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Abstract 

We present various techniques for improving the time and space ef- 
ficiency of symbolic model checking for system requirements spec- 
ified as synchronous finite state machines. We used these tech- 
niques in our analysis of the system requirements specification of 
TCAS 11, a complex aircraft collision avoidance system. They to- 
gether reduce the time and space complexities by orders of magni- 
tude, making feasible some analysis that was previously intractable. 
The TCAS II requirements were written in RSML, a dialect of state- 
charts. 

Keywords Formal verification, symbolic model checking, reach- 
ability analysis, binary decision diagrams, partitioned transition re- 
lation, statecharts, RSML, TCAS II, system requirements specifi- 
cation, abstraction. 

1 Introduction 

Formal verification based on state exploration can be considered an 
extreme form of simulation: every possible behavior of the system 
is checked for correctness. Symbolic model checking [6] using bi- 
nary decision diagrams (BDDs) [4] is an efficient state-exploration 
technique for finite state systems; it has been successful on veri- 
fying (and falsifying) many industry-scale hardware systems. Its 
application to non-trivial software or process-control systems is far 
less mature, but is increasingly promising [1,13,25,27]. For exam- 
ple, we obtained encouraging results from applying symbolic model 
checking to a portion of a preliminary version of the system require- 
ments specification of TCAS II, a complex software avionics sys- 
tem for collision avoidance [1]. The full requirements, comprising 
about four hundred pages, were written in the Requirements State 
Machine Language (RSML) [23], a hierarchical state-machine lan- 
gnage based on statecharts [16]. 
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By representing state sets and relations implicitly as BDDs for sym- 
bolic model checking, the sheer number of reachable states is no 
longer the obstacle to analysis. Instead, the limitation is the size of 
the BDDs, which depend on the structure of the system analyzed. 
Considerable effort on formal verification of hardware has been fo- 
cused on controlling the BDD size for typical circuits. However, 
transferring this technology to new domains may require altema- 
five techniques and heuristics to combat the BDD-blowup problem. 
In this paper, we present modifications to the algorithms imple- 
mented in a symbolic model checker (SMV [24]), modifications 
to the model, as well as a simple abstraction technique, to improve 
the time and space efficiency of the TCAS II analysis. Experimen- 
tal results show that the techniques together reduce the time and 
space complexities by orders of magnitude; these improvements 
have made feasible some analysis that was previously intractable. 

The specific techniques we discuss in the paper are: 

• Short-circuiting to reduce the number of BDDs generated by 
stopping the iterations before a fixed point is reached. 

• Managingforwardandbackwardtraversals, toreducethesize 
of the BDD generated at each iteration. Notably, we improve 
backward traversals by making certain invariants (in particu- 
lar, that some events are mutually exclusive) explicit in the 
search. 

• More sophisticated conjunctive partitioning of the transition 
relation and applying disjunctive partitioning in an unusual 
way, to reduce the size of the intermediate BDDs at each it- 
eration. Further improvements were made by combining the 
two techniques to obtain DNF partitioning. 

• Abstraction to decrease the number of BDD variables. Given 
a property to check, we perform a simple dependency analysis 
to generate a reduced model that is guaranteed to give the same 
results as with the full model. 

Techniques like short-circuiting and abstraction are conceptually 
straightforward and applicable to many systems. Most other tech- 
niques were designed to exploit the simple synchronization patterns 
of TCAS II (for example, most events are mutually exclusive, and 
most state machines are not enabled simultaneously), and we be- 
lieve they can also help analyze other statecharts machines with 
simple synchronization patterns. 

We provide experimental results showing how each of these tech- 
niques affected the performance of the TCAS II analysis. The ef- 
fects of combinations of the improvements are shown in addition 
to the individual effects. We focus on reachability problems, be- 
cause most properties of TCAS II we were interested in fall into 
this class. However, in principle, all of the techniques should bene- 
fit general temporal-logic model checking as well. We conclude the 
paper with discussion of some related techniques. 
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F gure 1: A statecharts example 

2 Backgro~:~nd 

In this section, we give a brief overview of statecharts and RSML. 
We then turn our a Iention to symbolic model checking. Finally, we 
review how we a[ plied symbolic model checking to the TCAS II 
requirements. 

2.1 RSML and Statecharts 

The TCAS II requi rements were written in RSML, a language based 
on statecharts. Li ~e other variants of statecharts, RSML extends 
ordinary state-mat nine diagrams with state hierarchies; that is, ev- 
ery state can contE in orthogonal or mutually exclusive child states. 
However, this real are does not concern us in this paper (the state 
hierarchy in the ~3~ion of TCAS II that we analyzed is shallow 
and does not incm special difficulties in model checking). Instead, 
we can think of th ~ system consisting of a number of parallel state 
machines, commu aicating and executing in a synchronous way. 

Figure 1 above gi~ es a simple example with two parallel state ma- 
chines A and B. I -A is in local state 0, we say that the system is in 
state At>0. State ~ ~achines are synchronized using events. Arrows 
without sources in ticate the initial local states. Other arrows repre- 
sent local transitio as, which are labeled with the form u[c]/v where 
u is a trigger even:, c is the guarding condition and v is an action 
event. The guardil g condition is simply a predicate on local states 
of other state mad Jnes and/or inputs to the system; for example, a 
guarding conditiot may say that the system is in Bt>0 and an input 
altitude is at leas t .  000 meters. (In RSML, the guarding condition 
is specified separEtely from the diagram in a tabular form called 
AND/OR table, b~t we use the more concise statecharts notation 
instead.) The gua~ :ling condition and the action are optional. The 
general idea is tha,  if event u occurs and the guarding condition c 
either is absent or ~valuates to true, then the transition is enabled. 

Initially some exte'nal events along with some (possibly numeric) 
inputs from the em ;.ronment arrive, marking the beginning of a step. 
The events may en tble some transitions as described above. A max- 
imal set of enable 1 transitions, collectively called a microstep, is 
taken--the system leaves the source local states, enters the target 
local states, and ~ enerates the action events (if any). All events 
are broadcast to t? e entire system, so these generated events may 
enable more transi ions. The events disappear after one microstep, 
unless they are reg,,nerated by other transitions. The step is finished 
when no transitio~ ~ are enabled. The semantics of RSML assume 
the synchrony hypc thesis: During a step, the values of the inputs do 
not change and no new external events may arrive; in other words, 
the system is assuraed to be infinitely faster than the environment. 

