, t) for some J.
Then

S(PM, i, t + DI,) = 6(P(M, i,)I) + max 6(C(M, j,)I.)
J
<5+ 5=2s %)

We now must choose a restriction p,., that reduces this upper bound by half
and handles the new cell partitions resulting from the write phase of the (¢ + 1)st
step while not setting too many inputs. We show that such a p,+, exists by choosing
p at random from R} where g = 1/(24s) and proving that the probability that such
a p fails to have these properties is strictly less than 1.

Consider a particular memory cell C;. By Lemma 4.2, if we choose a p at random
from R} with g = 1/(24s), we have

Pr[s((C(M, j, t + D)) = 5] < (12gs)*
1

=2-% = ~-logdh(n) — .
4h(n)
Therefore we see that for a p chosen at random from R},
P[5(CM, j, t + 1 >]<c(”) ©6)
r max ((7.]’ t) W,l') - s 4}1{”\
L J J \
For each processor P; we already know that 6(P(M, i, ¢t + 1)) < 2s. Since
D/l‘ ¥ f L r Fatat=1 I‘I(‘ f\ﬂ]‘l NNt o I‘I‘\ﬂ“f(‘ kel V “\" T HSHMTNMAI A ’) e ayve
F \l L) L, L 1 l}l P d \J\/}I\/ 1D Ulll] AV RS eiw) IAI}IULO 11 l\’, v AAVILILIEL TT.& YYW LRAY
Pris((P(M, i, t + DI)I,) = 5] < (12gs)°
= 2—-x — 2-log4h(n) — l

4h(n)’

Optimal Bounds for Decision Problems on the CRCW PRAM 655

Takin h e max

cimum over all processors,

pn) _

Pr[max S(P(M, i, t + DI,,) = S])
Ui ! 1 4nin)

Therefore, putting (6) and (7) together, we see that with probability at least 2,
max; 8(P(M, i, t + 1)) = s and max; 6(C(M, j, t + 1)l ,) < s Since we only
apply this argument w1th |K,|g>s=logdnandsince | —g>= 2, by Lemma 4.1,
with probability at least 4, for sufficiently large », the number of variables in K, left
unset by p is at least the expected value of | K, |g = | K, | (245)™", which is at least
,'7 n(24s)' by the inductive hypothesis Thus the total failure probability is strictly
leb I.Ildl'l l dIlU we can let Pi+1 UC one Of the lﬁblllbllUIlb lUI WlllLIl dll lIlC u)muuons
hold and the claim follows for ¢ + 1. By induction the claim for part (a) is

proved. O

Part (b). We want to show that any CRCW PRAM Tcomputing parity in T steps
requires a number of processors, p(#), at least 21/99"""=21,

CLAIM. Let s = logdp(n). For t = 1, we can choose w, so that
1
- —(-1)
| K| = 48 n(96s)~""",

max 8(P(M, i, 1)l.,,) < s,

max 6(C(M, j, 1)
J
First, we see how this claim implies the desired result. As in part (a) in order to
compute parity in Tsteps it is necessary that 6(C(M, O, T).,) = | K7 |. Then the
claim implies that s = 3571(96s)~""") or equivalently (965)7 = 2n = n. Solving this
1
for s and substituting s = log 4p(n) yields p(n) = 2"/°%” =2,

We now show the claim by induction on ¢:

IYPa’3 Vs

Base Case. As in the base case in part (&) we have max; 6(C(M, j, §)) = 1 and
max; 6(P(M, i, 1)) = 1 = s so we only have to bound the degrees of the new cell
partitions. Also, letting g = 3, choosing p at random from R%°, and using a similar
argument to the base case in part (a), we have for each j,

nN_.resrYy /3 £ B ERYE N
Prio(C{M, j, 1)

N ey 1 e SN . Q—8 2e8—s __
P =] <(6g)=8"=2 =

p(n)

However, since each processor knows only one input bit, there are only two
different cells that each processor could possibly write into on any input. So, at
most 2p(n) cells could ever have been written into after one step. Thus the
probability that max; 6{{C{M, j, 1)I,) = 5 is very close to 1. Also, by Lemma 4.1,
for n sufficiently large, p leaves at least the expected #/48 inputs unset with
probability at least +. Thus the probability that p satisfies all the conditions is
strictly positive and we can let 7, = p, be one of the restrictions for which all the
conditions hold. The base case follows.

Induction Step. Let t = 1. Assume the claim holds for t. We shall show that it
holds for ¢ + 1. Since the actual number of cells has no effect on the degrees of the

656 P. BEAME AND J. HASTAD
partitions resulting from reads and state transitions, as in part (a):
o(PM, i, t + DI,) < 6(P(M, i,)I,) + max 6(C(M, j, 1))
<s+s5=2s j ®

Again we must find a restriction p,., that keeps the degrees of the processor and
cell partitions small but does not set too many bits. As in part (a), we show that
such a p,.., exists by choosing p at random from R’ for appropriate ¢ and
prove that the probability that such a p fails to have these properties is strictly
less than 1. The added complication is that we do not have an a priori bound on
the number of memory cells for which p has to keep 8(C(M, j, t + 1)) < s.
The reason why this does not hurt us is that, by the inductive hypothesis, any
memory cell C; that is not written into on any input in {0, 1}"l, already satisfies
H(CM, j,t+ D) <s.

For each memory cell C; that is written into by some processor on an input in
{0, 13T, , using the same reasoning as in part (a), we have

Pr[s(C(M, j, t + D)I,,) = s] < (12gs)". 9
Also as in part (a), for each processor P;,
Pr[6(P(M, i, t + D)I,,) = 5] < (12gs)". (10)

Equation (8) implies that, for inputs in {0, 1}",, the classes in the new state
partition of each processor have characteristic functions represented by DNF
formulas with maximum clause length bounded by 2s. Since a DNF clause of
length < 2s is satisfied by a fraction of at least 1/2* of the possible inputs, each
class in the partition P(M, i, t + 1)[,, consists of a fraction of at least 1/2* of the
possible inputs. This means that, for inputs in {0, 1}"T, , each processor can only
be in one of 2% states and therefore can write into at most 2% different cells.
Therefore the total number of cells for which p must work is at most 2%'p(n).

