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Abstract

We prove that an ω(log4 n) lower bound for the three-party number-on-the-forehead (NOF) com-
munication complexity of the set-disjointness function implies an nω(1) size lower bound for tree-like
Lovász-Schrijver systems that refute unsatisfiable CNFs. More generally, we prove that an nΩ(1) lower
bound for the (k + 1)-party NOF communication complexity of set-disjointness implies a 2nΩ(1)

size
lower bound for all tree-like proof systems whose formulas are degree k polynomial inequalities.

1 Introduction

Zero-one programming is the problem of optimizing a linear objective function over the zero-one points of a
polytope. It is a useful framework for expressing optimization problems. In particular, Boolean CNF satisfi-
ability can be easily recast as a zero-one programming problem, and for this reason zero-one programming
was among the first discrete optimization problems proved to be NP-complete. In contrast, linear program-
ming, the problem of optimizing a linear objective function over all points of a polytope, is polynomial-time
solvable [19]. Many attempts have been made to transfer efficient techniques from linear programming to
zero-one programming, and among them are the Lovász-Schrijver “lift-and-project” methods. In this paper
we establish limitations on using such methods to prove unsatisfiability for CNFs, modulo a conjecture in
communication complexity.
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Techniques for zero-one programming often come from the slightly more general realm of optimizing
over the integral points of a polytope. One approach for reducing these integer programming problems to
linear programming problems is to begin with the polytope defined by the original linear program without
integrality constraints and systematically pare down the polytope by repeatedly refining the linear program
with “cutting planes” that remove only non-integral solutions until we are left with the convex hull of the
integral solutions. These are local methods in which an initial polytope Q is transformed by a sequence of
local operations to smaller and smaller sub-polytopes until the integral hull of Q is reached. At this point,
rational linear programming finds the correct solution. Note that for decision problems, this procedure
terminates with the empty polytope if and only if the initial polytope contains no integral points. A well-
known method of this kind is the use of Gomory-Chvátal cuts [9] which derive each new cutting plane as a
linear combination and shift of existing facet constraints.

For zero-one programming, there are more subtle methods available. Lovász and Schrijver [21] intro-
duced a variety of cutting planes methods that derive new cutting planes by first “lifting” the inequalities to
higher degree polynomial inequalities (in particular quadratic inequalities) and then “projecting” them down
to linear inequalities using polynomial identities and the fact that x2 = x for x ∈ {0, 1}.

The Lovász-Schrijver methods for solving zero-one programs can be naturally used for propositional
proof systems. Consider the problem of proving that a CNF is unsatisfiable (equivalently, proving that a
DNF is a tautology). Each clause is mapped to an equivalent linear inequality, for example, x ∨ ¬y ∨ z
is mapped to x + 1 − y + z ≥ 1. By repeated application of the lift-and-project rules and elementary
linear algebra, inequalities of quadratic polynomials are derived from the translated clauses, and we can
arrive at the inconsistent inequality 1 ≥ 0 if and only if the CNF is unsatisfiable1. In this way, we obtain
propositional proof systems for CNF unsatisfiability in which the formulas are quadratic inequalities, and
the rules of inference are the algebraic manipulations coming from the lift-and-project steps and elementary
linear algebra. Collectively, these propositional proof systems are known as Lovász-Schrijver systems (LS).
An important feature of the LS systems is that they can provide exponentially smaller proofs for certain
tautologies, such as the pigeonhole principle, than the ones possible with systems such as resolution or
constant-depth Frege systems.

There are two complexity measures that are commonly studied for cutting-planes based proof systems
such as Lovász-Schrijver and the Gomory-Chvátal cutting planes system: size and rank. Intuitively, rank
is the number of intermediate polytopes that must be passed through before arriving at the integral hull.
In [21] it was shown that for any (relaxed) polytope P , if the rank of P is d, then the optimization and
decision problems for P can be solved exactly deterministically in time nO(d). This makes Lovász-Schrijver
systems especially appealing for solving or approximating NP-hard optimization problems via semidefinite
programming. A variety of rank lower bounds for exact solution are known, even for the case of unsatisfiable
systems [4, 11, 15, 10, 16]. Moreover, interesting bounds on the ranks required for good approximations to
vertex cover [1] and MaxSAT [7] have been obtained. This, in turn, implies inapproximability results for
these problems for any polynomial-time algorithm based on rank.

While there is a rich and growing body of results concerning rank, very little is known about the size
of LS proofs. From the proof theoretic perspective, the size of a proof is defined in the usual manner, but
from an informal geometric perspective, the size of a LS procedure with respect to some polytope P is the
smallest number of hyperplanes defining all of the polytopes that we need to pass through before arriving
at the integral hull. Clearly size lower bounds imply rank lower bounds, and indeed, size lower bounds for
tree-like proofs2 imply rank lower bounds, but whether the converse holds is open.