In Figure 1, assume that w is the only external event, a is a Boolean 
input, and the system is currently in A t> 0 and Bt> 0. When w arrives, 
if the input a is false, then the event y is generated. The step is 
finished since no new transitions are enabled. If instead a is true 
when w arrives, the transitions from At>0 to At> 1 and from Bt>0 to 
Bt> 1 are simultaneously taken and event x is generated, completing 
one microstep. Then a second microstep starts; notice that because 
of the synchrony hypothesis, the input a must be true as before and 
the external event w cannot occur. So only the transition from Bt> 1 
to Bt>2 is enabled and taken, generating event z and finishing the 
step. 

Subtle but important semantic differences exist among variants of 
statecharts. The semantics of STATEMATE [17], another major 
variant of statecharts, are close to those of RSML. STATEMATE 
does not enforce the synchrony hypothesis in the semantics, but 
provides it as an option in the simulator. RSML and STATEMATE 
also have a richer set of synchronization primitives and provide 
some sort of variable assignments; however, these features are not 
important for this paper. 

2.2 Symbolic Model Checking 

We now switch gears to discuss model checking for ordinary finite- 
state transition systems (without state hierarchies, the synchrony 
hypothesis, etc.). The goal of model checking is to determine 
whether a given state transition system satisfies a property given as 
a temporal logic formula, and if not, to try to give a counterexample 
(a sequence of states that falsifies the formula). Example properties 
include that a (bad) state is never reached, and that a (good) state 
is always reached infinitely often. In "explicit" model checking, 
the answer is determined in a graph-theoretic manner by travers- 
ing and labeling the vertices in the state graph [10]. The method is 
impractical for many large systems because of the state explosion 
problem. Much more efficient for large state spaces is symbolic 
model checking, in which the model checker visits sets of states 
instead of individual states. 

For illustration, we focus on the teachability problem, the simplest 
and the most common kind of temporal property checked in prac- 
tice. Let Q be the finite set of system states, R C_ Q x Q the state 
transition relation, I c Q the set of initial states, and E C Q a set 
of error states. The reachability problem asks whether the system 
always stays away from the error states E, and if not, demands a 
counterexample, that is, a sequence of states qo, ql . . . . .  qn with 
qo E L qn E E and (qi,qi+l ) E R for 0 < i < n. 

We define Pre: 2 Q ~ 2 Q to compute the pre-image (or the weakest 
pre-condition) of a set of states under the transition relation R: 

Pre(S) = { q E Q I 3q' E S. (q,q') E R }. 

Intuitively, it is the set of states that may reach some state in S in 
one transition. Then we can characterize the decision problem of 
reachability in a set-theoretic manner usingfixedpoints: Determine 
whether INPre*(E) is empty, where Pre*(E) is the set of states 
that may eventually reach an error state. More specifically, it is the 
smallest state set Y that satisfies 

Y = EUPre(Y). 

Its existence is guaranteed by the finiteness of Q and the mono- 
tonicity of Pre. Figure 2 on the following page shows an iterative 
algorithm for computing this fixed point. The set I~ is the states 
that may reach an error state in at most i transitions. Many other 
temporal properties can be similarly defined and computed using 
(possibly multiple or nested) fixed points [6]. 
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Start with Yo = E and iteratively compute Y/+l = Pre(Yi) U Yz" until reaching 
a fixed point. 

fixed point 
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< 

Backward Traversal 

Figure 2: An algorithm for computing Pre* (E) 

If the intersection of Pre*(E) and the initial states I is empty, then 
the set E is not reachable and we are done. Otherwise, we would 
like to find a counterexample. We first define Post: 2Q ~ 2 Q to 
compute post-images: 

Post(S) = { q' E a l 3q E S. (q,q') E R }. 

In other words, Post(S) is the set of states reachable from S in one 
transition. Figure 3 shows a counterexample search algorithm. The 
set Q0 can be any nonempty subset of the intersection, but it is 
convenient to choose Q0 to be an arbitrary singleton set. The set Qi 
is the states that are reachable from Q0 in at most i transitions. We 
obtain a counterexample by tracing backward from Qm f7 E. ONe 
will improve this algorithm later.) 

The crucial factor for efficiency is the representation for state sets. 
Notice that the state space Q can be represented by a finite set of 
variables X, such that each state in Q corresponds to a valuation for 
the variables and no two states correspond to the same valuation. 
For finite state systems, we can assume without loss of generality 
that each variable is Boolean. A set of states S is then symbolically 
represented as a Boolean function S(X) such that a state is in the set 
if and only if it makes the function tree. The transition relation of 
states can be similarly represented as a Boolean function R(X,X  ~) 
where X ~ is a copy of X and represents the next state. Intersec- 
tion, union and complementation on sets or relations respectively 
becomes conjunction, disjunction and negation on Boolean func- 
tions. Now the problem of representation of state sets is reduced to 
that of Boolean functions. 

Empirically, the most efficient representation for Boolean functions 
is BDDs [4]. They are canonical, with efficient implementation for 
Boolean operations. For example, the time and space complexities 
of computing the conjunction or disjunction of two BDDs are linear 
in the size of the result, which is at most the product of the sizes of 
the operands. Negation and equivalence checking can be done in 
constant time. BDDs are often succinct, but this relies critically on 
a chosen linear variable order of the variables in X. 

We can now represent a state set S and the transition relation R as 
BDDs and compute the pre-image and post-image of S as follows: 

Pre( S) = 3X'. R(X,X ' )  A S(X'), 

Post(s) = 3x. R(x,x')  ^ s(x).  

