
Improving Efficiency of Symbolic Model Checking for
State-Based System Requirements

William Chan Richard J. Anderson Paul Beame David Notkin
{wchan,anderson,beame,notkin} @cs.washington.edu

Department of Computer Science and Engineering
University of Washington, Box 352350

Seattle, WA 98195-2350, USA

Abstract

We present various techniques for improving the time and space ef-
ficiency of symbolic model checking for system requirements spec-
ified as synchronous finite state machines. We used these tech-
niques in our analysis of the system requirements specification of
TCAS 11, a complex aircraft collision avoidance system. They to-
gether reduce the time and space complexities by orders of magni-
tude, making feasible some analysis that was previously intractable.
The TCAS II requirements were written in RSML, a dialect of state-
charts.

Keywords Formal verification, symbolic model checking, reach-
ability analysis, binary decision diagrams, partitioned transition re-
lation, statecharts, RSML, TCAS II, system requirements specifi-
cation, abstraction.

1 Introduction

Formal verification based on state exploration can be considered an
extreme form of simulation: every possible behavior of the system
is checked for correctness. Symbolic model checking [6] using bi-
nary decision diagrams (BDDs) [4] is an efficient state-exploration
technique for finite state systems; it has been successful on veri-
fying (and falsifying) many industry-scale hardware systems. Its
application to non-trivial software or process-control systems is far
less mature, but is increasingly promising [1,13,25,27]. For exam-
ple, we obtained encouraging results from applying symbolic model
checking to a portion of a preliminary version of the system require-
ments specification of TCAS II, a complex software avionics sys-
tem for collision avoidance [1]. The full requirements, comprising
about four hundred pages, were written in the Requirements State
Machine Language (RSML) [23], a hierarchical state-machine lan-
gnage based on statecharts [16].

This work was supported in part by National Science Foundation grant
CCR-970670. W. Chan was supported in part by a Microsoft graduate fel-
lowship.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

ISSTA 98 Clearwater Beach Florida USA
Copyright 1998 0-89791-971-8/98/03.. $5.00

By representing state sets and relations implicitly as BDDs for sym-
bolic model checking, the sheer number of reachable states is no
longer the obstacle to analysis. Instead, the limitation is the size of
the BDDs, which depend on the structure of the system analyzed.
Considerable effort on formal verification of hardware has been fo-
cused on controlling the BDD size for typical circuits. However,
transferring this technology to new domains may require altema-
five techniques and heuristics to combat the BDD-blowup problem.
In this paper, we present modifications to the algorithms imple-
mented in a symbolic model checker (SMV [24]), modifications
to the model, as well as a simple abstraction technique, to improve
the time and space efficiency of the TCAS II analysis. Experimen-
tal results show that the techniques together reduce the time and
space complexities by orders of magnitude; these improvements
have made feasible some analysis that was previously intractable.

The specific techniques we discuss in the paper are:

• Short-circuiting to reduce the number of BDDs generated by
stopping the iterations before a fixed point is reached.

• Managingforwardandbackwardtraversals, toreducethesize
of the BDD generated at each iteration. Notably, we improve
backward traversals by making certain invariants (in particu-
lar, that some events are mutually exclusive) explicit in the
search.

• More sophisticated conjunctive partitioning of the transition
relation and applying disjunctive partitioning in an unusual
way, to reduce the size of the intermediate BDDs at each it-
eration. Further improvements were made by combining the
two techniques to obtain DNF partitioning.

• Abstraction to decrease the number of BDD variables. Given
a property to check, we perform a simple dependency analysis
to generate a reduced model that is guaranteed to give the same
results as with the full model.

Techniques like short-circuiting and abstraction are conceptually
straightforward and applicable to many systems. Most other tech-
niques were designed to exploit the simple synchronization patterns
of TCAS II (for example, most events are mutually exclusive, and
most state machines are not enabled simultaneously), and we be-
lieve they can also help analyze other statecharts machines with
simple synchronization patterns.

We provide experimental results showing how each of these tech-
niques affected the performance of the TCAS II analysis. The ef-
fects of combinations of the improvements are shown in addition
to the individual effects. We focus on reachability problems, be-
cause most properties of TCAS II we were interested in fall into
this class. However, in principle, all of the techniques should bene-
fit general temporal-logic model checking as well. We conclude the
paper with discussion of some related techniques.

102

A
. ~ wN/x

w[-~]/y (~.J",~...___...-'~_.J

w~

B w[a]/ x[al/z

F gure 1: A statecharts example

2 Backgro~:~nd

In this section, we give a brief overview of statecharts and RSML.
We then turn our a Iention to symbolic model checking. Finally, we
review how we a[plied symbolic model checking to the TCAS II
requirements.

2.1 RSML and Statecharts

The TCAS II requi rements were written in RSML, a language based
on statecharts. Li ~e other variants of statecharts, RSML extends
ordinary state-mat nine diagrams with state hierarchies; that is, ev-
ery state can contE in orthogonal or mutually exclusive child states.
However, this real are does not concern us in this paper (the state
hierarchy in the ~3~ion of TCAS II that we analyzed is shallow
and does not incm special difficulties in model checking). Instead,
we can think of th ~ system consisting of a number of parallel state
machines, commu aicating and executing in a synchronous way.

Figure 1 above gi~ es a simple example with two parallel state ma-
chines A and B. I -A is in local state 0, we say that the system is in
state At>0. State ~ ~achines are synchronized using events. Arrows
without sources in ticate the initial local states. Other arrows repre-
sent local transitio as, which are labeled with the form u[c]/v where
u is a trigger even:, c is the guarding condition and v is an action
event. The guardil g condition is simply a predicate on local states
of other state mad Jnes and/or inputs to the system; for example, a
guarding conditiot may say that the system is in Bt>0 and an input
altitude is at leas t . 000 meters. (In RSML, the guarding condition
is specified separEtely from the diagram in a tabular form called
AND/OR table, b~t we use the more concise statecharts notation
instead.) The gua~ :ling condition and the action are optional. The
general idea is tha, if event u occurs and the guarding condition c
either is absent or ~valuates to true, then the transition is enabled.

Initially some exte'nal events along with some (possibly numeric)
inputs from the em ;.ronment arrive, marking the beginning of a step.
The events may en tble some transitions as described above. A max-
imal set of enable 1 transitions, collectively called a microstep, is
taken--the system leaves the source local states, enters the target
local states, and ~ enerates the action events (if any). All events
are broadcast to t? e entire system, so these generated events may
enable more transi ions. The events disappear after one microstep,
unless they are reg,,nerated by other transitions. The step is finished
when no transitio~ ~ are enabled. The semantics of RSML assume
the synchrony hypc thesis: During a step, the values of the inputs do
not change and no new external events may arrive; in other words,
the system is assuraed to be infinitely faster than the environment.

