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We consider the read/write streams model, an extension of the standard data stream model in which an
algorithm can create and manipulate multiple read/write streams in addition to its input data stream. Like

the data stream model, the most important parameter for this model is the amount of internal memory

used by such an algorithm. The other key parameters are the number of streams the algorithm uses and
the number of passes it makes on these streams. We consider how the addition of multiple streams impacts

the ability of algorithms to approximate the frequency moments of the input stream.

We show that any randomized read/write stream algorithm with a fixed number of streams and a sub-
logarithmic number of passes that produces a constant factor approximation of the k-th frequency moment

Fk of an input sequence of length of at most N from {1, . . . , N} requires space Ω(N1−4/k−δ) for any
δ > 0. For comparison, it is known that with a single read-only one-pass data stream there is a randomized

constant-factor approximation for Fk using Õ(N1−2/k) space, and that by sorting, which can be done

deterministically in O(logN) passes using 3 read/write streams, Fk can be computed exactly. Therefore,
although the ability to manipulate multiple read/write streams can add substantial power to the data

stream model, with a sub-logarithmic number of passes this does not significantly improve the ability to

approximate higher frequency moments efficiently.
We obtain our results by showing a new connection between the read/write streams model and the

multiparty number-in-hand communication model.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computa-
tion—Bounded-action devices; F.1.1 [Computation by Abstract Devices]: Models of Computation—

Relations between models; E.4 [Coding and Information Theory]: Formal models of communication;

H.2.4 [Database Management]: Systems—Query processing

General Terms: Theory, Algorithms
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1. INTRODUCTION

The development of efficient on-line algorithms for computing various statistics on streams
of data has been a remarkable success for both theory and practice. The main model has
been the data stream model in which algorithms with limited storage access the input data
in one pass as it streams by. This model is natural for representing many problems in
monitoring web and transactional traffic.
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However, as Grohe and Schweikardt [2005] observed, in many natural situations for which
the data stream model has been studied, the computation also has access to very large aux-
iliary external memory for storing intermediate results. In this situation, the lower bounds
for the data stream model no longer apply. This motivated Grohe and Schweikardt to in-
troduce a model, termed the read/write streams model in [Beame et al. 2007], to capture
this additional capability. In the read/write streams model, in addition to the input data
stream, the computation can manipulate multiple sequentially-accessed read/write streams.

As noted in [Grohe and Schweikardt 2005], the read/write streams model is substantially
more powerful than the ordinary data stream model since read/write stream algorithms
can sort lists of size N with O(logN) passes and space using 3 streams. Unfortunately,
given the large values of N involved, Θ(logN) passes through the data is a very large
cost. For sorting, lower bounds given in [Grohe and Schweikardt 2005; Grohe et al. 2006;
2009] show that such small space read/write stream algorithms are not possible using fewer
passes; moreover, lower bounds for the related problems of determining whether two sets are
equal, or intersect, or of determinining whether or not the input stream consists of distinct
elements have also been shown [Grohe et al. 2006; Beame et al. 2007; Grohe et al. 2009].

While these lower bounds give us significant understanding of the read/write streams
model, they apply to exact computation and do not say much about the potential of the
read/write streams model for more efficient solutions of approximation problems, which are
the major successes of the standard data stream model (see surveys [Babcock et al. 2002;
Muthukrishnan 2006]). Among the most notable successes are the surprising one-pass small
space randomized algorithms for approximating the frequency moments of data streams first
shown by Alon et al. [1999]. The k-th frequency moment, Fk, is the sum of the k-th powers of
the frequencies with which elements occur in a data stream. As special cases, these frequency
moments include the length of the data stream (F1), the number of distinct elements in the
stream (F0), the size of the self-join on the keys of a database relation represented by the
stream (F2), or the largest frequency of any element in the stream (F ∗∞). Alon et al. [1999]
gave algorithms to approximate frequency moments Fk within a constant (1 + ε) factor on
streams of length N using Õ(N1−1/k) space1 for k > 2 and O(logN) space for k ≤ 2 [Alon
et al. 1999]. Subsequently, the resources required for (1 + ε) factor approximations of Fk
for k > 2 have been improved to Õ(N1−2/k) space [Indyk and Woodruff 2005; Bhuvanagiri
et al. 2006].

Alon et al. [1999] also showed that their algorithms were not far from optimal in the data
stream model; in particular, by extending bounds in [Razborov 1992] for the randomized
2-party communication complexity of a promise version of the set disjointness problem
from 2 to p players where each player has access to its own private portion of the input (a
model known as the p-party number-in-hand communication game), they showed that Fk
requires Ω(N1−5/k) space to approximate by randomized algorithms. A series of papers [Saks
and Sun 2002; Bar-Yossef et al. 2004; Chakrabarti et al. 2003; Gronemeier 2009; Jayram
2009] has improved the space lower bound for fixed ε to Ω(N1−2/k), nearly matching the
upper bound, by finding an optimal lower bound for the communication complexity of set
disjointness. Thus, Fk for k > 2 requires polynomial space in the data stream model2.

This leads to the natural questions: Can one prove good lower bounds for approximation
problems in the read/write streams model? Can read/write stream algorithms approximate
larger frequency moments more efficiently than one-pass algorithms can?

1The notation Õ(·) here suppresses logarithmic factors in N and polynomial factors in 1/ε.
2There is also a Θ(1/ε2) dependence of the space on the error in the approximation. This was shown to be
optimal for one-pass algorithms [Indyk and Woodruff 2003; Woodruff 2004] and multiple-pass data stream
algorithms [Chakrabarty and Regev 2011], though by considering a different two-party communication
problem – gap Hamming distance.
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We show that the ability to augment the data stream model with multiple read/write
streams does not produce significant additional efficiency in approximating frequency mo-
ments. In particular, any randomized read/write stream algorithm with a fixed number of
streams and o(logN) passes that approximates the k-th frequency moment Fk of an input
sequence of length of at most N from {1, . . . , N} within a constant factor requires space
Ω(N1−4/k−δ) for any constant δ > 0. This lower bound is very similar to the upper bound
even for ordinary one-pass read-only data streams (and is larger than the original lower
bound in [Alon et al. 1999] for such ordinary data streams).

The major difficulty in developing lower bounds for the read/write streams model, in
contrast to the data stream model, is that an easy reduction from number-in-hand multi-
party communication complexity breaks down. This fails for read/write stream algorithms
because different parts of the computations can communicate with each other by writing to
the streams. In fact, as we observe in Section 2, the (unique-intersection) p-party promise
set-disjointness problem, which is the basis for the lower bounds for approximating fre-
quency moments in the data stream model, can be easily solved by a read/write stream
algorithm using only 3 passes, 2 streams and O(logN) space.

The amount of data written on the streams also prevents the use of traditional time-
space tradeoff lower bound methods, which are the other obvious tools to consider. As a
result, previous work on lower bounds in the read/write streams model has been based on
special-purpose combinatorial methods developed especially for the model.

Grohe, Hernich, and Schweikardt [Grohe and Schweikardt 2005; Grohe et al. 2006; 2009]
identified certain structural properties of the executions of read/write stream algorithms,
their skeletons, and applied cut-and-paste arguments along with these skeletons to show
the existence of certain combinatorial rectangles on which the algorithms’ answers must be
constant. They showed that the existence of these rectangles implies that no space-efficient
read/write stream algorithm can sort in o(logN) passes or determine, with one-sided error
bounded below 1/2, whether or not two input sets are equal. Then, by reduction, they
derived lower bounds for one-sided error randomized algorithms for several other problems.

Beame et al. [2007] used the structure of the rectangles produced in [Grohe and
Schweikardt 2005; Grohe et al. 2006; 2009] together with additional combinatorial rea-
soning to show how standard properties that lower bound randomized two-party commu-
nication complexity – discrepancy and corruption over rectangles – can be used to de-
rive lower bounds for randomized read/write streams with two-sided error. Using this ap-
proach they gave general methods for obtaining lower bounds for two-sided error randomized
read/write stream algorithms. In particular they showed that with o(logN/ log logN) passes
and O(N1−δ) space, randomized read/write stream algorithms with two-sided error can-
not determine whether or not two input sets are disjoint. This yielded several other lower
bounds, including an Ω(N1−δ) lower bound on the space for computing a 2-approximation
of F ∗∞ with o(logN/ log logN) passes and a similar lower bound for exact computation of
F0.

However, the methods of [Grohe and Schweikardt 2005; Grohe et al. 2006; 2009; Beame
et al. 2007] do not yield lower bounds on the approximate computation of frequency
moments Fk for any k < ∞. In particular it is consistent with all previous work that
read/write stream algorithms can compute constant factor approximations to any such Fk
using o(logN) passes, O(logN) space, and only 2 streams. We show that this is not possible.