Let g = 1/(96s). The argument above means that (9) must be applied in at
most 2%'p(n) places and (10) must be applied in p(n) places. Thus the total
probability that either max; 6(P(M, i, t + 1)l ,) = sor max; 6(C(M, j, t + 1), ,)) =
s is bounded by

1 A
2% + Dp(n)(12g8)* = 2> + l)p(n)(§>
— (22.\' + 1)2—2.\p(n)2—.v
= (] + 2"3“')p(n)2—1034p(r1) = % (1 + 2—2,&‘).

Also by Lemma 4.1, using the same reasoning as in part (a), with probability at
least 1, for sufficiently large n, the number of variables in X, left unset by p is at
least the expected value of | K,|g = | K,|(965)", which is = 75n(96s)™' by the
inductive hypothesis. Thus the total failure probability is strictly less than 1 and
we can let p,., be one of the restrictions for which all the conditions hold and the
claim follows for ¢ + 1. By induction the claim for part (b) is proved. [

Part (c). We want to show that any CRCW PRAM com;l)lTxting parity in T steps
requires a number of memory cells, c(n), at least 21/120/70'7=2],

-
Optimal Bounds for Decision Problems on the CRCW PRAM 657
CLAIM. Let s = logdc(n). For t = | we can choose =, so that

(1/12)n(12s)~"Y

K| = t! ;

max 6(P(M, i, t)I;) = st,
max 6(C(M, j,)l ;) < s.
J

First we see how this claim implies the desired result. As before, in order to
compute parity in T steps, it is necessary that 6(C(M, 0, T)[.,) = | K|. Then the
claim implies that s = 13n(125)™7""/T! or equivalently (125)” = n/T!. Solving
this for s and substituting s = log4c(n) yields c(n) = 20/ 21712,

We now show the claim by induction on #:

Base Case. As in the base case in part (a), | Ko | = n and
8(P(M, i, 0)) =0,
HC(M, j, 0) = 1,
0(PIM, j, 1) =l <s,

Also, letting g = ﬁ, choosing p at random from Rff“, just as in the base case in
part (a), we have for each j,

1
4e(n)”

Pr3(C(M, j, DT,) = s] < (6g)* = 27 = 27w =

Since there are c(n) cells for which p must work the probability that
max; 6((C(M, j, DI,) < s is at least %. Also, applying Lemma 4.1, for sufficiently
large n, p leaves at least the expected number of #/12 inputs unset with probability
at least . Thus the probability that p satisfies all the conditions is strictly positive
and we can let 7, = p; be one of the restrictions for which all the conditions hold.
The base case follows.

Induction Step. Let { = 1. Assume the claim holds for z. We shall show that it
holds for ¢ + 1. By the same reasoning as that leading to eq. (5) it is clear that the
new processor partitions resulting from reads and state transitions satisfy:

o(P(M, i, t + DI,) = 8(P(M, i, 1)I,)) + max 6(C(M, j, 1))
J
=st+s=s(t+1). (11)

Thus, even before p,., is applied, the processor partitions satisfy the conditions
required.

Now we must find a restriction p,.; that keeps the degrees of the cell partitions
small but does not set too many bits. As before, we show that such a p,, exists by
choosing p at random from R} for appropriate ¢ and prove that the probability
that such a p fails to have these properties is strictly less than 1. This time we will
have to make g depend on ¢ since the bound on the degrees of the processor
partitions is dependent on ¢. In particular we let g = 1/(12s(z + 1)).

For each memory cell C,, since the new processor partitions have degree at most
s(¢ + 1) by (11) and since the old cell partitions have degree at most s, using the

658 P. BEAME AND J. HASTAD

1
1

4e(n)’

— 2—s — 2—log4((n) =

(12)
Since ulcrc are c(n) cells, the total probability that max; 6(C(M, j, ¢ +) .,) = s is
at most 3. Also, usmg Lemma 4.1 and the same reasoning as in part (a), with
probablhty at least 1, for sufficiently large n, the number of variables in K, left
unset by p is at least the expected value of | K;|qg = | K, |(12s(¢ + 1))™' which
is = $5n(12s)~'/(+ 1)! by the inductive hypothesis. Thus the total failure probability

is strictlv less than | and we can let o,.; be one of the restrictions for which all the

Suizliy 035> wiGil 1 G WO Ll 2L 4 U0 2 10 ITSLIALRI0IS 201 132020 Q1L I

conditions hold and the claim follows for ¢ + 1. By induction the claim for part (¢)
is proved. O

We can restate the resource trade-offs given in Theorem 4.1 in terms of the time
required by practically sized CRCW PRAMSs to compute the parity function:

COROLLARY 4.1. If M is a CRCW PRAM that computes the parity function in
time T = T(n), then

(@) if the number of processors p(n) = n°", then

logn _ _logn _n{ logn
O(1) + loglogn ~ loglogn ~ \(loglogn)*)’

even if the number of memory cells is infinite, and
(b) if the number of memory cells ¢(n) = n“, then

T = logn _ logn _0(logn .,
YT o) + 2loglogn 2loglogn \(loglogn)*)’

even if the number of processors is infinite.
PROOF:
(a) From Theorem 1 part (b) we have p(n) = 21/%""""=21 or equivalently,
(96logdp(n)”™ = n.

temnn sl) — 40(1) thnea 10 o Annctant A Q11
Since p iy = tiCre is a constant ¢; sudi

logn/(logc, + loglogn) as required. o
(b) From Theorem 1 part (c) we have c(n) = 21/ 7921 or equivalently,

ol 4}-”-.4 1o

{~ 22\
uiat \¢)1ug)

T = g

n
T
(12logdc(n))’ = — T

For T = logn/loglogn, TlogT < +logn. Thus T! < 277 < v/ and for
values of 7 in this range we have

(12log4c(n))” " = vn.