In Figure 1, assume that w is the only external event, a is a Boolean
input, and the system is currently in A t> 0 and Bt> 0. When w arrives,
if the input a is false, then the event y is generated. The step is
finished since no new transitions are enabled. If instead a is true
when w arrives, the transitions from At>0 to At> 1 and from Bt>0 to
Bt> 1 are simultaneously taken and event x is generated, completing
one microstep. Then a second microstep starts; notice that because
of the synchrony hypothesis, the input a must be true as before and
the external event w cannot occur. So only the transition from Bt> 1
to Bt>2 is enabled and taken, generating event z and finishing the
step.

Subtle but important semantic differences exist among variants of
statecharts. The semantics of STATEMATE [17], another major
variant of statecharts, are close to those of RSML. STATEMATE
does not enforce the synchrony hypothesis in the semantics, but
provides it as an option in the simulator. RSML and STATEMATE
also have a richer set of synchronization primitives and provide
some sort of variable assignments; however, these features are not
important for this paper.

2.2 Symbolic Model Checking

We now switch gears to discuss model checking for ordinary finite-
state transition systems (without state hierarchies, the synchrony
hypothesis, etc.). The goal of model checking is to determine
whether a given state transition system satisfies a property given as
a temporal logic formula, and if not, to try to give a counterexample
(a sequence of states that falsifies the formula). Example properties
include that a (bad) state is never reached, and that a (good) state
is always reached infinitely often. In "explicit" model checking,
the answer is determined in a graph-theoretic manner by travers-
ing and labeling the vertices in the state graph [10]. The method is
impractical for many large systems because of the state explosion
problem. Much more efficient for large state spaces is symbolic
model checking, in which the model checker visits sets of states
instead of individual states.

For illustration, we focus on the teachability problem, the simplest
and the most common kind of temporal property checked in prac-
tice. Let Q be the finite set of system states, R C_ Q x Q the state
transition relation, I c Q the set of initial states, and E C Q a set
of error states. The reachability problem asks whether the system
always stays away from the error states E, and if not, demands a
counterexample, that is, a sequence of states qo, ql qn with
qo E L qn E E and (qi,qi+l) E R for 0 < i < n.

We define Pre: 2 Q ~ 2 Q to compute the pre-image (or the weakest
pre-condition) of a set of states under the transition relation R:

Pre(S) = { q E Q I 3q' E S. (q,q') E R }.

Intuitively, it is the set of states that may reach some state in S in
one transition. Then we can characterize the decision problem of
reachability in a set-theoretic manner usingfixedpoints: Determine
whether INPre*(E) is empty, where Pre*(E) is the set of states
that may eventually reach an error state. More specifically, it is the
smallest state set Y that satisfies

Y = EUPre(Y).

Its existence is guaranteed by the finiteness of Q and the mono-
tonicity of Pre. Figure 2 on the following page shows an iterative
algorithm for computing this fixed point. The set I~ is the states
that may reach an error state in at most i transitions. Many other
temporal properties can be similarly defined and computed using
(possibly multiple or nested) fixed points [6].

103

Start with Yo = E and iteratively compute Y/+l = Pre(Yi) U Yz" until reaching
a fixed point.

fixed point

~ ~ = Y~+~ (~" ~/:i i./ ~;:(/i "(~ :::::!!:: :!:I~:!:::::::~

<

Backward Traversal

Figure 2: An algorithm for computing Pre* (E)

If the intersection of Pre*(E) and the initial states I is empty, then
the set E is not reachable and we are done. Otherwise, we would
like to find a counterexample. We first define Post: 2Q ~ 2 Q to
compute post-images:

Post(S) = { q' E a l 3q E S. (q,q') E R }.

In other words, Post(S) is the set of states reachable from S in one
transition. Figure 3 shows a counterexample search algorithm. The
set Q0 can be any nonempty subset of the intersection, but it is
convenient to choose Q0 to be an arbitrary singleton set. The set Qi
is the states that are reachable from Q0 in at most i transitions. We
obtain a counterexample by tracing backward from Qm f7 E. ONe
will improve this algorithm later.)

The crucial factor for efficiency is the representation for state sets.
Notice that the state space Q can be represented by a finite set of
variables X, such that each state in Q corresponds to a valuation for
the variables and no two states correspond to the same valuation.
For finite state systems, we can assume without loss of generality
that each variable is Boolean. A set of states S is then symbolically
represented as a Boolean function S(X) such that a state is in the set
if and only if it makes the function tree. The transition relation of
states can be similarly represented as a Boolean function R(X,X ~)
where X ~ is a copy of X and represents the next state. Intersec-
tion, union and complementation on sets or relations respectively
becomes conjunction, disjunction and negation on Boolean func-
tions. Now the problem of representation of state sets is reduced to
that of Boolean functions.

Empirically, the most efficient representation for Boolean functions
is BDDs [4]. They are canonical, with efficient implementation for
Boolean operations. For example, the time and space complexities
of computing the conjunction or disjunction of two BDDs are linear
in the size of the result, which is at most the product of the sizes of
the operands. Negation and equivalence checking can be done in
constant time. BDDs are often succinct, but this relies critically on
a chosen linear variable order of the variables in X.

We can now represent a state set S and the transition relation R as
BDDs and compute the pre-image and post-image of S as follows:

Pre(S) = 3X'. R(X,X ') A S(X'),

Post(s) = 3x. R(x,x') ^ s(x).

The notation 3X refers to existentially quantifying out all the vari-
ables in X. In addition to Boolean operations and equivalence
checking, operations like existential quantification and variable
substitution can also be performed, so the algorithms in Figures

1. Let Q0 be any nonempty subset of Pre* (E) NL Iteratively compute
Qi+l = Post(Qi) uQi until reaching E.

>

Forward Traversal

2. Start with some qm 6 Qm C~ E and iteratively pick some
qi-I 6 Pre(qi) OQi-i to obtain a counterexample qo, ql qm.

qo ql qm

Figure 3: An algorithm for counterexample search

2 and 3 (and similar algorithms for many temporal logics such as
CTL [10]) can be implemented using BDDs. Thanks to the suc-
cinctness of BDDs and the efficiency of their algorithms, some sys-
tems with over 1012° states can be analyzed [6].