We take a different approach to lower bounds in the read/write streams model from
the approaches in previous work. Despite the failure of the standard reduction, we are
able to characterize read/write stream algorithms via a direct simulation of read/write
stream algorithms by p-party communication protocols. Though quite different in the overall
structure of the argument, this reduction does make use of a simplified variant of the
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skeletons defined in [Grohe and Schweikardt 2005; Grohe et al. 2006; 2009]. Our method
may have many other applications.

For the specific case of approximating frequency moments we derive our lower bounds
by applying our simulation to a blocked and permuted version of the promise p-party dis-
jointness problem (with p depending on N and k). The problem is a generalization of one
considered in [Beame et al. 2007] but extended to the case of p sets. This allows us to obtain
our Ω(N1−4/k−δ) space lower bounds for computing Fk using a sublogarithmic number of
passes and a constant number of streams.

Although this nearly matches the best lower bounds for the data stream model, there is a
gap between our read/write streams lower bounds and the data stream upper bounds; our
lower bounds are limited by the relationship between the number of blocks and the number
of sets in the permuted disjointness problem that we consider. We also show that modifying
this relationship cannot improve the lower bound for constant factor approximations for
k < 3.5. In particular, there is a deterministic read/write stream algorithm with three
passes, two streams and O(logN) space that can compute the value of the blocked and
permuted p-party disjointness problem for any numbers of blocks and sets that would have
produced such lower bounds. To derive this algorithm we show a novel property of the
lengths of common subsequences in sets of permutations.

2. PRELIMINARIES

In the read/write streams model, the streams are represented as t read/write Turing ma-
chine tapes. The input stream is given as the contents of the first such tape; the other
streams/tapes are used for working storage. Passes through the data in a stream correspond
to reversals on the corresponding Turing machine tape; the number of passes is one more
than the number of reversals. The internal memory of the read/write streams algorithm can
be randomly accessed.

The three resource parameters that are important to a read/write stream algorithm A
are (1) the number of external read/write tapes t that A uses, (2) the maximum space s
that A uses, and (3) the maximum number of reversals r made by A on all the external
tapes.

Since we will primarily focus on lower bounds, we define a nonuniform version of the
read/write stream model since lower bounds for this model are more general than those
that only apply to the uniform case. Fix an input alphabet Σ and tape alphabet Γ. An
(r, s, t)-read/write stream algorithm A on ΣN is an automaton with 2s states with one
read/write head on each of t tapes. It begins with its input v ∈ ΣN on the first tape, the
remaining tapes blank, and each read/write head at the start of its tape. In each step, based
on the current state and currently scanned symbols, one of its heads writes a new symbol
from Γ in its currently scanned tape cell and moves one cell left or right. On any input
v ∈ ΣN , the total number of reversals of the direction of movement of all heads is at most
r.

For functions r, s : N→ N and t ∈ N, a (nonuniform) (r(·), s(·), t)-read/write stream algo-
rithm on Σ∗ is a family of algorithms {AN}N∈N where for each N , AN is an (r(N), s(N), t)-
read/write stream algorithm and all AN have the same input and tape alphabets. Random-
ized and nondeterministic algorithms are defined analogously.

For integer m ≥ 1, denote {1, . . . ,m} by [m] and for any permutation φ of [m], define
the sortedness of φ, denoted by sortedness(φ), to be the length of the longest monotone
subsequence of (φ(1), . . . , φ(m)). Thus, in particular, sortedness(φ1φ

−1
2 ) is the length of the

longest common subsequence of (φ1(1), . . . , φ1(m)) and
(φ2(1), φ2(2), . . . , φ2(m)), or of (φ1(1), . . . , φ1(m)) and (φ2(m), φ2(m − 1), . . . , φ2(1)),
whichever is greater. For convenience of notation, we write sortedness(φ1, φ2) for
sortedness(φ1φ

−1
2 ). For any m, p ≥ 1 and a sequence Φ = (φ1, φ2, . . . , φp) of per-
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mutations of [m], define the relative sortedness of Φ, denoted by relsorted(Φ), to be
maxi6=j∈[p](sortedness(φi, φj)).

Lemma 2.1 (cf. [Steele 1997]; Lemma 1.4.1). Let φ be a randomly and uniformly
chosen permutation of [m], then Pr[sortedness(φ) ≥ 2e

√
m] < 2 exp(−2e

√
m).

Corollary 2.2. If p ≤ mc for some constant c > 0 and m is sufficiently large, there
exists a sequence Φ∗p,m = (φ1, φ2, . . . , φp) of permutations of [m] such that relsorted(Φ) <
2e
√
m.

The k-th frequency moment Fk of a sequence a1, . . . , an ∈ [m] is
∑
j∈[m] f

k
j where fj =

#{i | ai = j}. We will typically consider the problem when m = n. Also write F ∗∞ for
maxj∈[m] fj .

For 2 ≤ p < n, define the promise problem pDisjn,p : {0, 1}np → {0, 1} as follows: For
x1, . . . , xp ∈ {0, 1}n, interpret each xi as the characteristic function of a subset of [n]. If
these subsets are pair-wise disjoint then pDisj(x1, . . . , xp) = 0; if there is a unique element
a ∈ [n] such that xi∩xj = {a} for all i, j ∈ [p] then pDisj(x1, . . . , xp) = 1; otherwise, pDisj
is undefined.

We use the usual definition of p-party number-in-hand communication complexity. A
series of communication complexity lower bounds [Alon et al. 1999; Saks and Sun 2002;
Bar-Yossef et al. 2004; Chakrabarti et al. 2003; Gronemeier 2009; Jayram 2009] for pDisjn,p
in this number-in-hand model has resulted in the essentially optimal lower bounds for
computing frequency moments in the data stream model, even allowing multiple passes
over the input stream. Gronemeier [2009] and Jayram [2009] gave the strongest of these
results showing that any p-party public-coin randomized number-in-hand communication
protocol for pDisjn,p must have complexity at least Ω(n/p), which is optimal.

However, as noted in the introduction, for any n and p, there is a simple (2, log2 n+O(1), 2)
read/write stream algorithm for computing pDisjn,p: Copy x1 to the second tape and
compare the contents of x1 and x2 bit-by-bit using the two tape heads. The promise nature
of the problem ensures that the output is completely determined by any pair of xi and xj ,
where i 6= j. We therefore will need a modified function in order to obtain our lower bounds
for approximating frequency moments.

Let N > p ≥ 2 and let Π = (π1, . . . , πp) be a sequence of permutations on [N ].
We define the promise problem pDisjΠ

N,p : {0, 1}Np → {0, 1} by pDisjΠ
N,p(y1, . . . , yp) =

pDisjN,p(x1, . . . , xp) where the j-th bit of xi is the π−1
i (j)-th bit of yi. The relationship

between xi and yi is equivalent to requiring that yij = xiπi(j).
We first observe that the same reduction idea given in [Alon et al. 1999] yields lower

bounds for Fk given lower bounds for pDisjΠ
N,p for suitable choices of p. We note that the

following lemma applies similarly to F ∗∞, where 1/∞ is interpreted as 0.

Lemma 2.3. Let p,N ≥ 2, 1/2 > ε, δ ≥ 0, and k ≥ 0 satisfy

(a) if k > 1, then p ≥ c(εN)1/k for c > 0 and ck > c+ 3, and
(b) if k < 1, then p ≥ cεN for c > 0 and c > ck + 3.

Suppose that there is a randomized (r, s, t)-read/write stream algorithm A that outputs an
(1+ε)-approximation of Fk on every sequence of at most N elements in [N ] with probability
at least 1 − δ. Then for any Π = (π1, . . . , πk) sequence of permutations of [N ], there is a
randomized (r, s+ log2N, t)-read/write stream algorithm A′ that solves pDisjΠ

p,N with error
at most δ.

Proof. The algorithm A′ is obtained from A by implicitly converting every yi,j input
bit for pDisjΠ

p,N that is 1 into an input number πi(j) ∈ [N ] for the Fk problem (here, we
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can assume that A′ can compute πi(j) for free since Π is fixed). With log2N extra bits of
memory, A′ can also check if the total number N ′ of 1-bits in all p vectors is larger than
N . If N ′ > N , then because of the promise of pDisjp,N , the sets must be intersecting, and
hence A′ outputs 1 and halts. We now assume that N ′ ≤ N . Note that by the promise,
when pDisjp,N = 0, we have Fk = N ′.

Next we consider part (a). When pDisjp,N = 1, we have that by the definition of Fk,

Fk = N ′ + pk − p
≥ N ′ + ckεN − c(εN)1/k, since p ≥ c(εN)1/k and k > 1,

≥ N ′ + 3εN ′ + (ck − 3)εN − c(εN)1/k, since N ≥ N ′,
≥ (1 + ε)2N ′ + (ck − 3)εN − c(εN)1/k, since 0 ≤ ε < 1/2,

> (1 + ε)2N ′, since ck > c+ 3.