The notation 3X refers to existentially quantifying out all the vari- 
ables in X. In addition to Boolean operations and equivalence 
checking, operations like existential quantification and variable 
substitution can also be performed, so the algorithms in Figures 

1. Let Q0 be any nonempty subset of Pre* (E) NL Iteratively compute 
Qi+l = Post(Qi) uQi until reaching E. 

> 

Forward Traversal 

2. Start with some qm 6 Qm C~ E and iteratively pick some 
qi-I 6 Pre(qi) OQi-i to obtain a counterexample qo, ql . . . . .  qm. 

qo ql qm 

Figure 3: An algorithm for counterexample search 

2 and 3 (and similar algorithms for many temporal logics such as 
CTL [10]) can be implemented using BDDs. Thanks to the suc- 
cinctness of BDDs and the efficiency of their algorithms, some sys- 
tems with over 1012° states can be analyzed [6]. 

2.3 Symbolic Model Checking for TCAS II 

We analyzed the TCAS II requirements using a symbolic model 
checker SMV (Version 2.4.4). SMV uses algorithms similar to 
those in Figures 2 and 3. A notable difference is that in Figure 2, 
instead of computing Yi+l = Pre(Yi) U Yi, it uses the equivalent re- 
currence Yi+l = Pre(Yi - Yi-I ) UY/, with the advantage that I~ - Y/-l 
usually requires a much smaller BDD than I'~ does, resulting in 
faster pre-image computation. (In fact, it is sufficient to compute 
the pre-image of any Z with I'~ - Yi-t C_ Z C_ I~ [11].) Similar com- 
ments apply to the computation of each Qi in Figure 3. 

Because SMV does not support hierarchical states and other RSML 
features directly, we had to translate the requirements into an or- 
dinary finite-state transition system in the SMV language. The 
requirements consist of two main parts, Own-Aircraft and Other- 
Aircraft, which occupy about 30% and 70% of the document re- 
spectively. In our initial study, we translated Own-Aircraft quite 
faithfully to the SMV language, and abstracted Other-Aircraft as a 
mostly nondeterministic state machine. The details of the transla- 
tion, including how the transitions, the state hierarchy and the syn- 
chrony hypothesis were handled, as well as the properties analyzed, 
were given in a previous paper [1]. Certain details about the system 
model are relevant to this paper: 

• An RSML microstep corresponds to a transition in the SMV 
program, and thus a step corresponds to a sequence of transi- 
tions. 

• We encode each RSML event as a Boolean variable, which is 
true if and only if the event has just occurred. 

• We assume each numeric input to be discrete and bounded, 
and encode each bit as a Boolean variable. 

• To maintain the synchrony hypothesis, we prevent the inputs 
from changing and the external events from arriving when any 
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of the variab es that encode events is true. 
• We analyze,me instance of TCAS II only, so the asynchrony 

among multi9le instances of the system is not an issue. 

A major source o f complexity of the analysis was the transitions' 
guarding conditio ~s, some of which occupy many pages of descrip- 
tion. They contai 1 predicates of local states and of the input vari- 
ables, and often il volve complicated arithmetic. While many other 
researchers conse vatively encode each arithmetic predicate as an 
independent Booll ',an variable [12,18,27], we encode each input bit 
as a Boolean vafi~ ble, resulting in more accurate analysis at the ex- 
pense of more Bo )lean variables. In addition, a guarding condition 
can refer to any t,art of the system, so the interdependencies be- 
tween the BDD w dables are high. These all imply relatively large 
BDDs for guardin ~ conditions. 

On the plus side, ~he control flow of Own-Aircraft is simple, and 
concurrency amor g ".he state machines in Own-Aircraft is minimal. 
As we will see, s >me of the techniques presented later attempt to 
exploit these sim~ '.e synchronization patterns. 

3 Short-Circuiting 

It is easy to see th tt :_n Figure 2, we do not need to compute a fixed 
point when the e~ rot states are reachable~we can stop once the 
intersection of so~ ae Yi and I is not empty; because all we need is 
an element in the ntersection. This short-circuiting technique may 
substantially redt:( e the time and space used when a short counter- 
example exists. 

More generally, s aort-circuiting can be applied to the outermost 
fixed point (and Jccasionally the inner ones) in temporal-logic 
model checking. 

4 Forward vs. Backward Traversals 

Fixed-point comp)~tation or counterexample search can be done ei- 
ther forward or ba :kward. In this section we elaborate on their per- 
formance differen :e in our analysis. In short, backward traversals 
generate smaller E DDs and are a big win for our system. They can 
be further improw d by incorporating certain invariants to prune the 
searches. 

4.1 Improved Counterexample Search 

During the analys s of TCAS II, we found that when a property 
was disproved in 1 few minutes, finding a counterexample might 
take hours. A co~ uthor of a previous paper subsequently simpli- 
fied the counterex ~mple search algorithm, resulting in substantial 
speedup [1]. Thfi is the only technique described here that was 
used in that study. 

The forward trave: sal in the first part of Figure 3 is the bottleneck. 
For our system, th," sequence of post-images requires large BDDs. 
However, we can climinate this step if we remember every Y/com- 
puted in Figure 2 our actual implementation stores the difference 
1~ - I')-1 instead t f Yi). Our modification, illustrated in Figure 4, 
is by no means in aovative and should be considered natural.l A 
disadvantage of t? e algorithm is the use of additional memory to 
store the state sets which is wasted in case the error states are not 

1 Indeed, if we se ~rch forward to find the reachable state set, SMV can 
optionally use a simi ar counterexample search algorithm, but it is not used 
with the default back ~vard traversal. 

Start with some qo E Yn f31 and iteratively pick some qi E Post(qi-l ) fl Yn-i 
to obtain a counterexample qo, ql . . . . .  qn. 

qo ql 

................ qi ~>~< .................. - iiiii.i::::::::::!: !:!:~ ! !ii!i!ii~i!iii:~:i::i:i :i: ...... 

Figure 4: A simplified algorithm for counterexample search 

reachable. Nevertheless, the dramatic speedup made possible far 
outweighs the modest additional memory requirements. 