2.3 Symbolic Model Checking for TCAS II

We analyzed the TCAS II requirements using a symbolic model
checker SMV (Version 2.4.4). SMV uses algorithms similar to
those in Figures 2 and 3. A notable difference is that in Figure 2,
instead of computing Yi+l = Pre(Yi) U Yi, it uses the equivalent re-
currence Yi+l = Pre(Yi - Yi-I) UY/, with the advantage that I~ - Y/-l
usually requires a much smaller BDD than I'~ does, resulting in
faster pre-image computation. (In fact, it is sufficient to compute
the pre-image of any Z with I'~ - Yi-t C_ Z C_ I~ [11].) Similar com-
ments apply to the computation of each Qi in Figure 3.

Because SMV does not support hierarchical states and other RSML
features directly, we had to translate the requirements into an or-
dinary finite-state transition system in the SMV language. The
requirements consist of two main parts, Own-Aircraft and Other-
Aircraft, which occupy about 30% and 70% of the document re-
spectively. In our initial study, we translated Own-Aircraft quite
faithfully to the SMV language, and abstracted Other-Aircraft as a
mostly nondeterministic state machine. The details of the transla-
tion, including how the transitions, the state hierarchy and the syn-
chrony hypothesis were handled, as well as the properties analyzed,
were given in a previous paper [1]. Certain details about the system
model are relevant to this paper:

• An RSML microstep corresponds to a transition in the SMV
program, and thus a step corresponds to a sequence of transi-
tions.

• We encode each RSML event as a Boolean variable, which is
true if and only if the event has just occurred.

• We assume each numeric input to be discrete and bounded,
and encode each bit as a Boolean variable.

• To maintain the synchrony hypothesis, we prevent the inputs
from changing and the external events from arriving when any

104

of the variab es that encode events is true.
• We analyze,me instance of TCAS II only, so the asynchrony

among multi9le instances of the system is not an issue.

A major source o f complexity of the analysis was the transitions'
guarding conditio ~s, some of which occupy many pages of descrip-
tion. They contai 1 predicates of local states and of the input vari-
ables, and often il volve complicated arithmetic. While many other
researchers conse vatively encode each arithmetic predicate as an
independent Booll ',an variable [12,18,27], we encode each input bit
as a Boolean vafi~ ble, resulting in more accurate analysis at the ex-
pense of more Bo)lean variables. In addition, a guarding condition
can refer to any t,art of the system, so the interdependencies be-
tween the BDD w dables are high. These all imply relatively large
BDDs for guardin ~ conditions.

On the plus side, ~he control flow of Own-Aircraft is simple, and
concurrency amor g ".he state machines in Own-Aircraft is minimal.
As we will see, s >me of the techniques presented later attempt to
exploit these sim~ '.e synchronization patterns.

3 Short-Circuiting

It is easy to see th tt :_n Figure 2, we do not need to compute a fixed
point when the e~ rot states are reachable~we can stop once the
intersection of so~ ae Yi and I is not empty; because all we need is
an element in the ntersection. This short-circuiting technique may
substantially redt:(e the time and space used when a short counter-
example exists.

More generally, s aort-circuiting can be applied to the outermost
fixed point (and Jccasionally the inner ones) in temporal-logic
model checking.

4 Forward vs. Backward Traversals

Fixed-point comp)~tation or counterexample search can be done ei-
ther forward or ba :kward. In this section we elaborate on their per-
formance differen :e in our analysis. In short, backward traversals
generate smaller E DDs and are a big win for our system. They can
be further improw d by incorporating certain invariants to prune the
searches.

4.1 Improved Counterexample Search

During the analys s of TCAS II, we found that when a property
was disproved in 1 few minutes, finding a counterexample might
take hours. A co~ uthor of a previous paper subsequently simpli-
fied the counterex ~mple search algorithm, resulting in substantial
speedup [1]. Thfi is the only technique described here that was
used in that study.

The forward trave: sal in the first part of Figure 3 is the bottleneck.
For our system, th," sequence of post-images requires large BDDs.
However, we can climinate this step if we remember every Y/com-
puted in Figure 2 our actual implementation stores the difference
1~ - I')-1 instead t f Yi). Our modification, illustrated in Figure 4,
is by no means in aovative and should be considered natural.l A
disadvantage of t? e algorithm is the use of additional memory to
store the state sets which is wasted in case the error states are not

1 Indeed, if we se ~rch forward to find the reachable state set, SMV can
optionally use a simi ar counterexample search algorithm, but it is not used
with the default back ~vard traversal.

Start with some qo E Yn f31 and iteratively pick some qi E Post(qi-l) fl Yn-i
to obtain a counterexample qo, ql qn.

qo ql

................ qi ~>~< - iiiii.i::::::::::!: !:!:~ ! !ii!i!ii~i!iii:~:i::i:i :i:

Figure 4: A simplified algorithm for counterexample search

reachable. Nevertheless, the dramatic speedup made possible far
outweighs the modest additional memory requirements.

An important question remains: Why is the backward traversal in
Figure 2 much more efficient than the forward traversal in Figure 3?
The inefficiency of forward traversals is also witnessed by SMV's
inability to compute the set of reachable states of the system. Find-
ing the reachable state set by searching forward from the initial
states is a common technique in hardware verification; the set can
be used to help analyze other temporal properties and synthesize
the circuit.

A backward traversal often takes fewer iterations to reach a fixed
point than a forward traversal, because the set of error states is usu-
ally more general than the set of initial states. However, the problem
here is not the number of iterations, but rather, the size of the BDDs
generated. In general, we observe that in backward traversals, the
BDDs usually have between hundreds to at most tens of thousands
of BDD nodes, while in forward traversals, they can be two or more
orders of magnitude larger. Nevertheless, the verification of many
hardware systems tends to benefit, rather than suffer, from forward
traversals. For example, Iwashita et al. report significant speedup in
CTL model checking for their hardware benchmarks when forward
instead of backward traversals are used [21].

Partly inspired by Hu and Dill [20], we believe that the inefficiency
is mainly due to the complex invariants of TCAS II, which are main-
tained by forward but not backward traversals. As an example, con-
sider the state machine in Figure 5. If event y is only generated in A,
then an invariant of the system is that, whenever event y has just oc-
curred, the machine is in At>0 if and only if condition a is true. If
the BDD for a is large, so will the BDD for the invariant. There
are likely to be many such implicit invariants in the system, and
their conjunction may have a large BDD representation even if they
are small. In addition, invariants may globally relate different state
machines, also likely to result in large BDDs. Forward traversals
maintain all such invariants, so intuitively the BDDs for forward

A

x [a l / Y ~ x[b]/y

Figure 5: A state machine with local invariants

105

traversals tend to blow up in size. In low-level hardware verifica-
tion, the BDDs often remain small, because each invariant is usually
localized and involves only a small number of state variables. This
is not the case in TCAS II however.