Then A′ just outputs 1 if Fk is greater than (1 + ε)N ′ and outputs 0 otherwise. The
correctness follows from that of A.

Next we consider part (b). We proceed as in (a), except that now the premises yield
different implications for the relative values of Fk and therefore the output condition will
be different. If pDisjp,N = 0 then Fk = N ′ as before. Since k < 1, if pDisjp,N = 1 then
now Fk < N ′. In particular,

Fk = N ′ − p+ pk

≤ N ′ − cεN + (cεN)k, since p ≥ cεN and k < 1,

≤ N ′ − 3εN ′ − (c− 3)εN + (cεN)k, since N ≥ N ′,
≤ N ′/(1 + ε)2 − (c− 3)εN + (cεN)k since 0 ≤ ε < 1/2,

< N ′/(1 + ε)2 since c− 3 > ck.

Then A′ outputs 1 if the value returned for Fk is smaller than N ′/(1 + ε) and output 0
otherwise.

For our lower bound arguments we will need the sequence of permutations Π to be of
a special form. Let p ≥ 2 and N = mn where m and n are integers. A sequence Π =
(π1, . . . , πp) of permutations on [N ] has (monotone) block-size m if and only if there is a
sequence Φ = (φ1, . . . , φp) of permutations on [m] such that πi(j) = (φi(j′)−1)n+j′′ where
j = (j′ − 1)n+ j′′ with j′ ∈ [m] and j′′ ∈ [n]. That is each permutation πi permutes blocks
of length n in [N ] but leaves each block intact. In this case, we write pDisjm,Φn,p for pDisjΠ

N,p.
Note that pDisjm,Φn,p can be viewed as the logical ∨ of m independent copies of pDisjn,p in

which the input blocks for the different functions have been permuted by Φ. In particular,
using an extension of the notation of [Beame et al. 2007], we see that pDisjm,Φn,p = fgΦ where
f = pDisjn,p and g = ∨, and

fgΦ(v11, . . . ,v1m, . . . ,vp1, . . . ,vpm) = g
(
. . . , f(v1φ1(j), . . . ,vpφp(j)), . . .

)
,

where j runs from 1 to m.

3. DEPENDENCY GRAPHS AND INFORMATION FLOW IN READ/WRITE STREAM
ALGORITHMS

Our main goal is to argue that functions of the form fgΦ, such as pDisjm,Φn,p , can be hard to
solve in the read/write streams model, even though the ordinary un-permuted version fg,
which corresponds to pDisjn,p, may be easy. The intuition is that since the input bits are
permuted, an algorithm with small space has to make many passes, back and forth, to check
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corresponding bits in different input vectors. To this end, in this section we define and study
an object called a dependency graph to capture the flow of information between the tapes
in various stages of a deterministic read/write stream algorithm’s execution. This notion
simplifies the notion of skeletons used in previous work [Grohe and Schweikardt 2005; Grohe
et al. 2006; 2009; Beame et al. 2007]; although much simpler, it suffices for our purposes.
In this section, we only consider deterministic (r, s, t)-read/write stream algorithms.

Recall that the input is initially on the first tape, and that at any step, one of the t tape
heads overwrites the contents of the current cell and moves either left or right, all of which
depend only on the state of the algorithm and the contents of the t cells currently read by
the heads.

Definition 3.1. Fix a deterministic read/write stream algorithm A that makes r reversals
on input v. The dependency graph corresponding to v, denoted by G(v), has r + 2 levels;
level 0 corresponds to the beginning of the computation and level r+ 1 corresponds the end
of the computation. Level ` for 1 ≤ ` ≤ r encodes the dependency on the input of each of
the t tapes immediately before the `-th reversal in the following manner: For 0 ≤ ` ≤ r+ 1
there is one node at level ` of G(v) for each tape cell that either contained a symbol of input
v or was visited at some time during the computation on input v before the `-th reversal, or
before the end of the computation for ` = r+ 1. The nodes at level ` are ordered according
to the positions of their corresponding cells on the tapes. Because of this we can view nodes
of the dependency graph, interchangeably, as tape cells. There are directed edges u→ v to
each node v at level ` from each node u at level `−1 that v depends on, as described below.
(We will drop v from G(v) if the input is fixed.)

The crucial observation made in [Grohe and Schweikardt 2005] about read/write
stream algorithms is the following: When a symbol is written in a particular cell by the
read/write stream algorithm between its (`− 1)-st and `-th reversal (i.e, at level ` of G(v)),
what is being written in that cell can only depend on the current state and the t symbols
currently being scanned by the read/write heads. However, the values of these t symbols
were determined before the (`− 1)-st reversal. This implies that any cell at level ` depends
either on t cells including itself in level `−1 (when it is overwritten in level `) or only on itself
in level `− 1 (when it is intact in level `). The dependency graph thus consists of a layered
directed graph of tape cells of in-degree either t or 1 representing the cell dependencies,
where all the edges connect consecutive layers.

Next we define the notion of input dependency. The definition is motivated by the fact
that the input to a function fgΦ is partitioned into blocks.

Definition 3.2. For a fixed input v and some b ≥ 1, let v = (v1, . . . ,vb) be the partition
of v into b blocks of consecutive bits. For every cell/node c in G(v), define the input depen-
dency of c, denoted Ib(c) ⊆ [b], to be the set of input blocks that it depends on: i ∈ Ib(c) if
and only if there is a directed path from a cell in vi at level 0 to c.

We note that the set Ib(c) depends on how we partition v, which explains the subscript
‘b’ in the notation. Since in this paper we are only interested in those partitions into equal-
length blocks, this notation suffices; moreover, we will sometimes drop the subscript ‘b’ if
it is clear from the context. Since the fan-in of every node in the graph is at most t, we
immediately have that for every cell c in level `, |I(c)| ≤ t`.

We will prove two key lemmas in this section, Lemma 3.4 and Lemma 3.8. The first lemma,
Lemma 3.4, says that for most nodes/cells in G(v), if the node/cell depends on some input
block, then so are adjacent cells. Before proving this lemma, we make the following basic
observation. For any cell c, we write right(c) and left(c) for the cells immediately to its
right and to its left, respectively, on the same tape.
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Proposition 3.3. Consider any fixed level 0 < ` ≤ r + 1 in G. Fix any cell c on the
j-th tape at level `, and cell c̃ on the j̃-th tape at level ` − 1, for some j, j̃ ∈ [t], such that
c̃ → c is in G. Assume that both cells c and right(c) are overwritten in the `-th pass, then
the following holds:

— if the j-th and j̃-th heads are moving in the same direction in the `-th pass, then there is
a unique cell c′ on the j̃-th tape from c̃ to the right such that c′ → right(c) is in G,

— and if the j-th and j̃-th heads are moving in opposite direction in the `-th pass, then there
is a unique cell c′ on the j̃-th tape from c̃ to the left such that c′ → right(c) is in G.

Similarly by symmetry, the above statements are true if we simultaneously replace every
“right” with “left” and every “left” with “right”.

Proof. We prove the first item, with the second item followed by symmetry. For the
first item, there are 2 cases: (I) either both heads are moving from left to right, or (II) they
are moving from right to left in the `-th pass.

Let us first consider case (I). Since c̃→ c is in G, when the cell c is overwritten, the head
on the j̃-th tape is reading c̃. After c is overwritten, the j-th tape head moves to right(c).
Since we assume that right(c) will be overwritten, the claim follows.

The claim for case (II) also follows by a similar observation.

Lemma 3.4. Suppose that an input v is partitioned into b blocks: v = (v1, . . . ,vb). Let
C be the set of all cells on the j-th tape at any level ` in G(v), for 0 ≤ ` ≤ r + 1 and
any j ∈ [t]. Fixing any i ∈ [b], let Sj,` = {c ∈ C | i ∈ I(c) and i /∈ I(right(c))} and
S′j,` = {c ∈ C | i ∈ I(c) and i /∈ I(left(c))}. Then |Sj,`| and |S′j,`| are both ≤ t`+1.

Proof. We will bound the size for Sj,`, and the bound for S′j,` will follow by symmetry.
The lemma holds for ` = 0 since the only cell at level 0 in Sj,0 is at the right boundary

of vi. Thus |Sj,0| = 1. Furthermore, if there is only 1 tape (j = t = 1), then it is immediate
that this is also the only cell at any level ` > 0 in S1,`. Thus |S1,`| = 1 for any ` ≥ 0 if t = 1.
Thus in the following, it suffices to prove the lemma for t > 1 and ` > 0. We will show that
|Sj,`| ≤ t` + t`−1 + . . .+ 1 and thus is < t`+1.