An important question remains: Why is the backward traversal in 
Figure 2 much more efficient than the forward traversal in Figure 3? 
The inefficiency of forward traversals is also witnessed by SMV's 
inability to compute the set of reachable states of the system. Find- 
ing the reachable state set by searching forward from the initial 
states is a common technique in hardware verification; the set can 
be used to help analyze other temporal properties and synthesize 
the circuit. 

A backward traversal often takes fewer iterations to reach a fixed 
point than a forward traversal, because the set of error states is usu- 
ally more general than the set of initial states. However, the problem 
here is not the number of iterations, but rather, the size of the BDDs 
generated. In general, we observe that in backward traversals, the 
BDDs usually have between hundreds to at most tens of thousands 
of BDD nodes, while in forward traversals, they can be two or more 
orders of magnitude larger. Nevertheless, the verification of many 
hardware systems tends to benefit, rather than suffer, from forward 
traversals. For example, Iwashita et al. report significant speedup in 
CTL model checking for their hardware benchmarks when forward 
instead of backward traversals are used [21]. 

Partly inspired by Hu and Dill [20], we believe that the inefficiency 
is mainly due to the complex invariants of TCAS II, which are main- 
tained by forward but not backward traversals. As an example, con- 
sider the state machine in Figure 5. If event y is only generated in A, 
then an invariant of the system is that, whenever event y has just oc- 
curred, the machine is in At>0 if and only if condition a is true. If 
the BDD for a is large, so will the BDD for the invariant. There 
are likely to be many such implicit invariants in the system, and 
their conjunction may have a large BDD representation even if they 
are small. In addition, invariants may globally relate different state 
machines, also likely to result in large BDDs. Forward traversals 
maintain all such invariants, so intuitively the BDDs for forward 

A 

x [ a l / Y ~  x[b]/y 

Figure 5: A state machine with local invariants 
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traversals tend to blow up in size. In low-level hardware verifica- 
tion, the BDDs often remain small, because each invariant is usually 
localized and involves only a small number of state variables. This 
is not the case in TCAS II however. 

For backward traversals, the situation is quite different. For ex- 
ample, there are no counterparts of the invariant mentioned above 
when backward traversals are used, because the truth value of a 
does not determine the state of the system before the microstep. 
Certainly, some different (backward) invariants are maintained in 
backward traversals, but they tend to depend on the states from 
which the search starts, and their BDDs tend to be smaller for our 
system. 

4.2 Improved Backward Traversals Using 
Invariants 

Interestingly, the main disadvantage of backward traversals is also 
that (forward) invariants are not maintained. Some invariants, par- 
ticularly those with small BDDs, can help simplify the BDDs of 
state sets, and can speed up backward traversals if they are incor- 
porated into the search. In the context of statecharts, many systems 
have simple synchronization patterns, which are lost in backward 
traversals. A particular invariant that we find useful to rectify this 
problem is the mutual exclusion of certain events. We illustrate this 
idea with an example. 

Consider the system in Figure 6. Assuming u is the only external 
event, there is no concurrency in the system--at most one local 
transition can be enabled at any time. Forward traversals do not 
explore concurrent executions of the state machines. 

However, in backward traversals, the analysis may be fooled to con- 
sider many concurrent executions, which are not reachable. Sup- 
pose we want to check whether the system can be inBt> 1 and Ct> 1 
simultaneously. Traversing backward, we find that in the previ- 
ous microstep, the system may be in (B~0,C> 1), (B> 1,C>0), or 
(B>O, Ct>O). The last case, however, is not possible, because events 
v and w cannot occur at the same time. (Notice that this is true only 
if we assume the synchrony hypothesis.) Tracing more iterations, 
we can see that the search considers not only concurrent executions 
but also many unreachable interleavings of executions. The BDDs 
thus may blow up if the guarding conditions are complex. 

.4 .[al/~ 

.[a']/~ 

B vN/w 

v[b'l/w 

C w[c]/x 

wte]# 

Figure 6: A system with a linear structure 

Fortunately, we can greatly simplify the search by observing that 
all the events are mutually exclusive. This invariant can be incorpo- 
rated into the traversals by either intersecting it with the pre-images 
or using it as a care-set to simplify them [11]. 

To find out such a set of mutually exclusive events, we may per- 
form a conservative static analysis on the causality of the events. 
Alternatively, the designer may know which events are mutually 
exclusive, because the synchronization patterns should have been 
designed under careful consideration. To confirm the mutual exclu- 
sion, we may verify, using model checking or other static analysis 
techniques, that the states with 

V.,v~Z(uAv) 
uCv 

are not reachable, where Y. is the set of state variables encoding the 
events under consideration. In the case of TCAS II, a large part of 
our model behaves similarly to the machine in Figure 6, and the set 
of mutually exclusive events was evident. 

5 Partitioned Transition Relation 

Apart from the BDD size for state sets, another bottleneck of model 
checking is the BDD size for the transition relation, which can be 
reduced by conjunctive or disjunctive partitioning [6]. The former 
can be used naturally for TCAS II, and we have modified SMV to 
partition the transition relation more effectively. We also apply dis- 
junctive partitioning, which is normally used only for asynchronous 
systems. Combining the two techniques, we obtain DNFpartition- 
ing. As we will see, the issues in this section are not only the BDD 
size for the transition relation, but also the size of the intermediate 
BDDs generated for each image computation. 

5.1 Background 

In this subsection, we review the idea of conjunctive and disjunctive 
partitioning, described in Burch et al. [6]. The transition relation R 
is sometimes given as a disjunction D 1 VD2 V. . .VDj ,  and the BDD 
for R can be huge even though each disjunct has a small BDD. So 
instead of computing a monolithic BDD for R, we can keep the 
disjuncts separate. The image computations can be easily modified 
by distributing the existential quantification over the disjunction. 
For pre-image computation, we thus have 

Pre( S) = 3X'. R (X ,X') AS(X') 

= ~x'. (Ol (x,x') vo2(x,x ' )  v. . .  vo j (x ,x ' ) )  ^s(x ' )  
= d~ (x) v d2(X) v . . .  vdj(X) 

where for 1 < i < j, 

di(X) = 3X'.Di(X,X') ^S(X'). 