For backward traversals, the situation is quite different. For ex-
ample, there are no counterparts of the invariant mentioned above
when backward traversals are used, because the truth value of a
does not determine the state of the system before the microstep.
Certainly, some different (backward) invariants are maintained in
backward traversals, but they tend to depend on the states from
which the search starts, and their BDDs tend to be smaller for our
system.

4.2 Improved Backward Traversals Using
Invariants

Interestingly, the main disadvantage of backward traversals is also
that (forward) invariants are not maintained. Some invariants, par-
ticularly those with small BDDs, can help simplify the BDDs of
state sets, and can speed up backward traversals if they are incor-
porated into the search. In the context of statecharts, many systems
have simple synchronization patterns, which are lost in backward
traversals. A particular invariant that we find useful to rectify this
problem is the mutual exclusion of certain events. We illustrate this
idea with an example.

Consider the system in Figure 6. Assuming u is the only external
event, there is no concurrency in the system--at most one local
transition can be enabled at any time. Forward traversals do not
explore concurrent executions of the state machines.

However, in backward traversals, the analysis may be fooled to con-
sider many concurrent executions, which are not reachable. Sup-
pose we want to check whether the system can be inBt> 1 and Ct> 1
simultaneously. Traversing backward, we find that in the previ-
ous microstep, the system may be in (B~0,C> 1), (B> 1,C>0), or
(B>O, Ct>O). The last case, however, is not possible, because events
v and w cannot occur at the same time. (Notice that this is true only
if we assume the synchrony hypothesis.) Tracing more iterations,
we can see that the search considers not only concurrent executions
but also many unreachable interleavings of executions. The BDDs
thus may blow up if the guarding conditions are complex.

.4 .[al/~

.[a']/~

B vN/w

v[b'l/w

C w[c]/x

wte]#

Figure 6: A system with a linear structure

Fortunately, we can greatly simplify the search by observing that
all the events are mutually exclusive. This invariant can be incorpo-
rated into the traversals by either intersecting it with the pre-images
or using it as a care-set to simplify them [11].

To find out such a set of mutually exclusive events, we may per-
form a conservative static analysis on the causality of the events.
Alternatively, the designer may know which events are mutually
exclusive, because the synchronization patterns should have been
designed under careful consideration. To confirm the mutual exclu-
sion, we may verify, using model checking or other static analysis
techniques, that the states with

V.,v~Z(uAv)
uCv

are not reachable, where Y. is the set of state variables encoding the
events under consideration. In the case of TCAS II, a large part of
our model behaves similarly to the machine in Figure 6, and the set
of mutually exclusive events was evident.

5 Partitioned Transition Relation

Apart from the BDD size for state sets, another bottleneck of model
checking is the BDD size for the transition relation, which can be
reduced by conjunctive or disjunctive partitioning [6]. The former
can be used naturally for TCAS II, and we have modified SMV to
partition the transition relation more effectively. We also apply dis-
junctive partitioning, which is normally used only for asynchronous
systems. Combining the two techniques, we obtain DNFpartition-
ing. As we will see, the issues in this section are not only the BDD
size for the transition relation, but also the size of the intermediate
BDDs generated for each image computation.

5.1 Background

In this subsection, we review the idea of conjunctive and disjunctive
partitioning, described in Burch et al. [6]. The transition relation R
is sometimes given as a disjunction D 1 VD2 V. . .VDj , and the BDD
for R can be huge even though each disjunct has a small BDD. So
instead of computing a monolithic BDD for R, we can keep the
disjuncts separate. The image computations can be easily modified
by distributing the existential quantification over the disjunction.
For pre-image computation, we thus have

Pre(S) = 3X'. R (X ,X') AS(X')

= ~x'. (Ol (x,x') vo2(x,x ') v. . . vo j (x ,x ')) ^s(x ')
= d~ (x) v d2(X) v . . . vdj(X)

where for 1 < i < j,

di(X) = 3X'.Di(X,X') ^S(X').

So we can compute the pre-image without ever building the BDD
for R. Post-image computation is symmetric.

If, however, R is given as a conjunction C1 A C2 ̂ . . . A Ck, we can
still keep the conjuncts separate as above, but image computations
become more complicated. The problem is that existential quantifi-
cation does not distribute over conjunctions, so it appears that we
have to compute the BDD for R anyway before we can quantify out
the variables. A trick to avoid this is early quantification. Define
X~, X~ X~ to be disjoint subsets of X' such that their union is X'
and for 1 < i < k, the conjunct Ci does not depend on any variable

106

in Xp for any p < i Consider again the pre-image computation. We
compute

cl I x , x ') = 3x{. cl (x ,x ') ^ s(x')

c2(x,x') = 3x~.cz(x,x ') ^c l (x ,x ')

Pre(S) = : ck(X) = 3X'.Ck(X,X') Ack-1 (X,X').

The intuition is to quantify out variables as early as possible, and
hope that each int ~rmediate ci for 1 <_ i < k remains small. The
effectiveness of the: procedure depends critically on the choice and
ordering of the cor juncts C1, C2 Ck.

5.2 Determining a Conjunctive Partition

We could not con,' truer the monolithic BDD for the transition re-
lation R for our rr odel of TCAS II in hours of CPU time, but R
is naturally specifi.~d as a conjunction, so we can use conjunctive
partitioning. Alth mgh SMV supports this feature, it determines
the partition in a ~, :.mplistic way: An SMV program consists of a
list of parallel assi I ~ments, whose conjunction forms the transition
relation. SMV con ~tructs the BDDs for all assignments, and incre-
mentally builds the ir conjunction in the (reverse) order they appear
in the program. In this process, whenever the BDD size exceeds a
user-specified thre ,hold, it creates a new conjunct in the partition.
So the partition is ~, Mely determined by the syntax, and no heuristic
or semantic inforrr ation is used.

To better determir e the partition, we changed SMV to allow the
user to specify tt:~ ~ partition manually. We also implemented in
SMV a variant of t ~e heuristics by Geist and Beer [15] and by Ran-
jan et al. [26] to at tomatically determine the partition. The central
idea behind the h~ uristics is to greedily select conjuncts that al-
low early quantific ltion of more variables while introducing fewer
variables that cann x be quantified out. Our implementation of the
heuristics worked quite well. The partitions generated compared
favorably with, am sometimes outperformed, the manual partitions
that we tried.

5.3 Disjunc'five Partitioning for Statecharts

Disjunctive partiti z aing is superior to conjunctive partitioning in the
sense that ordering the disjuncts is less critical, and that each inter-
mediate B DD is a 'unction of X (instead of X UX') and thus tends
to be smaller. (An¢ ther advantage that we have not exploited is the
possibility of parz'. ~.elizing the image computation by constructing
the intermediate BI)Ds concurrently.)