Proceding by induction on `, consider any fixed ` > 0. Recall that at level `, a cell in
G(v) gets its input dependency from at most t cells on different tapes at level `− 1 that it
depends on. To bound |Sj,`|, we partition Sj,` = U∪V ∪W , where U consists of cells c ∈ Sj,`
that are not overwritten in the `-th pass, V consists of cells c ∈ Sj,` that are overwritten
but right(c) is not overwritten in the `-th pass, and W consists of cells c ∈ Sj,` such that
both c and right(c) are overwritten in the `-th pass.

We observe that |V | ≤ 1 since the only cell in V is the rightmost cell on tape j that is
overwritten in the `-th pass. We also observe that any c ∈ U also appears in Sj,`−1 (at level
` − 1). This follows since if c ∈ U , then the same cell c at level ` − 1 also depends on the
input block i, whereas the cell right(c) at level ` − 1 does not depend on this input block
(since right(c) at level ` does not). Thus c ∈ Sj,`−1.

Next we bound |W |. Consider any c ∈W . Since c is overwritten, there must be some cell c̃
from level `−1 on an j̃-th tape such that c̃→ c is in G, and i ∈ I(c̃). By Proposition 3.3, since
right(c) is also overwritten, there is a unique cell c′ on the j̃-th tape such that c′ → right(c)
is in G. Furthermore, c′ must be from c̃ to the right or to the left, depending only on the
relative movements of the j-th and j̃-th heads. Without loss of generality, assume the two
heads move in the same direction. Since i /∈ I(right(c)), we have i /∈ I(c′). Thus, there must
be a cell c′′ between c̃ and c′ (also on level `− 1) such that i ∈ I(c′′) but i /∈ I(right(c′′)).
In other words, c′′ ∈ Sj̃,`−1. We say that c′′ contributes to c ∈W .
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Note that in any fixed level ` > 0, no head reverses its direction. Thus, any such cell c′′
from level ` − 1 contributes to at most one cell c ∈ W . Summing over all t tapes at level
`− 1, we have that |W | ≤ |S1,`−1|+ . . .+ |St,`−1|.

Thus |U ∪V ∪W | ≤ |Sj,`−1|+1+ |S1,`−1|+ . . .+ |St,`−1|. However, with only one head on
each tape, a cell c′′ on the same tape j̃ = j can only contribute to the same cell c = c′′ ∈W ,
and thus, any cell in Sj,`−1 (at level `− 1) which is also in U (at level `) cannot contribute
to any cell in W . Thus we have

|Sj,`| = |U ∪ V ∪W |
≤ 1 + |S1,`−1|+ . . .+ |St,`−1|,

then by induction,
≤ 1 + t(t`−1 + t`−2 + . . .+ 1)

≤ t` + t`−1 + . . .+ 1,

which completes the proof.

Before going to the second key lemma, Lemma 3.8, we define some more notation and
make a few more observations. For a set T , we write ST to denote the set of strings of length
|T | that are permutations of T . A string s of length |s| is said to be the interleaving of another
set of strings {s1, . . . , st} if there is a partition of {1, . . . , |s|} into t subsets {Q1, . . . , Qt}
such that for every 1 ≤ i ≤ t, s|Qi = si, where s|Qi denotes the string obtained from s
projected on coordinates in Qi only, and for every j ∈ Qi, we say that the string si takes
the j-th entry of s.

Consider any fixed dependency graph G(v) on an input v = v1 · · ·vb. For any fixed level
` in G(v) and any fixed tape, consider the sequence of nodes in G(v) of all the cells on the
tape, in left to right order. An input dependency string C of this tape at this level is any
string in SI(c1) · · · SI(cL) ⊂ [b]∗ where the cells of the tape are c1, . . . , cL, in left to right
order. Thus C can be partitioned into L disjoint substrings, each of which corresponds to a
string in SI(ci) for some i ∈ [L], and is called a cell portion of C associated with the cell ci.

Proposition 3.5. Let C ∈ [b]∗ be an input dependency string of any one tape at any
level ` in G(v1 · · ·vb). Then C can be written as the interleaving of at most t` monotone
sequences so that every such sequence s takes at most one entry in every cell portion of C.

Proof. The general idea is taken from [Grohe et al. 2006; 2009]. We proceed by induc-
tion on `. We will prove a somewhat stronger inductive claim, namely that the property
above also holds for more general strings, namely those strings C in

⋃
ai≥1 S

a1
I(c1) · · · S

aL
I(cL),

which we call the set of extended dependency sequences for a tape with cells c1, . . . , cL.
Note that each of these strings can be partitioned into

∑L
i=1 ai cell portions, each of which

corresponds to a string in SI(ci) for some i ∈ [L].
For ` = 0, the only non-empty tape is the input tape and C itself is a monotone sequence

1 · · · 12 · · · 2 · · · b · · · b of |v| entries (where “1” occurs |v1| times, “2” occurs |v2| times, and
so on). Obviously, every nonempty cell c has |I(c)| = 1. Thus the claim is true for ` = 0.

For the induction step, suppose that the tape we are considering is the j-th tape, where
j ∈ [t]. At level `, the j-th tape head visits some consecutive cells in the j-th tape and the
remaining cells are kept intact. Thus, C can be written as C = C ′DC ′′, where C ′ and C ′′

correspond to those cells that are intact from level ` − 1 and D corresponds to those cells
that are visited. For each of those former cells, its input dependency is unchanged from
level ` − 1, and for each of those latter cells, its input dependency is the union of those of
the t cells from level ` − 1 that it depends on. Thus D can be written as the interleaving
of t sequences D1, . . . , Dt, where sequence Di for i ∈ [t] denotes a substring of an extended
input dependency of tape i from level `− 1, or the reverse of it, depending only on whether
the j-th and the i-th heads are moving in the same or opposite direction.
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Note that C ′DjC
′′ is an extended input dependency string of tape j at level ` − 1. By

induction, each of D1, . . . , Dt and C ′DjC
′′ can be written as the interleaving of at most

t`−1 monotone sequences each of which takes at most 1 entry from every cell portion. Hence
C can be written as the interleaving of at most t` monotone sequences satisfying the same
requirement.

Proposition 3.6. Suppose that an input v is partitioned into b blocks v = (v1, . . . ,vb)
for some b ≥ 1. For any cell c at any level in G(v), let

H(c) =
{
{i, j} | 1 ≤ i 6= j ≤ b and i, j ∈ I(c)

}
.

Then | ∪c∈G(v) H(c)| < t3r+4b.

Proof. Note that for any two input blocks vi and vj , if a cell c depends on both blocks
at any level ` ≤ r, then the same cell also depends on the two blocks at level r + 1. Thus,
it suffices to bound the union of all cells at the last level.

Fix any tape j ∈ [t]. Let C be an input dependency string of tape j at level r + 1. From
Proposition 3.5, C can be decomposed into a set S of tr+1 interleaved monotone sequences
with the requirement of cell portions as stated. For any cell c on this tape, let d(c) be the
right boundary of the cell portion of c in C. For any sequence s ∈ S and for some i ∈ [b],
we say that c stands at the i-th stage in s if the rightmost entry on the left of d(c) that s
takes in C has value i. Note that s is monotone.

Define a matrix T whose tr+1 rows are indexed by the sequences in S and whose columns
are indexed by the cells in tape j as follows: T has a number of columns equal to the number
of cells with nonempty input dependency, where the columns are placed in the same left-
to-right order as their corresponding cells. Each entry in T records the stage at which its
corresponding cell stands in its corresponding sequence. For each column c corresponding
to a cell c, let

H ′(c) = {{Ts,c , Ts′,c} | s 6= s′ and Ts,c 6= Ts′,c}.
Firstly, we observe that H(c) ⊂ H ′(c). To see this, consider some {i, j} ∈ H(c). Then

i 6= j ∈ [b] and i, j ∈ I(c). Therefore i and j both appears in the cell portion of c in C.
Then clearly there must be some s ∈ S that takes i and some s′ ∈ S that takes j. Because
of the property guaranteed by Proposition 3.5, s 6= s′. Thus, c stands at stage i in s and at
stage j in s′. It follows that {i, j} ∈ H ′(c).

We also immediately get |H ′(c)| < (tr+1)2 = t2r+2.
For any two adjacent columns c and c′ corresponding to two adjacent cells c and c′,

respectively, if H ′(c) 6= H ′(c′), then there must be a sequence s ∈ S such that c and c′

stand at different stages in s. Since s is monotone, this happens at most b times for any
single s. Since there are at most tr+1 sequences, there are at most btr+1 different H ′(c)
over all columns. Thus | ∪c∈G(v) H(c)| ≤ t · t2r+2 · btr+1 = bt3r+4, where the first factor “t”
accounts for t different tapes.