So we can compute the pre-image without ever building the BDD 
for R. Post-image computation is symmetric. 

If, however, R is given as a conjunction C1 A C2 ̂ . . .  A Ck, we can 
still keep the conjuncts separate as above, but image computations 
become more complicated. The problem is that existential quantifi- 
cation does not distribute over conjunctions, so it appears that we 
have to compute the BDD for R anyway before we can quantify out 
the variables. A trick to avoid this is early quantification. Define 
X~, X~ . . . . .  X~ to be disjoint subsets of X' such that their union is X' 
and for 1 < i < k, the conjunct Ci does not depend on any variable 
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in Xp for any p < i Consider again the pre-image computation. We 
compute 

cl I x , x ' )  = 3x{. cl (x ,x ' )  ^ s(x') 

c2(x,x')  = 3x~.cz(x,x ' )  ^c l  (x ,x ' )  

Pre(S) = :  ck(X) = 3X'.Ck(X,X') Ack-1 (X,X'). 

The intuition is to quantify out variables as early as possible, and 
hope that each int ~rmediate ci for 1 <_ i < k remains small. The 
effectiveness of the: procedure depends critically on the choice and 
ordering of the cor juncts C1, C2 . . . . .  Ck. 

5.2 Determining a Conjunctive Partition 

We could not con,' truer the monolithic BDD for the transition re- 
lation R for our rr odel of TCAS II in hours of CPU time, but R 
is naturally specifi.~d as a conjunction, so we can use conjunctive 
partitioning. Alth mgh SMV supports this feature, it determines 
the partition in a ~, :.mplistic way: An SMV program consists of a 
list of parallel assi I ~ments, whose conjunction forms the transition 
relation. SMV con ~tructs the BDDs for all assignments, and incre- 
mentally builds the ir conjunction in the (reverse) order they appear 
in the program. In this process, whenever the BDD size exceeds a 
user-specified thre ,hold, it creates a new conjunct in the partition. 
So the partition is ~, Mely determined by the syntax, and no heuristic 
or semantic inforrr ation is used. 

To better determir e the partition, we changed SMV to allow the 
user to specify tt:~ ~ partition manually. We also implemented in 
SMV a variant of t ~e heuristics by Geist and Beer [15] and by Ran- 
jan et al. [26] to at tomatically determine the partition. The central 
idea behind the h~ uristics is to greedily select conjuncts that al- 
low early quantific ltion of more variables while introducing fewer 
variables that cann x be quantified out. Our implementation of the 
heuristics worked quite well. The partitions generated compared 
favorably with, am sometimes outperformed, the manual partitions 
that we tried. 

5.3 Disjunc'five Partitioning for Statecharts 

Disjunctive partiti z aing is superior to conjunctive partitioning in the 
sense that ordering the disjuncts is less critical, and that each inter- 
mediate B DD is a 'unction of X (instead of X UX') and thus tends 
to be smaller. (An¢ ther advantage that we have not exploited is the 
possibility of parz'. ~.elizing the image computation by constructing 
the intermediate BI)Ds concurrently.) 

Unfortunately, whm ".he transition relation R is a conjunction, in 
general there are n ) simple methods for converting it to a small set 
of small disjuncts. If we define a cover (Zl (X,X~), (z2(X,X I) . . . . .  
(zj(X,X ~) such th~ t their disjunction is a tautology, then we can 
indeed disjunctivel ~ partition R by distributing R over the cover: 

R =: (51 VO~2 V.. .  Vo~j) AR 

=: Dl VD2 V.. .  VDj 

where for 1 < i < . ,  

Di ::: ~i A R = O~i A Cl AC2 A. . .  A Ck. 

But for most choic ,'s of covers, each D i is still large. 

For TCAS II and many other statecharts, however, we can again 
exploit the mutual exclusion of certain events, say ul,  u2 . . . . .  ui-l .  
Define 

O[ i = U i A AI<_p<j "aUp 
p•i 

fo r l  < i < j ,  and 

O~j = "TU l A ~U2 A "  " IS ~ U j _  1 

0~j+ 1 = -7~ 1 A ~1~ 2 A " "  A ~0~j. 

In other words, ~i corresponds to the states in which only ui has 
just occurred, c~j, none of the events have, and coy+ 1, at least two 
of the events have. They clearly form a cover. We made two obser- 
vations. First, we can drop Coy+l, which is a contradiction because 
of the mutual exclusion assumption. Second, most of the parallel 
assignments in our SMV program are guarded by conditions on the 
events; for example, an assignment that models a state transition re- 
quires the occurrence of the trigger event. If the event is, say ui for 
some 1 _< i < j ,  then the BDD for the assignment is applicable only 
to the disjunct Di, and all the other disjuncts of the transition rela- 
tion are unaffected. So each disjunct may remain small. Notice that 
to apply this technique, we have to find a set of provably mutually 
exclusive events, which can be done as described in Section 4.2. 

5.4 DNF Partitioning and Serialization 

A disadvantage of partitioning R based on events is that the sizes of 
the disjuncts are often skewed. In particular, if a single event may 
trigger a number of complex transitions, its corresponding disjunct 
could be large. Figure 7 shows an example in which an event x trig- 
gers two state machines. If all the guarding conditions are complex, 
the BDD for the disjunct corresponding to x may be large. 

One solution to this problem is to apply conjunctive partitioning 
to large disjuncts, resulting in what we call DNF partitioning. It 
uses both BDD size (as in conjunctive partitioning) and structural 
information (as in disjunctive partitioning) to partition the transition 
relation, and may perform better than relying on either alone. 