Unfortunately, whm ".he transition relation R is a conjunction, in
general there are n) simple methods for converting it to a small set
of small disjuncts. If we define a cover (Zl (X,X~), (z2(X,X I)
(zj(X,X ~) such th~ t their disjunction is a tautology, then we can
indeed disjunctivel ~ partition R by distributing R over the cover:

R =: (51 VO~2 V.. . Vo~j) AR

=: Dl VD2 V.. . VDj

where for 1 < i < . ,

Di ::: ~i A R = O~i A Cl AC2 A. . . A Ck.

But for most choic ,'s of covers, each D i is still large.

For TCAS II and many other statecharts, however, we can again
exploit the mutual exclusion of certain events, say ul, u2 ui-l .
Define

O[i = U i A AI<_p<j "aUp
p•i

fo r l < i < j , and

O~j = "TU l A ~U2 A " " IS ~ U j _ 1

0~j+ 1 = -7~ 1 A ~1~ 2 A " " A ~0~j.

In other words, ~i corresponds to the states in which only ui has
just occurred, c~j, none of the events have, and coy+ 1, at least two
of the events have. They clearly form a cover. We made two obser-
vations. First, we can drop Coy+l, which is a contradiction because
of the mutual exclusion assumption. Second, most of the parallel
assignments in our SMV program are guarded by conditions on the
events; for example, an assignment that models a state transition re-
quires the occurrence of the trigger event. If the event is, say ui for
some 1 _< i < j , then the BDD for the assignment is applicable only
to the disjunct Di, and all the other disjuncts of the transition rela-
tion are unaffected. So each disjunct may remain small. Notice that
to apply this technique, we have to find a set of provably mutually
exclusive events, which can be done as described in Section 4.2.

5.4 DNF Partitioning and Serialization

A disadvantage of partitioning R based on events is that the sizes of
the disjuncts are often skewed. In particular, if a single event may
trigger a number of complex transitions, its corresponding disjunct
could be large. Figure 7 shows an example in which an event x trig-
gers two state machines. If all the guarding conditions are complex,
the BDD for the disjunct corresponding to x may be large.

One solution to this problem is to apply conjunctive partitioning
to large disjuncts, resulting in what we call DNF partitioning. It
uses both BDD size (as in conjunctive partitioning) and structural
information (as in disjunctive partitioning) to partition the transition
relation, and may perform better than relying on either alone.

Alternatively, we may serialize the complicated microstep into cas-
cading microsteps to reduce the BDD size, Figure 8 on the next
page illustrates this idea. We have "inserted" a new event u after x.
Note that the resulting machine has more microsteps in a step. So
although this method is effective in reducing the BDD size, it often
increases the number of iterations to reach a fixed point. Also, the
transformation may not preserve the behavior of the system and the
property analyzed. A sufficient condition is that the guarding con-
ditions in the machine B do not refer to machine A's local states,

a x[,~]/

x[a']/

B x[O]/

x[b'l/

Figure 7: Event x trigger s two state machines.

107

A "~ x[al /u ~ ,
: (~ - ' - " - - ~ " k) " x[~]/ .

x[-ta]/u
xta'l/u

u[b'l/

Figure 8: The serialized machine

x is mutually exclusive with all other events, and we are check-
ing a reachability property that does not explicitly mention any of
the state machines, transitions or events involved in the transforma-
tion. 2

6 Abstraction

In this section, we give a simple algorithm to remove part of the
system from the model that is guaranteed not to interfere with the
property being checked. For example, a system may have a number
of outputs (which may be local states or events). If we are ana-
lyzing only one of them, the logic that produces other outputs may
be abstracted away, provided these outputs are not fed back to the
system. The abstraction obtained is exact with respect to the prop-
erty, in the sense that the particular property holds in the abstracted
model if and only if it holds in the original model.

6.1 Dependency Analysis

We determine the abstraction by a simple dependency analysis on
the statecharts description. Initially, only the local states, events,
transitions, or inputs that are explicitly mentioned in the property
are considered relevant to the analysis. Then the following rules
are applied recursively:

• If an event is relevant, then so are all the transitions that may
generate the event.

• I fa transition is relevant, then so are its trigger event, its source
local state, and everything that appears in its guarding condi-
tion.

• If a local state is relevant, then so are all the transitions out of
or into it, and so is its parent state in the state hierarchy.

(Note that the relevance of an input does not make any other entity
relevant.) These rules are repeated until a fixed point is reached.
Essentially, this is a search in the dependency graph, and the time
complexity is linear in the size of the graph. It should be evident that
everything not determined relevant by these rules can be removed
without affecting the result of the analysis.

2The same criterion can be applied to arbitrary CTL formulas, provided
we do not use the the next-time operator X, which can count the number
of microsteps. In other words, under the assumptions, the transformation
preserves equivalence under stuttering bisimulation [3].

6.2 False Dependency

Similar dependency analyses could also be performed by model
checkers (such as VIS [28]) on the Boolean model of the statecharts
machine. However, a straightforward implementation would not be
effective. The reason is that in the model, an input would appear
to depend on every event because of the way we encoded the syn-
chrony hypothesis (Section 2.3). On the other hand, carrying out
dependency analysis on the high-level statecharts description does
not fall prey to such false dependencies.

Other forms of false dependencies are possible, however. Suppose
we are given the system in Figure 8 from the previous section. From
the syntax, the event u appears to depend on both conditions a and
d , but in fact it does not, because regardless of the truth values a
and d , event u will be generated as a result of event x.

To detect such false dependencies, one can check whether the dis-
junction of the guarding conditions of the transitions out of a local
state with the same trigger and action events is a tautology. This can
sometimes be checked efficiently using BDDs [18]. However, the
syntax of RSML and STATEMATE allows easy detection of most
false dependencies of this kind. Notice that the self-loops in Fig-
ure 8 are solely for synchronization--they make sure that u is gener-
ated regardless whether there has been a local state change. To im-
prove the visual presentation, RSML and STATEMATE allow one
to specify the generation of such events separately from the state
diagram using identity transitions and static reactions respectively. ,
(Actually, their semantics are slightly different from self-loops, but
the distinctions are not important here.)