The next lemma specifically concerns functions of the form fgΦ such as pDisjm,Φn,p . For
such a function, we define the following notation for the set of input coordinates for an f
fed into g.

Definition 3.7. Given φ1, . . . , φp permutations on [m], and i ∈ [m], define

Ji = {(1, φ1(i)), (2, φ2(i)), . . . , (p, φp(i))}.
Recall that r is the number of reversals in the algorithm. The following lemma intuitively

says that for functions like fgΦ, if r is small, then there are many copies of f in fgΦ for
which the algorithm cannot compare two input bits of f directly, as it does to solve the
un-permuted promise set-disjointness problem, as noted in Section 2. A similar observation
for the special case p = 2 was made in [Grohe et al. 2006; 2009].
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Lemma 3.8. Suppose that an input v is partitioned into b = p · m blocks: v =
(v1,1, . . . ,vp,m). For any sequence of permutations φ1, φ2, . . . , φp on [m], there exists a set
I ⊂ [m] with

|I| ≥ m− p · t5r+8relsorted(φ1, . . . , φp)

such that for every i ∈ I, there is no cell c in G(v) such that |Ji ∩ I(c)| > 1, where Ji is
defined in Definition 3.7.

Proof. This is a generalization of an argument in [Grohe et al. 2006; 2009] which gave
a proof for the special case p = 2. As in the previous proposition, it suffices to prove the
claim for level r + 1. Let Q = {i ∈ [m] | ∃c : |Ji ∩ I(c)| > 1}. Then I = [m] \Q. Thus, we
need to prove that |Q| ≤ p · t5r+8relsorted({φ1, . . . , φp}).

We fix any partition of Q into disjoint subsets Q =
⋃

1≤p1<p2≤pQp1,p2 such that

Qp1,p2 ⊆ {i ∈ Q | ∃c : (p1, φp1(i)), (p2, φp2(i)) ∈ I(c)}

for any 1 ≤ p1 < p2 ≤ p. Applying Proposition 3.6 (with b = p), there are at most
pt3r+4 nonempty Qp1,p2 . Therefore there must be some p1 < p2 ∈ [p] such that |Qp1,p2 | ≥
|Q|/

(
t3r+4p

)
. Fix these p1 and p2. We will next show that

relsorted({φ1, . . . , φp}) ≥ sortedness(φp1 , φp2) ≥ |Qp1,p2 |/t2r+4

which gives the claim.
We proceed to prove the last inequality; so, we focus on the two big chunks of input,

vp1,1, . . . ,vp1,m and vp2,1, . . . ,vp2,m, and argue that sortedness(φp1 , φp2) must be large if
there are many i’s (those in Qp1,p2) for which the algorithm can simultaneously examine
both vp1,φp1 (i) and vp2,φp2 (i).

Let Qp1,p2 = {i1, . . . , iq}. Let C ∈ {(1, 1), . . . , (p,m)}∗ be the string obtained by concate-
nating the input dependency of all t tapes (at level r + 1), so that for any cell c, if I(c)
contains both (p1, φp1(i)) and (p2, φp2(i)) for some i ∈ Qp1,p2 , then both of them are placed
consecutively in C and in this order. Then there exists a permutation π on [q] so that the
following sequence

L = (p1, φp1(iπ(1))), (p2, φp2(iπ(1))), . . . , (p1, φp1(iπ(q))), (p2, φp2(iπ(q)))

is a subsequence of C. Without loss of generality, for convenience of notation, assume that
π is the identity permutation.

By Proposition 3.5, C, and hence L, can be decomposed into a set S of at most t · tr+1 =
tr+2 monotone sequences. Thus there is some monotone sequence s ∈ S such that s contains
at least q/|S| ≥ q/tr+2 entries of the form (p1, ∗) in L. In other words, there exists a set
Q1 ⊂ {1, . . . , q} of size at least q/tr+2 such that for every j1 < j2 ∈ Q1, either

(†) φp1(ij1) < φp1(ij2) or φp1(ij1) > φp1(ij2),

depending only on whether s is increasing or decreasing, respectively. Let the indices in Q1

be j1 < . . . < jq1 . Consider the following subsequence of L,

L′ = (p2, φp2(ij1)), . . . , (p2, φp2(ijq1 )).

As before, there must be at least one monotone sequence s′ ∈ S such that there are at
least q1/|S| = q1/t

r+2 such entries in s′. In other words, there exists a set Q2 ⊆ Q1 of size
at least q1/t

r+2 ≥ q/t2r+4 such that for every l1 < l2 ∈ Q2, either φp2(il1) < φp2(il2) or
φp2(il1) > φp2(il2), depending only on whether s′ is increasing or decreasing, respectively.
This fact together with (†) above gives us sortedness(φp1 , φp2) ≥ q/t2r+4, as required.
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4. SIMULATION OF READ/WRITE STREAM ALGORITHMS BY COMMUNICATION
PROTOCOLS

In this section we apply the properties of dependency graphs and information flow in
read/write stream algorithms in Section 3 to obtain a simulation of read/write stream
algorithms for functions of the form fgΦ by communication protocols.

We will show that any given algorithm solving fgΦ can be reduced to a communication
protocol solving the following p-party NIH communication game: (1) the p players are to
compute fgΦ which contains m instances of f on distinct inputs, (2) except for some i-th
instance of f , all of them already know the input to all the other f ’s, and (3) the p input
blocks to the i-th instance of f are distributed to the p players. We will formally define
this game shortly in Theorem 4.2. The key observation for this reduction is Lemma 3.8.
Recall that this lemma intuitively says that for functions of the form fgΦ for “random” Φ,
if the number of passes in an algorithm is small, then for most instances of f in fgΦ, those
corresponding to the set I in Lemma 3.8, the contents written on any tape at any time
in the algorithm depends only on the state (memory) of the algorithm and on at most 1
out of p input blocks to the instance of f . Thus, if the i-th instance of f in the above
communication game is in I, the players can intuitively simulate the given algorithm for fgΦ
by communicating the state of the algorithm to each other as necessary. If the algorithm
uses small space and small number of passes, the communication cost is small.

We next define the construction of the input of fgΦ in the above communication game.
In the following definition, it will be helpful to think of Y as the input blocks of the i-th
instance of f that will be distributed to the players in the above communication game.

Definition 4.1. Fix p ≥ 2,m ≥ 1, i ∈ [m], and Φ = (φ1, . . . , φp) to be a sequence of
permutations on [m]. Let Ji be defined as in Definition 3.7. Let X be an input domain and
Y = (Y1, . . . , Yp) be an input in Xp. For each ρ ∈ Xp×(m−1), we define v = v(Y, i, ρ,Φ) =
(v1,1, . . . ,vp,m) ∈ Xpm such that vj,φj(i) = Yj for every j ∈ [p], and v|({(1,1),...,(p,m)}−Ji) =
ρ.

The input v for fgΦ is constructed by using Y as an input for the i-th instance of f and
using ρ as input for all other instances. The following is the main theorem of this section.

Theorem 4.2. For every integer t > 0 there is a constant c > 0 such that the following
holds. Let p ≥ 2,m ≥ 1, i ∈ [m], Φ = (φ1, . . . , φp) be any sequence of p permutations on
[m], X be any input domain with n = dlog2(X)e, and ρ ∈ Xp×(m−1). Also let A be any
deterministic (r, s, t)-read/write stream algorithm on Xp×m (which computes some function
fgΦ). Then there is a p-party NIH protocol Pi,ρ,Φ, in which all players know i, ρ, and Φ, with
the following properties: on every input Y = (Y1, . . . , Yp) ∈ Xp where each player j receives
Yj,

(a) |Pi,ρ,Φ| ≤ ctrsr2p log2(pmn),
(b) if the protocol Pi,ρ,Φ does not “fail” on Y, then Pi,ρ,Φ(Y) = A(v), where v = v(Y, i, ρ,Φ)

is defined as in Definition 4.1,
(c) but the protocol may “fail” on Y, i.e., Pi,ρ,Φ(Y) =“fail”, however, this happens only if

i /∈ Iv, where Iv ⊆ [m] is the set as guaranteed by Lemma 3.8.

Proof. We describe the protocol first and then analyze it. Let G(v) be the dependency
graph on input v = v(Y, i, ρ,Φ).

After constructing v, each player executes A on v. Note that all players know all of v
except the p blocks holding Y1, . . . , Yp, each of which is known to exactly one player. Since
no player knows the whole input, in order to correctly simulate A, they need to communicate
during the simulation. Along the way, each player gradually constructs and keeps a copy of
G(v). Each keeps track of the level (the pass) in G(v) that A is currently working on and
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the machine state of A. Specifically, for every tape cell at every level in G(v) written by A,
the players record whether (1) the contents of the cell can be computed by everyone, or (2)
the contents of the cell can only be computed by a specific player.