Substituting ¢(n) = n°" we see that there is a constant ¢ such that
(c2logn)™™ = vV so T(n) = +logn/(logc, + loglogn) and the corollary

follows. O

A close look at the algorithm given by Chandra et al. [7] for computing

functions with polynomlal formula size, shows that parity can be computed by

CRCW PRAMs with polynomially many pr

Optimal Bounds for Decision Problems on the CRCW PRAM 659

| PO i N PRpa | PR PR PO Ry n..¢ n Ansmnca Ao naa dlen i e

logn/loglogn — clog ll/ (loglog n) , where the constant ¢ depends on the exponent
in the polynomial bound on the number of processors and cells. The only difference
between our bound (a) and this one is that this constant ¢ is smaller relative to the
exponent of the polynomial that bounds the number of processors and cells than
is the constant in our lower bound.

Using the constant-depth reductions given by Chandra et al. [7] and Furst et al.
[9], these same tight lower bounds for parity can be obtained f'or a large number
of functions. We assume that the reader is familiar with the definitions of most of
these probiems; the terminology is from [7].

COROLLARY 4.2 [7 9] IfMisa CRC W PRAM computing any of the following

A P A1 Lald.
u(f(,l.)lUH IIIUUI(‘!IH.), Lllﬁ Uuunuo lH \/UIUULU)/ “4.1 noia.

THRESHOLD, MAJORITY, UNDIRECTED GRAPH CONNECTIVITY, UNDIRECTED

Cvcre DETeCTION IN GRAPHS. RIPARTITE MATCHING G, CircuUIT VALUE PROBLEM.

ALl A /R EULIUIN N ATRATNMS, LAar AN 0 IVAR 1 U NoIRU UL Y Anunl § RUD

The bounds in Corollary 4.1 also hold for computing all the bits of the following

Junction problems:

MULTIPLICATION, SORTING, BIT SORTING, MULTIPLE-ADDITION, BIT SuM,
NETWORK FLOW WITH UNARY CAPACITIES.

The MULTIPLE-ADDITION problem is just the integer addition problem discussed
in [3] and [13]. This corollary shows that when the output is permitted to be
represented as bits, the time complexity is ©(logn/loglogn) for machines with
polynomially bounded hardware. This complements the previous results Wthh

chawead that whan the autnit ic raanired tao he in a o nnla call hn tHime cam
WDLAINV YY WAL I,Alut YYLivii Liiw Uutyut 10 lv\.lull\/u W Uw il &« o1 lbl\a WAdly Ll oLkl VU

is O(log n) for such machines.

The functions listed in this corollary are by no means all the natural functions
to which our parity lower bound applies but merely a representative sample of the
variety of problems involved.

=

5. The Sipser Functions and a CRCW Time Hierarchy

In [14], Sipser defined a set of functions F} on m* inputs for k = 2 that are
described by alternating unbounded fan-in circuits of depth k and size O(m*). He
obtained a strict hierarchy of polynomial-size unbounded fan-in circuits by showing
that these functions required more than polynomial-size circuits of depth £ — 1.
Sipser’s function F}' was described by an alternating tree of depth k of A and V
gates with an A at the root, with fan-in m at every level and with distinct inputs
at every leaf. We 1‘1‘10uuy it somewhat Uy‘ ucumugj k to be a function uavmg fan-
in a; = TV3mklog m1 from the leaves, and fan-in m everywhere else. The resulting
function has n=m*'[vImklogml < m*~'">Jklog m inputs in total. Note that we
even have an f7' that is merely anAofa =TVL +mlog m1 distinct variables. /' can
be easily computed in k steps by a CRCW PRAM with » processors and memory

cells that simulates its def'mnc circuit,

THEOREM 5.1. If M is a CRCW PRAM that computes the function [of

n lnnut(‘ In lmo T I h {})V 1241 (‘1/{?‘/“10”’ 1 r(r
ninputs in time T — 1, then for m sufficiently large
12T S3Tam—
(a) the total hardware h(n) = p(n) + c(n) must be at least 2[; ‘;27""' /2 logny=2]
172
(b) the number of processors p(n) must be at least 21/109/~/2logm=21 gyep tf the

number of memory cells is infinite, and
1727
(¢) the number of memory cells c(n) must be at least 21019001/ 2logn=21 gyop if

tho b
LI[C numoer UJ ‘UIU(,C.).)UI.) t.) llULItlLC.

660 P. BEAME AND J. HASTAD

4laio b m e curn £nce nnnle cdmen ¢ Lol o o
l [¢] plUVC tiis uicorcin we ucuuc leLllbllUllb T, 101 Cacii wpi { O1 tne co putduuu

just as we did for parity such that after step ¢ and after =, is applied, the cell (and
processor) partitions all have degree less than m and yet the function to be computed
lsflﬂ

Parity is a very nice function that treats 0 and 1 equally, so it is possible to use

restrictions from the nrobahilitv dictribution P and leave the naritv function

ALSLIALAREAS AL U PR UUQUILLILY UISUHIULUUIN Ry dila avay v pGAiavy auivuavil

unchanged in character. The functions /7', which we have just described, treat 0
and 1 very differently, depending upon whether k is even or odd. Also, they are
not symmetric so that treating all variables equally and independently as R% does
is inappropriate. The functions /7 do have some symmetry: inputs that appear at
leaves that are joined to the same bottom level gate are symmetric with respect to
each other. (We call such a set of inputs a block.) Also, blocks that fan in to the
same second level gate are symmetric with respect to each other. These symmetries

+ tad tha fall + +2 fFlnatadA 111,
motivated the 10110W1ﬁg restrictions of Hastad LELj:

in

Definition. Let L.C {1, ..., n} and let ¥ = {L;}'_, be a partition of L into
biocks. Define R}, to be a probability space of restrictions on L where for a
random p chosen from R, . and independently for every i € {1, ..., [},

: [Pr(s, = 4]
(1) A parameter s; is chosen such that J[Pr[s,— ~0] =

(Dol ol i) = <1 =
(2) Independently for each j € L,, ;:_%28; ; S']J

Similarly R . is a probability space of restrictions defined as above except that the
positions of 1 and 0 are reversed.

Note that restrictions from R .- never assign = and 0 to inputs from the same
block and restrictions from R, never assign * and 1 to the same block. The

T + . ‘3 : m
m m nnnte tn 1 and 111 he nead faor
restrictions from R . are likely to set most inputs to | and will be used for /3

when the bottom level gates are A; the restrictions from R, .- are likely to set most

inputs to 0 and will be used for f7;, when the bottom level gates are V.