Alternatively, we may serialize the complicated microstep into cas- 
cading microsteps to reduce the BDD size, Figure 8 on the next 
page illustrates this idea. We have "inserted" a new event u after x. 
Note that the resulting machine has more microsteps in a step. So 
although this method is effective in reducing the BDD size, it often 
increases the number of iterations to reach a fixed point. Also, the 
transformation may not preserve the behavior of the system and the 
property analyzed. A sufficient condition is that the guarding con- 
ditions in the machine B do not refer to machine A's local states, 

a x[,~]/ 

x[a']/ 

B x[O]/ 

x[b'l/ 

Figure 7: Event x trigger s two state machines. 
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A "~ x[al /u ~ , 
: ( ~ - ' -  " - - ~ " k )  " x[ ~ ]/ .  

x[-ta]/u 
xta'l/u 

u[b'l/ 

Figure 8: The serialized machine 

x is mutually exclusive with all other events, and we are check- 
ing a reachability property that does not explicitly mention any of 
the state machines, transitions or events involved in the transforma- 
tion. 2 

6 Abstraction 

In this section, we give a simple algorithm to remove part of the 
system from the model that is guaranteed not to interfere with the 
property being checked. For example, a system may have a number 
of outputs (which may be local states or events). If we are ana- 
lyzing only one of them, the logic that produces other outputs may 
be abstracted away, provided these outputs are not fed back to the 
system. The abstraction obtained is exact with respect to the prop- 
erty, in the sense that the particular property holds in the abstracted 
model if and only if it holds in the original model. 

6.1 Dependency Analysis 

We determine the abstraction by a simple dependency analysis on 
the statecharts description. Initially, only the local states, events, 
transitions, or inputs that are explicitly mentioned in the property 
are considered relevant to the analysis. Then the following rules 
are applied recursively: 

• If an event is relevant, then so are all the transitions that may 
generate the event. 

• I fa  transition is relevant, then so are its trigger event, its source 
local state, and everything that appears in its guarding condi- 
tion. 

• If a local state is relevant, then so are all the transitions out of 
or into it, and so is its parent state in the state hierarchy. 

(Note that the relevance of an input does not make any other entity 
relevant.) These rules are repeated until a fixed point is reached. 
Essentially, this is a search in the dependency graph, and the time 
complexity is linear in the size of the graph. It should be evident that 
everything not determined relevant by these rules can be removed 
without affecting the result of the analysis. 

2The same criterion can be applied to arbitrary CTL formulas, provided 
we do not use the the next-time operator X, which can count the number 
of microsteps. In other words, under the assumptions, the transformation 
preserves equivalence under stuttering bisimulation [3]. 

6.2 False Dependency 

Similar dependency analyses could also be performed by model 
checkers (such as VIS [28]) on the Boolean model of the statecharts 
machine. However, a straightforward implementation would not be 
effective. The reason is that in the model, an input would appear 
to depend on every event because of the way we encoded the syn- 
chrony hypothesis (Section 2.3). On the other hand, carrying out 
dependency analysis on the high-level statecharts description does 
not fall prey to such false dependencies. 

Other forms of false dependencies are possible, however. Suppose 
we are given the system in Figure 8 from the previous section. From 
the syntax, the event u appears to depend on both conditions a and 
d ,  but in fact it does not, because regardless of the truth values a 
and d ,  event u will be generated as a result of event x. 

To detect such false dependencies, one can check whether the dis- 
junction of the guarding conditions of the transitions out of a local 
state with the same trigger and action events is a tautology. This can 
sometimes be checked efficiently using BDDs [18]. However, the 
syntax of RSML and STATEMATE allows easy detection of most 
false dependencies of this kind. Notice that the self-loops in Fig- 
ure 8 are solely for synchronization--they make sure that u is gener- 
ated regardless whether there has been a local state change. To im- 
prove the visual presentation, RSML and STATEMATE allow one 
to specify the generation of such events separately from the state 
diagram using identity transitions and static reactions respectively. , 
(Actually, their semantics are slightly different from self-loops, but 
the distinctions are not important here.) 

Some false dependencies are harder to detect automatically. For 
example, the guarding conditions involved may not form a tautol- 
ogy, but in all reachable states, one of the guarding conditions holds 
whenever the trigger event occurs. As another example, in Figure 9, 
the event y does not depends on any of the guarding conditions, be- 

3 cause it is always generated one or two microsteps after w. In prac- 
tice, the synchronization of the system should be evident to the de- 
signer, who may specify the suspected false dependencies in tempo- 
ral logic formulas, which can be verified using model checking. If 
the results indeed show no real dependencies, this information can 
be used in the dependency analysis to obtain a smaller abstracted 
model of the system. In our TCAS II analysis, the synchronization 
of Own-Aircraft is simple enough that false dependencies can be 
easily detected. However, this method may be used for analyzing 
the rest of TCAS II or other systems. 

.,[b]/y :--., 
w [-'a] 

w [-~b]/x 
"~" w[al/Y 

x[-~d]/y x [ ~ c ] / y  x[-~c]/y 

Figure 9: False dependency: Event y does not depends on any 
guarding condition. 

3However, if the next-time operator X is used, then y may be considered 
conservatively to be dependent on a and b. 
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Building 
BDDs for R 

Full Model 227 variables) 

No. of fix t tint iterations 
Counter~ maple length 

O1~ izations time nodes 
SC MX CP DP (s) (K) 

1 . . . .  20 93 
2 x/ - -  - -  - -  20 93 
3 - -  - -  x/ - -  33 176 

4 - -  x/ - -  - -  20 94 
5 - -  x/ ~/ - -  25 166 
6 - -  ~/ - -  ~/ 34 464 
7 - -  x/ x/ ~/ 40 128 

8 x /  x /  ~/  x /  41 128 

9 
10 
11 
12 

13 
14 
15 
16 

17 
18 

P1 P2 P3 P4 P5 

24 
15 

time nodes 
(s) (K) 

79 400 
62 400 
40 273 

11 110 
9 170 

18 464 
7 128 

6 128 

29 
15 

time nodes 
(s) (K) 

182 713 
143 713 
97 345 

20 123 
18 190 
33 464 
14 139 

8 128 

29 
I1 

time nodes 
(s) (K) 

257 1060 
61 669 

147 488 

76 369 
51 267 

798 968 
57 217 

13 153 

38 
24 

time nodes 
(s) (K) 

342 1090 
136 751 
193 412 

38 152 
31 215 
34 463 
24 150 

12 143 

26 
17 

time nodes 
(s) (K) 