The cells of type (1) are those cells c such that (j, φj(i)) /∈ I(c) for every j ∈ [p]. For each
of these cells, each of the players records: the machine state immediately before overwriting
the cell, and the (at most t) cells of the previous level on which this cell depends. Note
that those cells that a type-(1) cell depends on are also type-(1) cells. It is clear that by
recursion, every player can compute the contents of each of these cells as needed.

The cells of type (2) are those that depend on some input held by a particular player.
Consider a cell c such that (j, φj(i)) ∈ I(c) for some j ∈ [p]. Each player records that this
cell depends on player j. We will show later what information player j needs to record so
that she can compute the contents of c herself.

Note that there is another type of cell, whose content depends on the inputs from more
than one player. As soon as the simulation comes to such a cell, it will stop and the protocol
will output “fail”. We will explain more about this point later.

The simulation proceeds as follows. Each player executes A step by step. At every new
step in which all the t tape heads are to read cells of type (1) only, every player can compute
the contents of the t cells without any communication. Since each of them holds the current
machine state, they can compute which one of the t tapes is written and the moves and the
contents of the write. Each of them thus records, for the overwritten cell, that it is of type
(1) as well as the tape heads and the machine state. To end this step, each of the players
also has the new machine state.

The more interesting case is when at a new step, at least one of the tape heads is to read
a cell of type (2) and all currently scanned type-(2) cells depend on a single player j. All
players will then wait for player j to communicate. Player j will proceed as follows. As long
as at least one of the tape heads still reads a cell depending on her and the algorithm does
not make any direction reversal, she proceeds with the simulation, and clearly has sufficient
information to do so. Along the way, for every cell she overwrites, she records the machine
state and all the tape head positions for that cell, so that she can compute the cell later
when needed. This process stops when the algorithm comes to a new step in which either
all the tape heads are to read a cell of type (1), or at least one of the tape heads depends
on another player, or one of the tape heads reverses its direction. When this process stops,
player j broadcasts: (a) all t updated tape head positions and directions, and (b) the new
machine state. Since there has been no reversal, all other players know precisely which cells
were visited by player j and they mark all those overwritten cells, which are all of the same
level in G(v), as being of type (2) and depending on j. Therefore, all players now have
sufficient information to proceed.

The last case is when at a new step, at least two of the tape heads are to read cells of
type (2) and these two cells depend on two different players. In this case, all players stop
the simulation and output “fail”. By Lemma 3.8, if i ∈ Iv, this case will never happen, so
part (c) is proved.

When A terminates, the protocol will output exactly as A does, and so part (b) is proved.
It remains to compute the communication cost. To do so, we need to bound the cost

of each communication and the number of times a communication occurs. We need the
following easy proposition due to Grohe and Schweikardt [2005]; we give a proof at the end
of this section for completeness.

Proposition 4.3. ([Grohe and Schweikardt 2005; Grohe et al. 2009]) The total number
of tape cells reached in a (r, s, t)-read/write stream algorithm A is at most 2(r+1)(s+1)M ,
where M is the input length.
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Given Proposition 4.3, the cost of one communication is t log2(2(r+1)(s+1)pmn) + s ≤
∆(rs + log2 pmn), for some constant ∆ = ∆(t) > 0. When one player communicates, one
of the tape heads has either just reversed or just moved from a cell depending on her to
another cell that does not. The former means that the algorithm comes to the next level,
which happens at most r + 1 times. By Lemma 3.4 (with b = p), the latter occurs at most
tr+2 + tr+1 + . . .+ 1 times for a single tape and single player. Summing over all tapes and
all p players, this occurs at most ptr+4 times in total. Thus, the total communication is

∆(rs+ log2 pmn)(r + 1 + ptr+4) ≤ ctrsr2p log2(pmn)

for some constant c = c(t) > 0, which proves part (a) and completes the proof of the
theorem.

It remains to prove Proposition 4.3.

Proof of Proposition 4.3. We upper bound the number of cells reached by the num-
ber of non-blank cells left by A. The initial number of non-blank cells is clearly M . It suffices
to prove that after each reversal, the number of non-blank cells is multiplied by at most
2s+1.

Consider the interval between any two consecutive reversals. Notice that in this time,
if any head reaches a new (blank) cell, it will keep reaching new cells, since it does not
reverse. Without loss of generality, assume that the order in which the heads reach new
cells is head t first, then head t− 1, and so on. Consider any step in the pass, at which the
currently scanned symbols are (b1, . . . , bi,�, . . . ,�), where bj ∈ {0, 1} for every j ∈ [i] and
there are t− i blanks (“�”). Then, no matter how the heads i + 1, . . . , t move in the next
several steps, all the heads 1, . . . , i can only stand still for at most 2s more steps, otherwise
the algorithm would be in a same state twice and loop forever. For the same reason, the
pass must end in at most 2s steps after the algorithm reads (�, . . . ,�) of t blanks. Thus,
if K is the number of non-blank cells before the pass, in this pass the algorithm can make
at most (K + 1)2s ≤ K2s+1 new cells, where the “+1” accounts for the final all-blank
configuration.

5. BOUNDS FOR DISJOINTNESS AND FREQUENCY MOMENTS

Using Lemma 2.3 and the fact that pDisjm,Φn,p is a special case of pDisjΠ
N,p whereN = mn, we

will lower bound the frequency moment problems by giving lower bounds for the pDisjm,Φn,p

problem. This problem was previously studied in [Beame et al. 2007] for the special case
p = 2; our bounds extend those in [Beame et al. 2007] for any p ≥ 2 and also improve the
bounds for p = 2. We will show how to use our simulation described in the last section to
prove lower bounds for pDisjm,Φn,p for read/write stream algorithms.

To show lower bounds for pDisjm,Φn,p for read/write streams algorithms, we will reduce
any algorithm solving pDisjm,Φn,p to a p-party NIH communication protocol solving the set-
intersection problem pDisjn,p, and then apply known communication lower bounds for the
latter problem. We next discuss our ideas to obtain this reduction. Let f = pDisjn,p,
recalling that pDisjm,Φn,p = f∨Φ . Given any read/write stream algorithm A solving f∨Φ , the
reduction in Theorem 4.2 gives us, for any i ∈ [m] and any ρ which is the input for all
instances of f , except the i-th instance, a communication protocol Pi,ρ,Φ that simulates
A, in which the p input blocks of the i-th instance of f are distributed to the p players.
To further reduce this protocol to a communication protocol for f = pDisjn,p, we need to
resolve two issues. First of all, the simulation outputs the value of A which computes f∨Φ ,
an OR of m instances of f , not the value of a single f . Second of all, the simulation may
fail.
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We resolve the first issue by choosing ρ so that the values of all other instances of f is 0.
Thus the value of f∨Φ is exactly the value of the i-th instance. The fix for the second issue is
more subtle. Theorem 4.2 tells us that the simulation fails only if the i-th instance does not
belong to a “good” set Iv, where v is an input to f∨Φ . Lemma 3.8 also tells us that if A does
not make too many passes and Φ is some fixed set of random permutations, the set Iv is
always large, say, containing at least a 3/4 fraction of all instances in f∨Φ . Thus, intuitively,
we expect that if we choose i ∈ [m] randomly, then with good probability, the i-th instance
is in Iv, and hence the simulation does not fail. However, the set Iv, which is determined by
A, depends on v, and hence depends on all of i, ρ, and Y, which is the input of the k players
for the i-th instance of f . Thus, it may happen that i almost never belongs to Iv. However,
despite this dependency, we will construct v so that i and Iv are statistically independent,
and thus, a randomly chosen i will belong in Iv with a good probability. This is the point
that we need to use the special properties of the input of f = pDisjn,p. Intuitively, we
show that if Y is an input where f(Y) = 0, we can choose ρ so that the inputs to the i-th
instance of f and to all other instances look statistically the same. Hence A cannot tell
which instance is the embedded i-th instance, and therefore Iv must be independent from
i.

We proceed to describe the reduction formally.

Lemma 5.1. For any constant t ≥ 1 there is a constant c = c(t) > 0 such that, given
any randomized (r, s, t)-read/write stream algorithm A for pDisjm,Φn,p on Xpm with error at

most δ, where X = {0, 1}n and pt5r+8relsorted(Φ)
m = d < 1, there is a randomized p-party NIH

protocol P for pDisjn,p of cost ctrsr2p log2(pmn) with error at most δ + d(1− δ).

Proof. Suppose that A uses at most Γ random bits in its execution. For any string
R ∈ {0, 1}Γ, let AR denote the deterministic algorithm obtained from A using R as its
source of randomness. We denote by

(
[n]
`

)
the set of x ∈ X = {0, 1}n with |x| = `.