Some false dependencies are harder to detect automatically. For
example, the guarding conditions involved may not form a tautol-
ogy, but in all reachable states, one of the guarding conditions holds
whenever the trigger event occurs. As another example, in Figure 9,
the event y does not depends on any of the guarding conditions, be-

3 cause it is always generated one or two microsteps after w. In prac-
tice, the synchronization of the system should be evident to the de-
signer, who may specify the suspected false dependencies in tempo-
ral logic formulas, which can be verified using model checking. If
the results indeed show no real dependencies, this information can
be used in the dependency analysis to obtain a smaller abstracted
model of the system. In our TCAS II analysis, the synchronization
of Own-Aircraft is simple enough that false dependencies can be
easily detected. However, this method may be used for analyzing
the rest of TCAS II or other systems.

.,[b]/y :--.,
w [-'a]

w [-~b]/x
"~" w[al/Y

x[-~d]/y x [~ c] / y x[-~c]/y

Figure 9: False dependency: Event y does not depends on any
guarding condition.

3However, if the next-time operator X is used, then y may be considered
conservatively to be dependent on a and b.

108

Building
BDDs for R

Full Model 227 variables)

No. of fix t tint iterations
Counter~ maple length

O1~ izations time nodes
SC MX CP DP (s) (K)

1 20 93
2 x/ - - - - - - 20 93
3 - - - - x/ - - 33 176

4 - - x/ - - - - 20 94
5 - - x/ ~/ - - 25 166
6 - - ~/ - - ~/ 34 464
7 - - x/ x/ ~/ 40 128

8 x / x / ~/ x / 41 128

9
10
11
12

13
14
15
16

17
18

P1 P2 P3 P4 P5

24
15

time nodes
(s) (K)

79 400
62 400
40 273

11 110
9 170

18 464
7 128

6 128

29
15

time nodes
(s) (K)

182 713
143 713
97 345

20 123
18 190
33 464
14 139

8 128

29
I1

time nodes
(s) (K)

257 1060
61 669

147 488

76 369
51 267

798 968
57 217

13 153

38
24

time nodes
(s) (K)

342 1090
136 751
193 412

38 152
31 215
34 463
24 150

12 143

26
17

time nodes
(s) (K)

47 249
39 245
74 480
29 160

18 141

Mistranslatl d Model t (227 variables)

Ot izafions time nodes
SC MX CP DP (s) (K)

- - x / 20 93
- - ~/ ~/ - - 26 .174
- - x/ - - x/ 36 462
- - ~/ ~/ ~/ 42 126

Serializq odel (231 variables)

t i m e

(s)

285
323
972
126

nodes
(K)

697
1043
843
327

time nodes
(s) (K)

317 1016
791 1546

1117 964
154 515

time nodes
(s) (K)

95 314
91 424

358 895
49 185

time nodes
(s) (K)

518 1129
497 1471

1340 952
215 398

time nodes
(s) (K)

615 2245

213 678

No. of tixp tint iterations
Counterex maple length

Ol izafons time nodes
SC MX CP DP (s) (K)

- - x / 27 103
- - x / x / - - 31 167
- - j - - ~/ 27 139
- - x / ~/ ~/ 48 136

Abs trac ted Models t

No. of variables

Optin izafions time nodes
SC M3" CP DP (s) (K)

- - - - vary
4 ~/ 4 ,,/ vary

36
23

time nodes

41
23

time nodes

45
19

time nodes

54
36

time nodes

38
25

time nodes
(s) (K)

89 325
94 363
76 177
74 196

(s) (K)

12 111
12 167
12 139
11 136

142

time nodes
(s) (K)

5 65
2 33

(s) (K)

39 190
38 234
40 161
34 162

142

time nodes
(s) (K)

17 93
4 39

(s) (K)

127 311
127 323
136 251
129 221

150

time nodes
(s) (K)

72 362
6 73

(s) (K)

46 144
44 199
32 160
39 156

142

time nodes
(s) (K)

26 115
6 40

150

time nodes
(s) (K)

oo

13 95

P6

26
11

time nodes
(s) (K)

490 1903
316 1139

oo

320 1022

23 243

time nodes
(s) (K)

442 1591
871 2186

1954 1007
198 547

38
19

time nodes
(s) (K)

867 2307
959 1932
897 1040
762 982

171

time nodes
(s) (K)

oo

18 158

SC: short-etr zuiting MX: mutual exclusion of events CP: improved conjunctive partitioning

tNo. of fixpoint i e~ions and counterexample lengths are identical to those of the full model.

DP: disjunctive partitioning

T a b l e 1: R e s o u r c e s u s e d i n t h e a n a l y s i s

9
10
11
12

13
14
15
16

17
18

7 Experimental Results

The table above sm .-tmarizes the results of applying the techniques
mentioned to our rr odels of TCAS II. It shows the resources (time
in seconds and num ~er of BDD nodes used in thousands) for build-
ing the BDDs for the transition relation R as well as the resources
for evaluating six p-operties. Note that the latter excludes the time
spent on building tt e transition relation and the resources for find-
ing the counterexamples. The counterexample search took about
one to two seconds 9er state in the counterexample and was never a
bottleneck thanks t . the algorithm in Figure 4. That algorithm was
used in all the checl :s, because without it, none of the counterexam-

pies could be found in less than one hour. The table also shows the
numbers of iterations needed to reach fixed points and the lengths
of the shortest counterexamples. We performed the experiments on
a Sun SPARCstation 10 with 128MB of main memory. Most suc-
cessful checks used less than 30MB of main memory.

Several models were examined. Our starting point, called the full
model, is close to the one used in our previous paper [1]. The mis-
translated model contains a real translation bug, and is included to
give an example of analyzing a highly flawed design. The serialized
model was obtained from the full model with one of the microsteps
serialized. Finally, applying the dependency analysis in Section 6

109

resulted in the abstracted models. For each model, we performed
model checking using some combinations of the following opti-
mizations: short-circuiting (SC), mutual exclusion of events (MX),
improved conjunctive partitioning using heuristics (CP), disjunctive
partitioning (DP), and DNF partitioning (CP and DP).

Properties P1 through P4 refer to the properties Increase-Descent
Inhibition, Function Consistency, Transition Consistency, and Out-
put Agreement explained in the previous paper [1]. Property P5
refers to an assertion in Britt [2, p. 49] that Own-Aircraft should
never be in two local states Corrective-Climb t> Yes and Corrective-
Descend t, Yes simultaneously (comments in our version of the
TCAS II requirements, however, explicitly say that the two local
states are not mutually exclusive). Property P6 is somewhat con-
trived: It is simply the conjunction of P3 and P4. Since searching
simultaneously from two unrelated sets of states tends to blow up
the BDDs, checking this property provides an easy way to scale
up the BDD size. It also mimics checking properties involving a
large part of the system. All six properties are reachability, and are
violated by the model. For each model, the best time and space
requirements for each property are shown in bold face. An entry
with ,,~ indicates timeout after one hour.