47 249 
39 245 
74 480 
29 160 

18 141 

Mistranslatl d Model t (227 variables) 

Ot izafions time nodes 
SC MX CP DP (s) (K) 

- -  x /  20 93 
- -  ~/ ~/ - -  26 .174 
- -  x/ - -  x/ 36 462 
- -  ~/ ~/ ~/ 42 126 

Serializq odel (231 variables) 

t i m e  

(s) 

285 
323 
972 
126 

nodes 
(K) 

697 
1043 
843 
327 

time nodes 
(s) (K) 

317 1016 
791 1546 

1117 964 
154 515 

time nodes 
(s) (K) 

95 314 
91 424 

358 895 
49 185 

time nodes 
(s) (K) 

518 1129 
497 1471 

1340 952 
215 398 

time nodes 
(s) (K) 

615 2245 

213 678 

No. of tixp tint iterations 
Counterex maple length 

Ol izafons time nodes 
SC MX CP DP (s) (K) 

- -  x /  27 103 
- -  x /  x /  - -  31 167 
- -  j - -  ~/  27 139 
- -  x /  ~/  ~/ 48 136 

Abs trac ted  Models t 

No. of variables 

Optin izafions time nodes 
SC M3" CP DP (s) (K) 

- -  - -  vary 
4 ~/ 4 ,,/ vary 

36 
23 

time nodes 

41 
23 

time nodes 

45 
19 

time nodes 

54 
36 

time nodes 

38 
25 

time nodes 
(s) (K) 

89 325 
94 363 
76 177 
74 196 

(s) (K) 

12 111 
12 167 
12 139 
11 136 

142 

time nodes 
(s) (K) 

5 65 
2 33 

(s) (K) 

39 190 
38 234 
40 161 
34 162 

142 

time nodes 
(s) (K) 

17 93 
4 39 

(s) (K) 

127 311 
127 323 
136 251 
129 221 

150 

time nodes 
(s) (K) 

72 362 
6 73 

(s) (K) 

46 144 
44 199 
32 160 
39 156 

142 

time nodes 
(s) (K) 

26 115 
6 40 

150 

time nodes 
(s) (K) 

oo 

13 95 

P6  

26 
11 

time nodes 
(s) (K) 

490 1903 
316 1139 

oo 

320 1022 

23 243 

time nodes 
(s) (K) 

442 1591 
871 2186 

1954 1007 
198 547 

38 
19 

time nodes 
(s) (K) 

867 2307 
959 1932 
897 1040 
762 982 

171 

time nodes 
(s) (K) 

oo 

18 158 

SC: short-etr zuiting MX: mutual exclusion of events CP: improved conjunctive partitioning 

tNo. of fixpoint i e~ions and counterexample lengths are identical to those of the full model. 

DP: disjunctive partitioning 

T a b l e  1: R e s o u r c e s  u s e d  i n  t h e  a n a l y s i s  

9 
10 
11 
12 

13 
14 
15 
16 

17 
18 

7 Experimental Results 

The table above sm .-tmarizes the results of applying the techniques 
mentioned to our rr odels of TCAS II. It shows the resources (time 
in seconds and num ~er of BDD nodes used in thousands) for build- 
ing the BDDs for the transition relation R as well as the resources 
for evaluating six p-operties. Note that the latter excludes the time 
spent on building tt e transition relation and the resources for find- 
ing the counterexamples. The counterexample search took about 
one to two seconds 9er state in the counterexample and was never a 
bottleneck thanks t .  the algorithm in Figure 4. That algorithm was 
used in all the checl :s, because without it, none of the counterexam- 

pies could be found in less than one hour. The table also shows the 
numbers of iterations needed to reach fixed points and the lengths 
of the shortest counterexamples. We performed the experiments on 
a Sun SPARCstation 10 with 128MB of main memory. Most suc- 
cessful checks used less than 30MB of main memory. 

Several models were examined. Our starting point, called the full  
model, is close to the one used in our previous paper [1]. The mis- 
translated model contains a real translation bug, and is included to 
give an example of analyzing a highly flawed design. The serialized 
model was obtained from the full model with one of the microsteps 
serialized. Finally, applying the dependency analysis in Section 6 
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resulted in the abstracted models. For each model, we performed 
model checking using some combinations of the following opti- 
mizations: short-circuiting (SC), mutual exclusion of events (MX), 
improved conjunctive partitioning using heuristics (CP), disjunctive 
partitioning (DP), and DNF partitioning (CP and DP). 

Properties P1 through P4 refer to the properties Increase-Descent 
Inhibition, Function Consistency, Transition Consistency, and Out- 
put Agreement explained in the previous paper [1]. Property P5 
refers to an assertion in Britt [2, p. 49] that Own-Aircraft should 
never be in two local states Corrective-Climb t> Yes and Corrective- 
Descend t, Yes simultaneously (comments in our version of the 
TCAS II requirements, however, explicitly say that the two local 
states are not mutually exclusive). Property P6 is somewhat con- 
trived: It is simply the conjunction of P3 and P4. Since searching 
simultaneously from two unrelated sets of states tends to blow up 
the BDDs, checking this property provides an easy way to scale 
up the BDD size. It also mimics checking properties involving a 
large part of the system. All six properties are reachability, and are 
violated by the model. For each model, the best time and space 
requirements for each property are shown in bold face. An entry 
with ,,~ indicates timeout after one hour. 

We emphasize that the purpose of the data is to investigate the gen- 
eral effects of the techniques on the models. They are not for pick- 
ing a clear winner among the techniques, since the BDD algorithms 
are very sensitive to the various parameters chosen. 

Full Model Row 1 shows that the fixed-point computations for 
two of the properties could not be completed for the full model, 
when we used only the conjunctive partitioning as implemented in 
SMV. (Actually, we implemented a simple improvement that was 
used in all results including this base analysis. As explained in Sec- 
tion 2.2, an image computation step involves a conjunction and an 
existential quantification. The two operations can be carded out 
simultaneously to avoid building the usually large conjunction ex- 
plicitly [6]. SMV performs this optimization except when conjunc- 
tive partitioning is used. We simply changed SMV to eliminate this 
limitation.) 