Definition. For a restriction p chosen from R . let g*(p) be the restriction that
agrees with p everywhere p sets inputs and that assigns 1 to all but the variable of
least index in each block that is given a = by p. Similarly, for a restriction p chosen
from R, . let g7(p) be the restriction that agrees with p everywhere p sets inputs
and that assigns O to all but the variable of least index in each block that is given
a = by p.

The definitions of g* and g~ are intended to be cleaned up versions of the
original restrictions. The idea of this lower bound is that when f{" has p applied to
it, there is a copy of f r sitting inside it. In this process most of the bottom level
gates will end up with more than one varnable and to neep uegrees small while
retaining the copy of /7., it will be essential to apply the g* and g~ to reduce these
to one variable.

As in the case of the parity function we need two lemmas, one making sure that
the function we are trying to compute remains complicated after a restriction and
one that controls the degree of the partitions.

For the first lemma we see how a restriction modifies /7' by looking at how it
acts on the circuit for /.

Optimal Bounds for Decision Problems on the CRCW PRAM 661
LEMMA 5.1. Letk=2,%>q= JQ2(k — Dlogm)/m, and let & = {L;}!_, be the

m

partition of the input set of [} into blocks that are the sets of inputs which fan into
each of its bottom level gates.

() If k is odd then, for p chosen at random from R, ., the circuit that defines
ST,y contains a circuit that defines [, with probability at least % Jor all
m = 36.

(it) If k is even then, for p chosen at random from R _., the circuit that defines
Ul contains a circuit that defines fi-, with probability at least 3 for all

m = 36.
PROOF. Suppose k is odd; the case when £ is even is analogous.

CLamM L. With probability at least 2 the N\ gate corresponding to block L; takes
the value s; (as defined for p) foreveryi=1,..., 1.

For each block L;, the only case in which the corresponding A gate does not take

the value s; is when p assigns 1 to all the variables in L;. This probability is bounded
]’\‘I
vy

(="' =11 - g1 < exp(— gax)

exp(—- (k - %)logzm) < m*=I < % m

for m = 36. Since there are exactly m* ™' blocks the claim follows. We now assume
that all bottom level A gates take on their s; value.

IA

Cuamm 1. With probability at least < there will be at least
ai—, = [Vm(k — Dlogm1

inputs to each V gate at the second level from the bottom that are assigned * by
g% (p).

The expected number of inputs given = for a single V is the expected number
of 5, = = among those blocks L, whose inputs fan-in to the V. Let b, =
vim(k — 7)logm. Since there are m blocks that fan-in to a single such V the
number of #’s assigned is given by a binomial distribution on m inputs with
expected value gm = V2m(k — 5‘ Nogm = 2b, = 2a,-,. Thus the probability that
fewer than a,—, inputs remain is bounded by the probability that this binomial
distribution does not attain half its expected value. Applying the Chernoff bounds
on the tails of the binomial distribution (e.g., see [8, page 18]), this probability is
bounded above by

_ _d\ (1= 9/2) _ 4 :
exp(m[(l 2)ln(1 Zg > 2ln 2]) where In is log,.

Now, standard inequalities, In(1 — x) = —x/(1 — x) and In(l — x) < —(x + x%/2),
show that (1 — ¢/2)In(1 — ¢/2) = —¢q/2 and —(1 — ¢/2)In(l — q) = q(1 — ¢*/4).
Thus the total bound is at most

2 +
exp(—mq[l - % - %])

For g < +, we have 1 — ¢*/4 — (1 + In 2)/2 = %, and, since gm = 2b,, this bound
is at most e /%, Thus the probability that fewer than a,_, inputs remain for at

662 P. BEAME AND J. HASTAD

least one of the m*~2 second-level gates is < e~"/*m*~2. Since gb. = (k — 3)logm,
the assumption that g < 5 implies that b, > 4(k — 3)logm and it follows that we
have a probability of failure of at most m ™ < ¢ for m = 4. The second claim
follows.

The two claims taken together imply the lemma. O

LEMMA 5.2. Let M be a CRCW PRAM just prior to a read or write operation,
all of whose processor and cell partitions have degree at most r = 1 with variables
Jrom {x;}ic;. Let A be either an existing processor or cell partition of M or a new
cell partition resulting from a concurrent write of M. Let & = {L;}'_, be a partition
of L. Choose p at random from R . where g < 1/(6r). For s >0 we have

Pr[o(Al+,)) = s] < (6qr)°.
The same result holds if + replaces — throughout.
This is a corollary of Lemma 3.3 and the following lemma.

LEMMA 5.3. Let & be a graded set of DNF formulas on inputs {x;}e;, with
maximum clause length bounded by r = 1 where LC {1, ..., n}. Let & = {L;}!_,
be a partition of L. Let F be an arbitrary Boolean function on {0, 1}". Let p be a
random restriction chosen from R, .. where g < 1/(6r). Then, if (ZT) is the
partition determined by &7+, for s = 0 we have

Pr[5(<grg+(/*)>) = lern = O] = BS

_ 4\
(6(1 +a " 1) >

Also the same result holds if + is replaced by — throughout.

where 8 > 0 satisfies

Proor. The proof proceeds in very similar fashion to the proof of Lemma 4.3.
As in that lemma we use an induction on the total number of clauses in the
formulas of & and the base case is identical.

The idea of the proof of Lemma 4.3 was that, if p chosen from R, does not
falsify a clause, then it is much more likely that it satisfies it than that it leaves any
input unset. This is true because of the property that, given that p does not set a
variable to a particular value, it is more likely that it sets the variable to the other
value than that it leaves the variable unset. Here, we are choosing p from a different
distribution, Ry . or R, .. For a random p from either distribution, we still have
a property that permits the proof to go through, namely, conditioned on the fact
that a number of variables in a block are not set in a particular way, it is much
more likely that all the variables in the block are set than that any variable in the
block is unset.