Let f = pDisjn,p. Thus, f−1(0) is the set of of inputs each consisting of p pair-wise
disjoint subsets of [n]. We also have that by definition, pDisjm,Φn,p = f∨Φ .

Next we describe the randomized communication protocol P for pDisjn,p. On input
Y = {Y1, . . . , Yp} ∈ Xp:

(1) Each player j broadcasts |Yj |.
(2) The players use the public random bits to uniformly and randomly generate the follow-

ing:
(a) ρ ∈ (f−1(0) ∩ [×pj=1

(
[n]
|Yj |
)
])m−1 ⊆ Xp(m−1),

(b) i ∈ [m],
(c) R ∈ {0, 1}Γ,
(d) a permutation τ : [n]→ [n].

(3) Each player j computes Y ′j = τ(Yj) which, thinking of Yj as subset of [n], is a new
subset obtained by applying τ to each element in Yj .

(4) Let Y ′ = {Y ′1 , . . . , Y ′p}. The players run protocol Pi,ρ,Φ with input Y ′ obtained by
applying Theorem 4.2 with AR and v = v(Y ′, i, ρ,Φ).

(5) If Pi,ρ,Φ outputs “fail” then output 1; else output what Pi,ρ,Φ does.

We analyze the error of this protocol P. Let G(v) be the dependency graph induced by
AR on input v and Iv ⊆ [m] be the set defined by G(v) as guaranteed in Lemma 3.8. The
correctness of the protocol depends on whether i ∈ Iv and whether AR(v) is correct.

First we consider the case Y1, . . . , Yp are disjoint. After being re-mapped by τ , the sets
Y ′1 , . . . , Y

′
p are also disjoint and furthermore, uniformly distributed in f−1(0)∩ [×pj=1

(
[n]
|Yj |
)
].

Hence, by construction, v is uniformly distributed over (f−1(0)∩ [×pj=1

(
[n]
|Yj |
)
])m. Therefore
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Iv is statistically independent from i. By Lemma 3.8, |Iv| ≥ (1−d)m. Thus, the probability
that i ∈ Iv is at least 1− d. Formally, we have

Pr[P(Y) = 0 | f(Y) = 0] ≥ Pr[AR(v) = 0 | f(Y) = 0]
× Pr[P(Y) = 0 | AR(v) = 0, f(Y) = 0]

≥ (1− δ) Pr[P(Y) = 0 | AR(v) = 0, f(Y) = 0]
≥ (1− δ) Pr[i ∈ Iv | AR(v) = 0, f(Y) = 0]
≥ (1− δ)(1− d).

Next we consider the case that the sets Y1, . . . , Yp are not disjoint, i.e., f(Y) = 1. Thus,
by construction, f(Y ′) = 1 and f∨Φ (v) = 1. In this case if Pi,ρ,Φ(Y ′) outputs “fail”, the
protocol always outputs correctly. Otherwise it will output what A does. In other words,

Pr[P(Y) = 1 | f(Y) = 1] = Pr[Pi,ρ,Φ(Y ′) = fail | f(Y) = 1]

+ Pr[Pi,ρ,Φ(Y ′) = 1 | f(Y) = 1]

= Pr[Pi,ρ,Φ(Y ′) = fail | f(Y) = 1]

+ Pr[AR(v) = 1 and Pi,ρ,Φ(Y ′) 6= fail | f(Y) = 1]
≥ Pr[AR(v) = 1 | f(Y) = 1]

= Pr[AR(v) = 1 | f∨Φ (v) = 1] ≥ 1− δ,
where the last inequality follows from the fact that Pr[B]+Pr[A∧¬B] ≥ Pr[A∧B]+Pr[A∧
¬B] = Pr[A] for any probability events A and B.

Thus the bound on the error follows. Finally, the cost of P is p log2 n plus the cost of
Pi,ρ,Φ, which completes the lemma.

We are ready to derive our read/write streams lower bound for pDisjm,Φn,p .

Lemma 5.2. Let 1/4 > δ ≥ 0, 1/2 > β > 0, 1 > η > α > 0, and t ∈ N be any constants.
Then for any r, s : N 7→ R+ such that r(N) = o(logN) and s(N) = o(N1− 4β

2β+1−η), there
is no randomized

(
r, s, t

)
-read/write stream algorithm with error at most δ for pDisjm,Φ

∗

n,p ,
where p ≤ m 1

2−α = nβ , N = mn, and Φ∗ = Φ∗p,m as guaranteed in Corollary 2.2.

Proof. Suppose for contradiction that there is such an algorithm A. Then by
Lemma 5.1, there is a randomized NIH communication protocol for pDisjn,p with cost
O(trsr2p log2(pmn)) and with error at most d + (1 − d)δ, where d = pt5r+8relsorted(Φ∗)

m . For
any constant a > 0 and N sufficiently large, we have r(N) ≤ a log2N = a(1 + 1−2α

2β ) log2m.
Since relsorted(Φ∗) ≤ 2e

√
m, we have d + (1 − d)δ ≤ 2δ < 1/2 for a sufficiently small

depending on δ, t, and α.
By [Gronemeier 2009; Jayram 2009], this communication complexity must be Ω(np ). This

gives us, for some suitable constant η′ depending on a, η, and α that s = Ω(n1−2β−η′) which

is Ω(N
(1−2β−η′)(1−2α)

1+2β−2α ) and hence Ω(N1− 4β
2β+1−η), which violates our assumption about A.

The lemma follows.

This immediately implies a lower bound on pDisjΠ∗

N,p where Π∗ = Π∗N,p is the extension
of Φ∗p,m to a sequence of p permutations on [N ].

Theorem 5.3. Let 1/4 > δ, γ > 0, η > 0, and t ≥ 1 be constants. Then there exists an
infinite family {Π∗p,N}, where each Π∗p,N is a sequence of p permutations on [N ] and p ≤ Nγ ,
such that there is no randomized

(
o(logN), N1−4γ−η, t

)
-read/write stream algorithm with

error at most δ for pDisjΠ∗

N,p.
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Proof. This follows from Lemma 5.2 where we set N = mn. Let Φ∗p,m be the sequence
of permutations on [m] used in Lemma 5.2. Let Π∗p,N be the extension of Φ∗p,m to p permu-
tations on [N ] as described in Section 2. The theorem follows by applying the lemma with
α, β > 0 so that 1

γ = 1
β + 2

1−2α and α is sufficiently small.

By Theorem 5.3 and Lemma 2.3(a) we obtain the following lower bounds for approxi-
mating Fk and F ∗∞.

Corollary 5.4. Let k > 1, t ≥ 1, η > 0 be constants. Then there is no randomized(
o(logN), O( 1

ε4/k
N1− 4

k−η), t
)
-read/write stream algorithm that with probability at least 3/4

outputs an approximation of Fk within a factor of (1 + ε) on every input stream of up to N
elements from [N ], for any 1 ≥ ε ≥ 1/N .

Proof. Let ζ be such that ε = N−ζ/4. Then by setting p = dN (1+ζ)/ke = d(4εN)1/ke,
Lemma 2.3(a) and Theorem 5.3 imply that no randomized
(o(logN), O(N1−4(1−ζ)/k−η), t)-read/write stream algorithm can compute Fk within a (1+ε)
factor. Replacing N−ζ by 4ε yields the claimed bound.

Letting ε = 1 in the above implies that there is no factor 2 approximation to Fk for k > 4
that uses small space and a small number of reversals in the read/write streams model.

Corollary 5.5. Let k > 4, t ≥ 1, and η > 0 be constants. Then there is no randomized(
o(logN), O(N1− 4

k−η), t
)
-read/write stream algorithm that with probability at least 3/4 out-

puts an approximation of Fk within a factor of 2 on every input stream of up to N elements
from [N ].

With the same proof and by interpreting 1/∞ = 0, we derive new lower bound for
approximating F ∗∞.

Corollary 5.6. For any constants t ≥ 1 and η > 0, there cannot exist any randomized(
o(logN), O(N1−η), t

)
-read/write stream algorithm that with probability at least 3/4 outputs

an approximation of F ∗∞ within a factor of 2 on any input stream of up to N elements from
[N ].

We also derive lower bounds for the case that k < 1 using Theorem 5.3 and Lemma 2.3(b).

Corollary 5.7. Let 1 > k ≥ 0, t ≥ 1, η > 0 be constants. Then there is no random-
ized

(
o(logN), O( 1

ε4N3+η ), t
)
-read/write stream algorithm that with probability at least 3/4

outputs an approximation of Fk within a factor of (1 + ε) on any input stream of up to N
elements from [N ], where 1/N3/4+η > ε ≥ 1/N .