We emphasize that the purpose of the data is to investigate the gen-
eral effects of the techniques on the models. They are not for pick-
ing a clear winner among the techniques, since the BDD algorithms
are very sensitive to the various parameters chosen.

Full Model Row 1 shows that the fixed-point computations for
two of the properties could not be completed for the full model,
when we used only the conjunctive partitioning as implemented in
SMV. (Actually, we implemented a simple improvement that was
used in all results including this base analysis. As explained in Sec-
tion 2.2, an image computation step involves a conjunction and an
existential quantification. The two operations can be carded out
simultaneously to avoid building the usually large conjunction ex-
plicitly [6]. SMV performs this optimization except when conjunc-
tive partitioning is used. We simply changed SMV to eliminate this
limitation.)

Short-circuiting was most effective on Properties P3 and P4
(Row 2). The savings resulting from the heuristic for conjunctive
partitioning were also significant (Row 3). Incorporating the mu-
tual exclusion of certain events into backward traversals generally
gave an order of magnitude time and space reduction (Row 4). In
addition, we could now easily disprove Properties P5 and P6. In
particular, the statement in Britt [2] mentioned above is provably
false in our version of the requirements.

Disjunctive partitioning, which must be combined with the mutual
exclusion of events, appeared to be inefficient (Row 6) when com-
pared with applying the mutual exclusion alone (Row 4). The rea-
son is that one of the disjuncts of the transition relation was large,
with over 105 BDD nodes, at least an order of magnitude larger than
other disjuncts; this is reflected in the table by the large number of
BDD nodes needed to construct the transition relation. We conjunc-
tively partitioned large disjuncts, leading to the more efficient DNF
partitioning (Row 7). It performed marginally better than conjunc-
tive partitioning with mutual exclusion of events (Row 5), but the
space requirements were consistently lower. When short-circuiting
was also used, all of the fixed points could be computed in less than
half a minute (Row 8).

Mistranslated Model To further illustrate the differences among
the various partitioning techniques, we looked at a version of the
model that contains a translation error from the RSML machine to

the SMV program. We made this bug early in the previous study,
although we soon discovered it by inspection. The mistake was
omitting some self-loops similar to those in Figure 8. BDDs for
faulty systems are often larger than those for the corrected versions,
because bugs tend to make the system behavior less "regular".

Interestingly, the particular partition generated by the the heuristic
performed poorly for this model (Row 10). DNF partitioning, on
the other hand, continued to give significant time and space reduc-
tions (Row 12). The miserable results of disjunctive partitioning
(Row 11) were again due to the disproportionally large BDD in the
partition.

Serialized Model We serialized a microstep in the full model to
break the large disjunct into four BDDs of sizes about a hundred
times smaller. Disjunctive partitioning now used less space (Rows
6 vs. 15). However, since the number of microsteps in a step in-
creased, all checks suffered from the larger number of iterations
needed to reach fixed points. They all ended up performing about
the same, with disjunctive and DNF partitioning having the slight
edge, particularly in the space requirements for the more difficult
searches.

The data suggest that if the disjuncts are small to start with, disjunc-
tive partitioning is a viable option, but serializing the microstep in
order to use disjunctive partitioning is not advantageous in our case.
In general, we find the effects of serializing microsteps and its con-
verse, combining microsteps, difficult to predict. They represent
a tradeoff between the complexity of image computations and the
number of search iterations.

Abstracted Models The last part of the table shows the perfor-
mance of analyzing the abstracted models. The number of vari-
ables abstracted away by the dependency analysis was quite large.
Recall that in our full model, we omitted most of the details in
Other-Aircraft. Many of the outputs of Own-Aircraft that were in-
puts to Other-Aircraft thus became irrelevant, unless we explicitly
mentioned them in the property. This explains the relatively large
reduction obtained.

Using all of the techniques discussed in this paper led to the results
in the last row of the table.

8 Discussion and Related Work

We first summarize some differences between symbolic model
checking for hardware circuits and for TCAS II. A major focus of
hardware verification is on concurrent systems with complex con-
trol paths and often subtle concurrency bugs, but their data paths
are relatively simple. Forward traversals usually perform much bet-
ter, because the BDDs tend to be small in the reachable state space.
In contrast, the major complexity of the TCAS II requirements lies
not in the concurrency among components, but in the intricate influ-
ence of data values on the control paths. The BDD for the transition
relation tends to be huge and forward traversals inefficient. Back-
ward traversals usually perform better by focusing on the property
analyzed, and can be further improved by exploiting the simple syn-
chronization patterns.

Our method of pruning backward traversals using invariants is sim-
ilar in spirit to the work on hardware verification by Cabodi et al.,
who propose doing an approximate forward traversal to compute a
superset of the reachable states, which is then used to prune back-
ward traversals [8]. (An invariant is precisely a superset of the
reachable states.) Their method is more automatic, while the in-

110

variants we suggest rely on the designer's knowledge on the syn-
chronization of th ~ system. They also independently propose dis-
junctive partitionhtg for synchronous circuits [7]. They require the
designer to come t p with a partition manually, and we again exploit
mutually exclusi~t events.

In work also inde'~endent of ours, Heimdahl and Whalen [19] use
a dependency ana ysis technique similar to the one described Sec-
tion 6.1, but their motivation is to facilitate manual review of the
TCAS II requirem mrs, rather than automatic verification. As noted
before, we gaineL re'_atively large reduction because Other-Aircraft
was not fully mo: eled, and we suspect that in a complete system,
the reduction obtz2 aed by this exact analysis could be limited. How-
ever, more reducti 3n can be obtained if we forsake exactness. For
example, localiza~ ~on reduction [22] is one such technique, which
aggressively gene~ ates an abstracted model that may not satisfy the
property while the full model does. If the model checker finds in
the abstracted mo :lel a counterexample that does not exist in the
full model, it wiI] automatically refine the abstraction and iterate
the process until ~.ifl'.er a correct counterexample is found or the
property is verifie~t.

It would be intere: ting to see how well the techniques in this paper
scale with the sysl em complexity. The natural way is to try apply-
ing them to the re ~t of TCAS II. Unfortunately, that part contains
arithmetic operati~ ms, such as multiplication, that provably cannot
be represented by small BDDs [5]. In a recent paper, we suggest
coupling a decisk ,a procedure for nonlinear arithmetic constraints
with BDD-based :aodel checking to attack the problem [9]. More
research is needed to see whether this technique scales to large sys-
tems.

Acknowledgments

We thank Steve B .mzs, who observed the inefficiency of the algo-
rithm in Figure 3 ~r,d implemented the one in Figure 4 in SMV.