Induction Step. Assume that the lemma holds for all graded sets of formulas
2’ with fewer clauses than the formulas of & Let F, be a formula in £ that has
lowest grade among those formulas in & that are not identically 0; let C, be a
clause of F,. As before we analyze the probability by considering separately the
cases in which p does or does not force clause C, to be 0 and obtain

Pr[6{&T+») = 5| FI,=0] = max(Pr[6 (& T+ =5 | FI,=0AC\[,=0],
Pr{6{&T) =s| FI,=0A C\I,#0]).
As in the previous proof we let £, be F, with clause C; removed and let £ be the

same as & with formula F, replaced by F,. Again the inductive hypothesis implies
that the probability in the first term is at most 3*.

Optimal Bounds for Decision Problems on the CRCW PRAM 663

Let T be the set of variables appearing in clause C,. By hypothesis | 7| < r. Let
pr be the restriction of p to the variables in 7. Again we analyze the cases based on
the subset of the variables in T to which p assigns . However, unlike the situation
in Lemma 4.3, we only separate the cases based on which blocks in .% these unset
variables belong to. This is because there will only be one unset variable in each
block when g*(p) is applied and g*(p) acts independently on the blocks. We let K
be the set of blocks that have variables in T and, following [1 1], we say that a block
in K is exposed if it has some variable in T which is assigned = by p. We use the
notation ex(pr) = Y to denote the fact that the set of exposed blocks is Y. Then

Pr[3(%) = 5| FI, = 0 A C/f,, # 0]
= 3 Prl6(&T,) =5 A ex(or) = Y|FI,=0ACIl,#0]. (13)

YCK

The probability in the case in which ¥ = ¢ is 0 since Y = ¢ implies that p sets
every variable in T and, because we already know that C,f, # 0, the value of C, is
forced to 1 by p, making 6(£T,) = 0. The sum in (13) then becomes

PI'[5 (‘?fg*(,,)) = lel'p =0 A le,, # O]
= ¥ (Pr[6(&Try) = s|FI,=0ANCI,#0 A ex(or) = Y]}

YCK.Y#¢
X Prlex(pr)= Y | FT,=0 A C\[,#0], (14)

by conditional probability.
Asin [11] we have

CLAIM

17|
Pr{ex(or) = Y| FT, = 0 A Cif, % 0] = (T%g?;) .
In order to see this define R to be the set of p such that ex(pr) = Y A FI, =
0 A CiT, # 0. Also define R to be the set of p such that FI, =0 A Cif, # 0 but
ex(pr) # Y. We define a mapping H: R — R such that the probability of each p in
the image of H is much larger than the sum of the probabilities of all p € R such
that H(p) = 5. The bound will follow by the definition of conditional probability.
Since p leaves some variable in each block in Y unset, for each L; € Y we know
that s; = * in the definition of p. Let P C T be the set of variables in the blocks of
Y that appear positively in clause C, and let N C T be those variables in the blocks
of Y that appear negatively in C,. For p € R define 5 = H(p) to be the same as p
except that in the blocks of Y:

(i) Every variable in P to which p assigns = is assigned 1 by 2.
(i1) Every variable not in P to which p assigns = is assigned O by .

Since we have only changed * to non- values we still have I'T; = 0. The changes
made on the variables in C, only set the variables in P to 1 and variables in Nto 0
so they maintain C,l; # 0. Lastly ex(5,) = ¢ # Y so it is clear that 5 = H(p) € R.
Let S C R be the image of R under the map H.

Consider g € S and let p € R satisfy H(p) = p. Let A be the set of variables in P
that are assigned * by p. We estimate the probability of p in terms of that of 5. For
each L, € Y we must have s; = = for p and it is consistent that s, = 0 for p. We will
be conservative and only consider the probabilities for p when its s; = 0 for all
L, € Y. For p, the probability that s, = * for every L; in Y is ¢'"' as opposed to
(1 — ¢)'"!, which is the probability for 5 that s; = O for every L, in Y. For p, the
probability is ¢! that all variables in 4 are assigned * given that s; = » for every

664 P. BEAME AND J. HASTAD

L;in Y as opposed to (1 — ¢)'"! which is the probability for 5 that all variables in
A are assigned 1 given that s; = 0 for every L; in Y. In the blocks of Y some
variables that are assigned = by p are assigned 0 by p but, given that p has s; = *
and 5 has s, = 0 for L, € Y, this does not affect the probability of p relative to that
of p. Finally, the variables assigned 1 by p are also assigned 1 by g and the
probability of these 1’s is the same whether s, = 0 or 5, = *. Since p and g are
identical in all other aspects, it follows that Pr{p] < (g/(1 — ¢))'""**"'Pr[5]. Then
we have

H(p)=7 acer\l — ¢

Y| 141
=G€%>P@]z<ﬁ?)
q ACP q
S HA
-ﬁ—q>PW%§ i Ni—4

Rg
=<7%9 PrA)(1 —).

1Y1+]4]
5 m@hsz<4L> Pr5]

Clearly |P| < |T| < r and by assumption ¢ < 1/(6r), so (1 — ¢)™'"1 =
(1 =) = (1= 1/(6r))” < 2. Thus ¥,=; Prip] < 2(q/(1 — ¢))""'Pr[p].
The conditional probability we wish to estimate is

E/}ER Pr[p] < Z/‘ER Pr[p]
Yiek Prlp] + Toer Prlp] =~ Tjes Prlp] + ¥,er Prlo]

- Yies 2= Pripl

Yies Prlp] + Yies Y- Prlp]
- Yies 2(q/(1 — q))'"'Pr{5]
T Yies [1 + 2(g/(1 — @)'"] Pr[g]

_)"
T2 = "+)™

Now, for | Y| = 1, the denominator equals | + gand for | Y | = 2, 2/"7'(1 — g)!"!
= V21 = @) > (1 + ¢)'"' since ¢ < 1/(6r) < +. Thus the bound of the claim
follows.