Proof. Define ζ so that ε = N−ζ/3. Then for N sufficiently large, if p = N1−ζ =
3εN then p ≥ 2εN , therefore Lemma 2.3(b) and Theorem 5.3 imply that no randomized
(o(logN), O(N1−4(1−ζ)−η), t)-read/write stream algorithm can compute Fk within a (1+ε)
factor. Replacing N−ζ by 3ε yields the claimed bound.

5.1. An upper bound for pDisjm,Φn,p and a combinatorial property of a set of
permutations

Our lower bound for pDisjΠ
N,p is only interesting when N = ω(p4). This is because in order

for the reduction from pDisjm,Φn,p to work (Lemma 5.2), we need N = nm and both n = ω(p2)
and m = ω(p2). The condition n = ω(p2) is induced by the communication complexity lower
bound for pDisjn,p, which is optimal. Lemma 5.8 will show that a condition requiring m
to be polynomially larger than p is also necessary, and thus an approach that relies on
pDisjm,Φn,p cannot yield lower bounds for constant factor approximations of Fk for k < 3.5.
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Lemma 5.8. For any integers m < p3/2/64 and n, and for any Φ = (φ1, . . . , φp) defined
on [m], there is a deterministic (2, O(log(mnp)), 2)-read/write stream algorithm computing
pDisjm,Φn,p .

To produce the algorithm claimed in Lemma 5.8, we need to show the following property
of permutations that does not appear to have been considered previously. Its proof is inspired
by Seidenberg’s proof of the well-known theorem of Erdös and Szekeres (cf. [Steele 1995])
which shows that any pair of permutations must have relative sortedness at least

√
m. The

difference is that with three permutations we can now ensure that the sequences appear in
the same order in two of them rather than one possibly being reversed.

Lemma 5.9. Let φ1, φ2, and φ3 be permutations on [m]. Then there is some pair 1 ≤
a < b ≤ 3 such that φa(1), . . . , φa(m) and φb(1), . . . , φb(m) have a common subsequence of
length at least m1/3.

Proof. Suppose by contradiction that there are no such a and b. For every i ∈ [m], let
`i ∈ [m′]3, where m′ = dm1/3 − 1e, be defined as follows: `i[1] is the length of the longest
common subsequence of φ1(1), . . . , φ1(s) and φ2(1), . . . , φ2(t), where φ1(s) = φ2(t) = i, and
`i[2] and `i[3] are defined analogously for the other two pairs φ2, φ3, and φ1, φ3, respectively.

Now for any i 6= j ∈ [m], we must have `i 6= `j . This is because there must be some pair,
say φ1 and φ2, such that either i occurs before j in both sequences or j occurs before i in
both. In the first case `i[1] < `j [1] and in the second case `i[1] > `j [1].

However since m′ < m1/3, the number of different `i over all i ∈ [m] is strictly < m which
is a contradiction.

It is not hard to show that the above lemma is tight, even for any four permutations. As an
example, a set of 4 permutations on [8] in which no pair has a common subsequence of length
longer than 2 is the following: (1, 2, 3, 4, 5, 6, 7, 8), (4, 3, 2, 1, 8, 7, 6, 5), (7, 8, 5, 6, 3, 4, 1, 2), and
(6, 5, 8, 7, 2, 1, 4, 3). This can be generalized to any [m]: the first is the identity permutation;
the second is an increasing sequence of m1/3 decreasing subsequences, each of length m2/3;
the third is a decreasing sequence of m2/3 increasing sequences, each of length m1/3; and
the fourth is a suitably alternating sequence of m2/3 decreasing sequences, each of length
m1/3.

Proof of Lemma 5.8. Given Φ there exist L1, L2, . . . , Lp/3 defined as follows: L1 is a
common subsequence of two of φ1, φ2, and φ3, of length at least m1/3 given by Lemma 5.9;
L2 is a common subsequence of two of φ4, φ5, and φ6 that is disjoint from L1 and of length
at least (m− |L1|)1/3; L3 is a common subsequence of two of φ7, φ8, and φ9 disjoint from
L1∪L2 and of length at least (m−|L1|−|L2|)1/3, and so on, with no index i ∈ [m] appearing
in more than one sequence. For each of the Lj let aj and bj denote the indices of the two
permutations having the common subsequence Lj . The number of elements that do not
appear in L1, . . . , L` is at most m` where m` is defined by the recurrence with m0 = m

and mj+1 = mj − dm1/3
j e for j > 0. If m < p3/2/64, then p ≥ (64m)2/3 = 16m2/3. Now

if mp/8 > m/8 then at least (m/8)1/3 = m1/3/2 elements have been removed for each
of p/8 = 2m2/3 steps which implies mp/8 = 0, which is a contradiction. Repeating this
argument reduces mj to at most m/64 after another 2(m/8)2/3 = m2/3/2 = p/32 steps.
Thus mp/8+p/32 ≤ m/64. In general we have that for any j ≥ 1,

mp/23+p/25+...+p/22j+1 ≤ m/8j .

Thus mp/3 = 0, which implies that every i ∈ [m] is in exactly one L sequence.
The algorithm copies the input to tape 2 leaving both heads at the right end of the

tape. It will use the head on tape 1 to scan the blocks for the players and the head on
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tape 2 to scan the corresponding blocks for the even-numbered players. It will solve the
disjointness problems for each block in the common subsequences Lp/3, . . . , L2, L1, in turn.
If an intersection is found in some pair of corresponding blocks in these sequences then
the output is 1; otherwise, the output is 0. The promise ensures that, for each of the m
subproblems, to check for a given common element it suffices to compare the blocks for
a single pair of players. Since every i ∈ [m] appears in some Lj , if we can position the
heads to check the corresponding blocks then we can compute each of the m disjointness
subproblems exactly and hence pDisjm,Φn,p .

It remains to show how the read/write stream algorithm positions the heads on the
tapes in the positions corresponding to the sequences Lp/3, . . . , L1. These sequences can
be hardwired into the state transition function as follows. We represent the sequence of
positions indicated by Lp/3, . . . , L1 by a tuple of values that is stored internally by the
algorithm as part of the state: (j, i, a, ka, b, kb, f) where j ∈ [p/3] denotes which Lj is being
considered, i ≤ d

√
me denotes the position within the common subsequence Lj that is being

considered, a denotes the index of one of the two permutations that have Lj as a common
subsequence, ka = ka(j, i) ∈ [m] denotes the number of blocks in φa that must must be
skipped over to get to the (i + 1)-st position in the common subsequence, b denotes the
index of the other of the two permutations that have Lj as a common subsequence, kb =
kb(j, i) ∈ [m] denotes the number of blocks φb that must must be skipped over to get to the
(i+1)-st position in the common subsequence, and f is a bit that will determine whether the
algorithm is currently comparing positions and will be ready to have its heads repositioned
when it has finished its comparison, or it is in the act of repositioning its heads. If i+1 ≤ |Lj |
the transition function will map (j, i, aj , 0, bj , 0, 1) to (j, i+1, aj , ka(j, i+1), bj , kb(j, i+1), 0),
leaving the remainder of the state unchanged; in this state it will move its heads to the left on
tapes 1 and 2, decrementing the k1 and k2 counters, respectively, with each step. Otherwise
the transition function will map it to (j + 1, aj+1, ka(j + 1, 1), bj+1, kb(j + 1, i), 0) after
skipping over the blocks for up to 2 φ` that are between φaj and φaj+1 and between φbj and
φbj+1 , respectively. After that it will move its heads to the left and decrement the counters
as in the other case. The number of bits of state required is O(log pmn).

6. OPEN QUESTIONS

The general question that we have begun to answer here is: for what natural approximation
problems does the read/write streams model (with o(logN) passes) add significant power to
the data stream model? We have mostly but not fully resolved the case of frequency moments
– can one close the gap between the upper and lower bounds for computing pDisjΠ

N,p and
approximating Fk? As we have shown, we are not far from the limit on lower bounds
using the blocked and permuted version of disjointness, pDisjm,Φn,p . Thus we expect that
improvements in the lower bound, if any, will require working with more general instances
of pDisjΠ

N,p than those provided by pDisjm,Φn,p . However, it is not clear how our simulation
given in Theorem 4.2 can be made to work for more general instances of pDisjΠ

N,p. On the
other hand, we believe that our simulation can be used or extended to derive interesting
lower bounds for other natural functions, and leave this direction for future work.

Optimizing our upper bound for pDisjm,Φn,p raises the following interesting combinatorial
question: Given a set of k permutations on [m], what is the length of the longest common
subsequence that can be guaranteed between some pair of these k permutations as a function
of m and k? We originally conjectured that subsequences of length m1/2−o(1) must exist for
k = O(logm), which would have shown the approximate optimality of our algorithm, but
recently Õ(m1/3) upper bounds have been shown for this case [Beame et al. 2009].
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