References
[1] R. J. Anders3n, P. Beame, S. Burns, W. Chan, F. Modugno,

D. Notkin, ~ nd J. D. Reese. Model checking large software
specification ~. In D. Garlan, editor, Proceedings of the 4th
ACM SIGS(~ FT Symposium on the Foundations of Software
Engineering pages 156-166, San Francisco, CA, USA, Oc-
tober 1996.

[2] J. J. Britt. Case study: Applying formal methods to the
Traffic Alert and Collision Avoidance System (TCAS) II. In
COMPASS 'c. 4, Proceedings of the 9th Annual Conference on
ComputerA. "surance, pages 39-51, Gaithersburg, MD, USA,
June/July 1974. IEEE.

[3] M. C. Brow ~e, E. M. Clarke, and O. Grumberg. Character-
izing finite IF Lripke structures in propositional temporal logic.
Theoretical q?omputerScience, 59(1/2):115-131, July 1988.

[4] R. E. Bryal t. Graph-based algorithms for boolean func-
tion manipu.ation. IEEE Transactions on Computers, C-
35(6):677-4i)1, August 1986.

[5] R. E. Bryan. On the complexity of VLSI implementations
and graph rt presentation of boolean functions with applica-
tions to inte jet multiplication. IEEE Transactions on Com-
puters, 40(21:2D5-213, February 1991.

[6] J. R. Burch. E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill. Symbolic model checking for sequential circuit

verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits, 13(4):401-424, April 1994.

[7] G. Cabodi, E Camurati, L. Lavagno, and S. Quer. Disjunctive
partitioning and partial iterative squaring: An effective ap-
proach for symbolic traversal of large circuits. In 34th Design
Automation Conference, Proceedings 1997, pages 728-733,
Anaheim, CA, USA, June 1997. ACM.

[8] G. Cabodi, E Camurati, and S. Quer. Efficient state space
pruning in symbolic backward traversal. In Proceedings 1994
IEEE International Conference on Computer Design: VLSI in
Computers and Processors, pages 230-235, Cambridge, MA,
USA, October 1994.

[9] W. Chan, R. J. Anderson, E Beame, and D. Notkin. Com-
bining constraint solving and symbolic model checking for a
class of systems with non-linear constraints. In O. Grumberg,
editor, Computer Aided Verification, 9th International Confer-
ence, CAV'97 Proceedings, volume 1254 of Lecture Notes in
Computer Science, pages 316-327, Haifa, Israel, June 1997.
Springer-Verlag.

[10] E. M. Clarke, E. A. Emerson, and A. E Sistla. Automatic
verification of finite-state concurrent systems using temporal
logic specifications. A CM Transactions on Programming Lan-
guages and Systems, 8(2):244-263, April 1986.

[11] O. Coudert, C. Berthet, and J. C. Madre. Verification of syn-
chronous sequential machines based on symbolic execution.
In J. Sifakis, editor, Automatic Verification Methods for Finite
State Systems: International Workshop Proceedings, volume
407 of Lecture Notes in Computer Science, pages 365-373,
Grenoble, France, June 1989. Springer-Verlag.

[12] J. Crow and B. L. Di Vito. Formalizing space shuttle software
requirements. In Proceedings of the ACM SIGSOFT Work-
shop on Formal Methods in Software Practice, pages 40-48,
January 1996.

[13] M. B. Dwyer, V. Carr, and L. Hines. Model checking graphi-
cal user interfaces using abstractions. In FSE5 [14].

[14] Proceedings of the Joint 6th European Software Engineer-
ing Conference and 5th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Zurich, Switzerland,
September 1997.

[15] D. Geist and I. Beer. Efficient model checking by automated
ordering of transition relation partitions. In Computer Aided
Verification, 6th International Conference, CAV'94 Proceed-
ings, volume 818 of Lecture Notes in Computer Science,
pages 299-310, Stanford, CA, USA, June 1994. Springer-
Vedag.

[16] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231-274, June
1987.

[17] D. Harel and A. Naamad. The STATEMATE semantics of
statecharts. ACM Transactions on Software Engineering and
Methodology, 5(4):293-333, October 1996.

[18] M. E E. Heimdahl and N. G. Leveson. Completeness and
consistency in hierarchical state-based requirements. IEEE
Transactions on Software Engineering, 22(6):363-377, June
1996.

[19] M. E E. Heimdahl and M. W. Whalen. Reduction and slicing
of hierarchical state machines. In FSE5 [14].

[20] A. J. Hu and D. L. Dill. Reducing BDD size by exploiting
functional dependencies. In 30th A CM/IEEE Design Automa-
tion Conference, Proceedings 1993, pages 266-271, Dallas,
TX, USA, June 1993.

111

[21] H. Iwashita, T. Nakata, and E Hirose. CTL model check-
ing based on forward state traversal. In 1996 IEEE/ACM In-
ternational Conference on Computer-Aided Design, Digest of
Technical Papers, pages 82-87, San Jose, CA, USA, Novem-
ber 1996.

[22] R. P. Kurshan. Computer-Aided Verification of Coordinat-
ing Processes: The Automata-Theoretic Approach. Princeton
University Press, 1994.

[23] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D.
Reese. Requirements specification for process-control sys-
tems. IEEE Transactions on Software Engineering, 20(9),
September 1994.

[24] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[25] R. Pugliese and E. Tronci. Automatic verification of a hy-
droelectric power plant. In M.-C. Gaudel and J. Woodcock,
editors, FME'96: Industrial Benefit and Advances in For-
mal Methods, 3rd International Symposium of Formal Meth-
ods Europe, Proceedings, volume 1051 of Lecture Notes in
Computer Science, pages 425-444, Oxford, UK, March 1996.
Springer-Verlag.

[26] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pix-
ley. Efficient BDD algorithms for FSM synthesis and verifi-
cation. In Proceedings of lEEE/ACM lnternational Workshop
on Logic Synthesis, Lake Tahoe, USA, May 1995.

[27] T. Sreemani and J. M. Atlee. Feasibility of model check-
ing software requirements: A case study. In COMPASS'96,
Proceedings of the 11th Annual Conference on Computer As-
surance, pages 77-88, Gaithersburg, MD, USA, June 1996.
IEEE.

[28] The VIS Group. VIS: A system for verification and synthe-
sis. In R. Alur and T. A. Henzinger, editors, Computer Aided
Verification, 8th International Conference, CAV'96 Proceed-
ings, volume 1102 of Lecture Notes in Computer Science,
pages 428--432, New Brunswick, N J, USA, July/August 1996.
Springer-Verlag.

112