Now we look at the first term in each product in (14). The condition that
ex(pr) =Y A C/f, # 0 determines p on every variable in 7 which is not in a block
in Y. Thus we can let F’ be F V G where GT, = 0 if and only if p sets the variables
in 7 which are not in a block in Y in the unique way that does not force C, to 0.
Unlike the situation in the proof of Lemma 4.3, the condition GT, = 0 is not
sufficient to ensure that C,T, # 0. This is because there may be variables in 7 that
are in the blocks of Y whose value p sets. Because of the condition that every block
in Y is exposed, any variable that p sets, which is in a block of Y, must be set to 1.
Recall the notation P and N for the variables in the blocks of Y which respectively
appear positively (negatively) in clause C,. Observe that setting the variables in P
to 1 cannot force C, to 0, but that setting any variable in N to 1 guarantees that C|
is forced to 0. Then, letting py be the restriction of p to the variables in the blocks
of Y and using the notation =(py) for the set of variables in the blocks of Y that are

Optimal Bounds for Decision Problems on the CRCW PRAM 665
unset by p (py), we have

Pri6(&l+) =2 s|FI,=0 ACT,# 0 A ex(py) = Y]
= Pr{6(FT) =2 s|F'T, =0 A ex(pr) =Y A N C #(py)].

In order to get rid of the uncertainty about p’s behavior on the blocks of ¥ we
take a worst case over all possible behaviors of p on these blocks. This behavior
is exactly captured by the set *(py). We already know that N C =(p,) and that
b(T N =(py)) = Y where b is the function that, given a set of variables, produces
the set of blocks in which those variables appear. It follows that

Pr{o{(&Ten) = s| F'T, =0 A ex(or) =Y AN NC =(py)]
< max Pr[6 (&M +) = | F'T, =0 A ex(pr) = Y A »(py) = V1.

I'INMINT)=Y

erall th
ccai i

at
1al

-

he condition ex(pr) = Y means that the blocks in Y have varia
in T that are unset by p and that all the variables in 7 that are not in blocks in Y
are set by p. The latter part of the condition is implied by the condition F'l, =0
and the former part of the condition is implied by the condition =(py) = V since
we know that h(VV N T) = Y. Thus we do not change the events by eliminating
ex(pr) = Y to get

max Pri6(&l,+,y) = s|F'I,=0 A #(py) = V1.

VANV NT)=Y

ave va
N

—-:3-

Suppose that | Y| < s. Let 7, be the restriction which sets all the variables in
the blocks of Y to 1 except those in V. The condition *(py) v implies that
(IE,IF-,I)FI, =F' |rp since 7, agrees with p On all the iupum it sets. rubu, the definition
of g*(p) guarantees that, for each block in Y, at most one variable is unset and that
all others are set to 1. By definition, this set of unset variables is completely
determined by the set of variables that py leaves unset. Let V" denote the set of
variables in the blocks of Y that are unset by g*(p) (given that =(py) = V') and let
T, be the restriction, which sets all the variables in the blocks of Y to 1 except
those in V' *. It is clear that 7, agrees with g*(p) on all the inputs it sets. Then by
Lemmas 3.1 and 3.2

Pr[ﬁ(?f,,n,») =8 | F'r,, =0A *(py) = V]
= X Pro{ET)e) Z2s = [Y| |F'T,=0A *(py) = V]

cEPTOj{ 7]

Y Prlo(ET) 2 s = [Y HF'T)H, =0 A #(py) = V]

a€Proj[1”™"]

Y ProET ey 2 s — Y| [(FT), =0Axoy) = V] (15)

cEProj[V)

il

2!

where p ' is the resiriction of p to the blocks of #’ and %’ Is & wiih the biocks of
Y removed. To see this last equality we note that g*(p) = g%(py)g*(0’), p = pyp’,
and the condition *(py) = V implies that 7, = py and 7, = g*(py).

Because the probabilities over .2’ are independent of those over Y, the condition

on py does not affect the probabilities for p’, so it can be eliminated without
r‘hanmno the nrnhnhlhhpc in (1 S). Furthermore, because the probabilities on %’

for p chosen from R} .. are the same as those for p’ chosen from R} ., the sum
in (135) is equivalent to

X Pl Ny 2 s = | Y| [(FT)N, = 0], (16)

aEProj{1""]

where p is a restriction chosen at random from I(

666 P. BEAME AND J. HASTAD

By definition, a7, sets all the variables in the blocks of Y and thus the condition
(F'I,), = 0 guarantees that o7,p’ sets all the inputs in 7" and thus forces the
value of C,. If C\l,.,, = 1, then all inputs in ((£T,,,),+,) are equivalent and thus
0((FTo) gy) = 0 = s —|Y|. Otherwise Cil,.,, = 0 and then ((&T,,)¢+,,) =
(&T s)N e*oyy since Fil,.,,, = Fil,.,,-. Thus the sum in (16) is bounded by

S Prs((ET,)) =5 — | Y I(FT)N, = 0.
sEProj[V' 1]
Because (g?ra,z) has strictly fewer clauses than £ and because it only has inputs that
appear in the blocks in ./, we can apply the inductive hypothesis to bound the
probabilities in each term in this sum by 8*~'"!. For each Y the number of terms
in the above sum is at most | Proj[V"*]| = 2!"! so we obtain a total bound of
2171gs=IN,

If | Y| > s then we make the pessimistic assumption of failure. Since 8 < 1 and

s—]Y]| <0 we have

Pr{6{(&Tev) = s|FI,=0 A Cl, #0 A ex(pr) = Y] = 1 <2/7igsIV,
Finally, substituting these bounds in (14) we obtain a total failure probability of

at most
) = B ()t
4) pivigeivi - gs oLl | P -
ygl?)’;é(p (1 +gq 8 8 El l B + q)

=B
using the same reasoning as before. Thus the lemma holds for & and by induction
we have proved the lemma. Essentially the same argument with the roles of 0 and

1 reversed holds for R, o since the only real effect of reversing them in the
restrictions is caused by the signs of the literals in the clauses of €. O

PROOF OF THEOREM 5.1. Let m leave every input unset. We define restrictions
m, ™y - -+ SO that ., = m,p,+; and p,+, is a restriction defined on the set of inputs
unset by =,.