Short-circuiting was most effective on Properties P3 and P4 
(Row 2). The savings resulting from the heuristic for conjunctive 
partitioning were also significant (Row 3). Incorporating the mu- 
tual exclusion of certain events into backward traversals generally 
gave an order of magnitude time and space reduction (Row 4). In 
addition, we could now easily disprove Properties P5 and P6. In 
particular, the statement in Britt [2] mentioned above is provably 
false in our version of the requirements. 

Disjunctive partitioning, which must be combined with the mutual 
exclusion of events, appeared to be inefficient (Row 6) when com- 
pared with applying the mutual exclusion alone (Row 4). The rea- 
son is that one of the disjuncts of the transition relation was large, 
with over 105 BDD nodes, at least an order of magnitude larger than 
other disjuncts; this is reflected in the table by the large number of 
BDD nodes needed to construct the transition relation. We conjunc- 
tively partitioned large disjuncts, leading to the more efficient DNF 
partitioning (Row 7). It performed marginally better than conjunc- 
tive partitioning with mutual exclusion of events (Row 5), but the 
space requirements were consistently lower. When short-circuiting 
was also used, all of the fixed points could be computed in less than 
half a minute (Row 8). 

Mistranslated Model To further illustrate the differences among 
the various partitioning techniques, we looked at a version of the 
model that contains a translation error from the RSML machine to 

the SMV program. We made this bug early in the previous study, 
although we soon discovered it by inspection. The mistake was 
omitting some self-loops similar to those in Figure 8. BDDs for 
faulty systems are often larger than those for the corrected versions, 
because bugs tend to make the system behavior less "regular". 

Interestingly, the particular partition generated by the the heuristic 
performed poorly for this model (Row 10). DNF partitioning, on 
the other hand, continued to give significant time and space reduc- 
tions (Row 12). The miserable results of disjunctive partitioning 
(Row 11) were again due to the disproportionally large BDD in the 
partition. 

Serialized Model We serialized a microstep in the full model to 
break the large disjunct into four BDDs of sizes about a hundred 
times smaller. Disjunctive partitioning now used less space (Rows 
6 vs. 15). However, since the number of microsteps in a step in- 
creased, all checks suffered from the larger number of iterations 
needed to reach fixed points. They all ended up performing about 
the same, with disjunctive and DNF partitioning having the slight 
edge, particularly in the space requirements for the more difficult 
searches. 

The data suggest that if the disjuncts are small to start with, disjunc- 
tive partitioning is a viable option, but serializing the microstep in 
order to use disjunctive partitioning is not advantageous in our case. 
In general, we find the effects of serializing microsteps and its con- 
verse, combining microsteps, difficult to predict. They represent 
a tradeoff between the complexity of image computations and the 
number of search iterations. 

Abstracted Models The last part of the table shows the perfor- 
mance of analyzing the abstracted models. The number of vari- 
ables abstracted away by the dependency analysis was quite large. 
Recall that in our full model, we omitted most of the details in 
Other-Aircraft. Many of the outputs of Own-Aircraft that were in- 
puts to Other-Aircraft thus became irrelevant, unless we explicitly 
mentioned them in the property. This explains the relatively large 
reduction obtained. 

Using all of the techniques discussed in this paper led to the results 
in the last row of the table. 

8 Discussion and Related Work 

We first summarize some differences between symbolic model 
checking for hardware circuits and for TCAS II. A major focus of 
hardware verification is on concurrent systems with complex con- 
trol paths and often subtle concurrency bugs, but their data paths 
are relatively simple. Forward traversals usually perform much bet- 
ter, because the BDDs tend to be small in the reachable state space. 
In contrast, the major complexity of the TCAS II requirements lies 
not in the concurrency among components, but in the intricate influ- 
ence of data values on the control paths. The BDD for the transition 
relation tends to be huge and forward traversals inefficient. Back- 
ward traversals usually perform better by focusing on the property 
analyzed, and can be further improved by exploiting the simple syn- 
chronization patterns. 

Our method of pruning backward traversals using invariants is sim- 
ilar in spirit to the work on hardware verification by Cabodi et al., 
who propose doing an approximate forward traversal to compute a 
superset of the reachable states, which is then used to prune back- 
ward traversals [8]. (An invariant is precisely a superset of the 
reachable states.) Their method is more automatic, while the in- 
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variants we suggest rely on the designer's knowledge on the syn- 
chronization of th ~ system. They also independently propose dis- 
junctive partitionhtg for synchronous circuits [7]. They require the 
designer to come t p with a partition manually, and we again exploit 
mutually exclusi~t events. 

In work also inde'~endent of ours, Heimdahl and Whalen [19] use 
a dependency ana ysis technique similar to the one described Sec- 
tion 6.1, but their motivation is to facilitate manual review of the 
TCAS II requirem mrs, rather than automatic verification. As noted 
before, we gaineL re'_atively large reduction because Other-Aircraft 
was not fully mo: eled, and we suspect that in a complete system, 
the reduction obtz2 aed by this exact analysis could be limited. How- 
ever, more reducti 3n can be obtained if we forsake exactness. For 
example, localiza~ ~on reduction [22] is one such technique, which 
aggressively gene~ ates an abstracted model that may not satisfy the 
property while the full model does. If the model checker finds in 
the abstracted mo :lel a counterexample that does not exist in the 
full model, it wiI] automatically refine the abstraction and iterate 
the process until ~.ifl'.er a correct counterexample is found or the 
property is verifie~t. 

It would be intere: ting to see how well the techniques in this paper 
scale with the sysl em complexity. The natural way is to try apply- 
ing them to the re ~t of TCAS II. Unfortunately, that part contains 
arithmetic operati~ ms, such as multiplication, that provably cannot 
be represented by small BDDs [5]. In a recent paper, we suggest 
coupling a decisk ,a procedure for nonlinear arithmetic constraints 
with BDD-based :aodel checking to attack the problem [9]. More 
research is needed to see whether this technique scales to large sys- 
tems. 
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