Part (a). Recall that we want to show that any CRCW PRAM computing /7
in T — 1 steps requires total hardware, A(n), at least 2((1/27(x"27/~/2logn)-2]

CLAIM. Let s = log 4h(n). For t = 0 and 24s < vm/(2 log n) we can choose =,
so that f91, is a copy of f-, and

max 6(P(M, 1, 1)) < s,
max §(C(M, j, 1)) < s.
J

First we see how this claim implies the desired result. Observe that v7Tm” > n =
m =172 by definition of /% so vm > (n/vT)"/?") >3 2T Thuys, if we assume that
27logdh(n) < n'?"/v2logn, then 24s < vm/(2logn) so we can apply the claim.
Then, in order to compute /% in T — 1 steps, the claim requires that the first cell
contain fV" after =, is applied. Obviously 6(f7) = a, = [vsmlogm]. Thus
the degree of the partition in the first cell must be equal to a,, so that
o(CWM, 1, TY,,)= a,, but this is impossible since s < a,. Part (a) follows.
We now show the claim by induction on #:

Base Case. At time 0, the processor partitions all consists of a single class and
for each cell C;, C(M, j, 0) is a partition that depends on at most one input bit so
8(C(m, j, 0)) = L. Thus the claim holds initially.

Optimal Bounds for Decision Problems on the CRCW PRAM 667

Induction Step. Let t = 0. Assume the claim holds for z. We shall show that it
holds for ¢ + 1. In a manner analogous to Theorem 4.1, we choose a restriction
pi+1 = g7(p) for a p chosen at random from R;" o if T — ¢t is odd (or g (p) for p
chosen from R if T — t is even) where ¢ = 1/(24s) and % is the partition
corresponding to the blocks of f%-,. By the same reasoning as part (a) of the proof
of that theorem (using Lemma 5.2 instead of Lemma 4.2) we see that this choice
of g is sufficient to keep the degree of the processor and cell partitions bounded by
s with probability at least 2. It now remains to show that p,., leaves a copy of
f4,-, inside f47, ... The condition 24s < vm/(2logn) along with n = m™'/?
implies that ¢ > V(2(T — Slogm)/m = V(AT — 5 — nlogm)/m, which is the
condition required in Lemma 5.1 for f7-,[, to contain a copy of /7, with
probability at least 3 for m sufficiently large. Thus the requirements on p,, are
satisfied with probability strictly greater than 0 so we choose one of these successful
p.+1- Without loss of generality we can allow p,., to set more inputs so that the
remaining function is f4,_,. By induction the claim for part (a) is proved. [l

Part (b). We want to show that any CRCW PRAM computing 7 in time
T — 1 requires a number of processors, p(n), at least 21!/108//2/V2iogm™)

CLamM. Let s = logdp(n). For t = 0 and 96s < ~vm/(2 logn) we can choose =,
so that {41, is a copy of [}, and
max 6(P(M, i, 1)) < s,
max 6(C(M, j, Ol ;) < s.
J

This claim implies (b) in the same manner as in part (a) above.
We now show the claim by induction on ¢:

Base Case. The base case is identical to that in part (a).

Induction Step. The induction step for (b) follows by making the same modi-
fications to the proof of Theorem 4.1 part (b) as we made above to the proof of
Theorem 4.1 part (a). We note that as in part (b) of Theorem 4.1 we must choose
a probability g = 1/(96s) instead of 1/(24s), and this is the reason for the difference
in bounds from part (a). [

Part (¢). This time we want to show that any CRCW PRAM computing /7 in
time T — 1 requires a number of memory cells, ¢(#), at least 21/147)n"*7/¥2logm-2],

CLaM. Let s = logdc(n). Fort = 0, t < T and 12sT = vm/(2logn), we can
choose w, so that f*(. is a copy of [#-, and

max 6(P(M, i, 1)) < s,
max 6(C(M, i, 1)) < s.
J
This claim implies (c) in the same manner as in part (a) and (b) above.
We now show the claim by induction on ¢:

Base Case. This follows since P(M, i, t) has only one class and thus has
degree 0 and C(M, j, t) has degree | as before.

Induction Step. The induction step for (c) follows by making the same modifi-
cations to the proof of Theorem 4.1 part (c) as we made above to the proof of
Theorem 4.1 parts (a) and (b). We note that as in part (c) of Theorem 4.1 we

668 P. BEAME AND J. HASTAD

choose a probability ¢ = 1/(12s(z + 1)). In order to show that p,., leaves a copy
of /7~ inside f4.,[, we need both the conditions 12sT < vm/(2logn) and
t < Tto imply that ¢ > V(2(T — Hlogm)/m = V(AT — + — 1)log m)/m. Then the
induction for part (c) follows as before. O

As it stands, our functions f7 are defined only for certain numbers of inputs
depending on T and m; call this number v+,,. Let T be a function of n. We extend
our functions to all numbers of inputs by defining f7., on n inputs to be
S computed on the first v7,,, inputs, when m is the largest index such that
vropn = H. We now can restate the resources required to reduce the time for
computing f7., on machines with reasonable resource bounds.

COROLLARY 5.1
(a) For any function T such that

__logn logn
T = 3loglogn w((loglognf)’

there is a function fr., of n inputs that can be computed on a CRCW PRAM
with n processors and memory cells in time T(n) but cannot be computed by
any CRCW PRAM with a polynomially bounded number of processors,
p(n) = n°Y, running in time T(n) — 1.

(b) For any function T such that

= Sloglogn ~ “\(loglogny

there is a function fr., of n inputs that can be computed on a CRCW PRAM
with n processors and memory cells in time T(n) but any CRCW PRAM
computing it in time T(n) — 1 requires both the number of memory cells and
the number of processors to exceed any polynomial in n.

PROOF. A straightforward calculation shows that, for functions 7 in this range,
Jrey uses all but an o(log™n) fraction of its inputs, so there is no significant error
introduced by assuming that # = vy(,,,,.

(a) Using Theorem 5.1 pazr;t we see that to compute /7 in T — 1 steps re-
quires p(n) = 210/108X77/V2logm=2] op equivalently that

[108(log4p(n))v21logn]?*T = n.

For p(n) = n°" the inequality implies that there is a constant ¢, such that
(cilogn)*” = nso T = logn/(c; + loglog n). This is just T = +log n/loglogn
— c3log n/(loglog n)* for some constant c;. This is contradicted by the condi-
tions of the claim so case (a) follows.

(b) Using Theorem 5.1 part (c) we see that to compute [in T — 1 steps requires
c(n) = 21018711 TTog21 o equivalently that

[14T(ogdc(n)V2logn)" = n.

For T =< tlogn/loglogn, 2T log T < 2logn. Thus T27 < n*’ and for values of
T in this range we have

[14(ogdc(n)~21ogn)*™ = n¥/

For ¢(n) = n°" the inequality implies that there is a constant ¢, such that
(cilogn)®” = n** so T = +logn/(c: + loglogn) and the cell-restricted case
follows as did part (a). Combining this with part (a) yields the desired result. O

Optimal Bounds for Decision Problems on the CRCW PRAM 669

This tmplies that the class of functions that can be computed in time-bound
T(-) — 1 on machines with reasonable bounds is strictly contained in the
class of functions that can be computed in time 7°(-). This yields a strict time
hierarchy among CRCW PRAMs.

6. Almost All Boolean Functions

If we do not worry about showing that specific functions are hard to compute, we
can get larger lower bounds on the time complexity of Boolean functions than
those in the previous sections by considering the class of almost all Boolean

vttt Ao
LTULIVLIUILLDS.,

LEMMA 6.1. Almost all Boolean functions require unbounded fan-in circuit
size Q2.

PrOOF. To see this, use the following argument by W. L. Ruzzo (private
communication): Without loss of generality the negations can be pushed to the
inputs by De Morgan’s laws so we assume free access to inputs and their negations.
The number of unbounded fan-in in circuits with s gates is then just 2°“*2"*! since
each gate can be described by its operation (either A or V) and by the subset of the
inputs and gates to which it is attached. Since there are 22" Boolean functions of #
inputs, it easy to see that most functions require size Q(2/%). O

Using the simulation of CRCW PRAMs by circuits given by Li and Yesha [13]
and B. Chor (private communications) (cf. Section 2) along with this lemma yields:

THEOREM 6.1. Almost all Boolean functions of n inputs require time
logn — loglog p(n) + Q(1) on a CRCW PRAM with p(n) processors.

PrROOF. Substituting directly in the simulation we see that any CRCW PRAM
taking at most log n — loglog p(n) — w(1) time can be simulated by an unbounded
fan-in circuit of size 0(2?). But by Lemma 6.1, almost all Boolean functions of »
inputs require unbounded fan-in circuits of size Q(27%). The theorem follows
immediately. O

Because of the upper bound in [3] of log #n — log log [p(n)/n] + O(1) for computing
any function on Boolean inputs, this bound is nearly optimal. This optimality
suggests that no general improvement in the simulation of CRCW PRAMs by
unbounded fan-in circuits is likely to be obtained.

7. Directions for Further Research

The Q(log n/loglog n) time lower bounds for computing specific Boolean functions
given in Sections 4 and 5 are tantalizingly close to the logn — loglogn + O(1) time
bounds for almost all Boolean functions on CRCW PRAMs with a polynomial
number of processors. However, finding a specific problem in NP for which we
can close this gap appears to be a formadiable though fundamentally interesting
task. This is because the work of Chandra et al. {7] and Stockmeyer and Vishkin
[15] implies that such a problem would not be in NC' (would not have O(logn)
depth combinatorial circuits).

ACKNOWLEDGMENTS. Many thanks to Steve Cook and Charlie Rackoff for their
encouragement and their detailed reading and careful criticisms of drafts of this
work. Thanks also to Al Borodin and Faith Fich for their many helpful comments
and suggestions.

670 P. BEAME AND J. HASTAD

REFERENCES

L.
2.
3.

AJTAL, M. Y i-Formulae on finite structures. Ann. Pure Appl. Logic 24, 1983, 1-48.

BEAME, P. W. Lower Bounds for Very Powerful Parallel Machines. Manuscript, 1985.

BEAME, P. W. Limits on the power of concurrent-write parallel machines. Inf. Computation 76, 1
(1988), 13-28.

. BEAME, P. W. Lower Bounds in Parallal Machine Computation. Ph.D. Dissertation, TR 198/87.

Univ. Toronto, Toronto, Ont., Canada, 1986.

. BeaMg, P. W., AND HasTAD, J. Optimal bounds for decision problems on the CRCW PRAM. In

Proceedings of the 19th ACM Symposium on Theory of Computing (New York, N.Y ., May 25-27).
ACM, New York, 1987, pp. 83-93.

. BoLLOBAS, B. Random Graphs. Academic Press, Orlando, Fla., 1985.
. CHANDRA, A. K., STOCKMEYER, L. J., AND VISHKIN, U. Constant depth reducibility, STAM J.

Comput. 13, 2 (1984), 423-439.

. ErRDOs, P., AND SPENCER, J. Probabilistic Methods in Combinatorics. Academic Press, Orlando,

Fla., 1974.

. FursT, M., SAXE, J. B, AND SIPSER, M. Parity, circuits, and the polynomial time hierarchy, Math.

Syst. Theory 17, 1 (1984), 13-28.

. HasTAD, J. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th

Annual Symposium on Theory of Computing (Berkeley, Calif., May 28-30). ACM, New York,
1986, pp. 6-20.

. Hastap, J. Computational Limitations for Small Depth Circuits. MIT Press, Cambridge, Mass.,

1987.

. Kucera, L. Parallel computation and conflicts in memory access. Inf. Proc. Lett. 14, 2 (1982),

93-96.

. L1, M., AND YESHA, Y. New lower bounds for parallel computation. J. ACM 36, 3 (July 1989),

671-680.

. SIPSER, M. Borel sets and circuit complexity. In Proceedings of the 15th Annual ACM Symposium

on the Theory of Computing (Boston, Mass., Apr. 25-27). ACM, New York, 1983, pp. 61-69.

. STOCKMEYER, L. J., AND VisHKIN, U. Simulation of parallel random access machines by circuits.

SIAM J. Comput. 13,2 (1984), 404-422.

. Yao, A. C. Separating the polynomial-time hierarchy by oracles: Part 1. In Proceedings of the

26th IEEE Foundations of Computer Science. IEEE, New York, 1983, pp. 1-10.

RECEIVED AUGUST 1987; REVISED NOVEMBER 1988; ACCEPTED NOVEMBER 1988

Journal of the Association for Computing Machinery, Vol. 36. No. 3. July 1989.