1The proof systems are made more precise in Subsection 2.2.
2A proof is tree-like if each formula is used at most once as an antecedent to an inference. That is, each time a formula is
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At the time of this writing, it is unknown whether or not every unsatisfiable CNF Φ possesses a tree-
like LS proof of unsatisfiability whose size is bounded by a polynomial in the number of symbols in Φ.
Of course, if every unsatisfiable CNF has such a small refutation, then NP = coNP, so one might say
that because this is unlikely, the problem is “resolved modulo a plausible complexity theoretic conjecture”.
However, this is really begging the question as one would expect that establishing limitations for specific
proof methods is prerequisite to establishing limitations for all propositional proof systems. Moreover, there
are several similar results and conditional lower bounds based on weaker assumptions:

1. Results of Pavel Pudlák [25] , extended by Sanjeeb Dash [12, 13], establish that certain formulations
of the Lovász-Schrijver refutation systems possess “effective interpolation”. Therefore, under the
conjecture that there are disjoint NP pairs that are not separable by a polynomial-size circuit, these
systems require super-polynomial size to refute some CNFs. The hypothesis that some NP disjoint
pairs cannot be separated by polynomial-size circuits is not known to imply NP 6= coNP, so these
results provide further evidence that Lovász-Schrijver proofs require super-polynomial size to refute
some CNFs.

2. Grigoriev, Hirsch and Pasechnik showed that there are unconditional superpolynomial size lower
bounds known for tree-like LS proofs that certain “non-CNF” polytopes contain no zero-one points [16].

3. Several unconditional lower bounds are known for similar systems that are incomparable with or
apparently weaker than tree-like Lovász-Schrijver systems with respect to proof size. An exciting
series of papers, culminating in the celebrated result of Pudlák, showed that unconditionally, DAG-
like cutting planes proof system (a kind of logic whose formulas are linear inequalities and whose
inference rules are based on Gomory-Chvátal cuts) requires super-polynomial size to refute certain
CNFs [17, 5, 24]. Sanjeeb Dash has extended this work and proved unconditionally that a restricted
form of Lovász-Schrijver system (one that makes only “non-commutative cuts”) requires superpoly-
nomial size to refute certain CNFs [12, 13].

In this paper, we develop a new method for approaching size lower bounds for tree-like LS and for
systems that generalize tree-like LS. Our main result is that lower bounds on the three-party communication
complexity of set disjointness (in the number-on-forehead model) imply lower bounds on the size of tree-
like LS proofs for a particular family of unsatisfiable CNF formulas. We also generalize this result to a much
more general family of proof systems known as semantic Th(k), where lines are now degree k polynomial
inequalities. All versions of LS are special cases of Th(2), and Chvátal’s Cutting Planes proof system is a
special case of Th(1).

More generally, we show that proving lower bounds on the (k + 1)-party communication complexity
of set disjointness implies lower bounds on the size of tree-like semantic Th(k) proofs. A lower bound
showing that DISJk is not in (k + 1)-RPcc would give excellent lower bounds for Th(k) proofs.

Admittedly, this is another conditional result towards proving size lower bounds for tree-like LS proofs.
However, we feel that there is a significant difference between an approach that is based on the conjec-
ture “set disjointness requires ω(log4 n) bits of communication in the three-player number-on-the-forehead
model” and assumptions such as “NP 6= coNP” or “there exists an NP disjoint pair that cannot be separated
by a polynomial size circuit”. The latter problems both imply that P 6= NP, one of the most famous and
difficult problems in contemporary computer science and mathematics, with few persons making serious
claims of substantial progress towards its resolution, and the task of establishing proof-size lower bounds

reused, it must be re-derived. For many proof systems, there are CNFs for which the smallest tree-like proofs of unsatisfiability are
exponentially larger than the smallest unrestricted proofs of unsatisfiability, but it is open whether or not this holds for LS proofs.
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can be viewed as establishing partial evidence in support of these conjectures. On the other hand, number-
on-the-forehead communication complexity is an area in which there has been substantial progress in the
decades since its introduction in 1983 [8]. There are specific, concrete functions on n-bit inputs for which
the three-player number-on-the-forehead communication complexity is known to require Ω(n) bits of com-
munication, so the problem is one of establishing the bound for the set-disjointness function in particular.
Moreover, in the two-player model, set-disjointness is known to require Ω(n) bits of communication. Fi-
nally, the authors of this paper with Avi Wigderson have established nΩ(1) lower bounds for the computation
of the set-disjointness function by certain restricted protocols in the number-on-the-forehead model.

Our proof can be seen as a generalization of [17] to arbitrary k but the extension requires a number of
new ideas and a substantially more complicated argument that includes a detailed analysis of large sets of
vertex-disjoint paths in expander graphs.

Our work is incomparable to interpolation-based results of Pudlák and Dash. While our bound is condi-
tional based upon what seems to be a more earthly conjecture than strengthenings of P 6= NP, our bounds
apply only for the tree-like case whereas the results of Pudlák and Dash apply to the DAG-like case as well.
On the other hand, their interpolation theorems depend highly on the form of the cuts used whereas our
semantic approach allows the result to apply to almost any system for manipulating polynomial inequalities
with reasonable inference rules.

While the results of Grigoriev et al [16] are unconditional, they do not apply to systems of inequalities
that arise from the translation of CNFs. Rather, an exponential size lower bound was proved for all tree-like
LS refutations of the equality x1 + . . . + xn = α, where α is a non-integer in the range (dn/4e, b3n/4c).
As this equality cannot arise as the translation of a CNF into inequalities, their bound says nothing about the
LS systems for propositional unsatisfiability. Indeed, proving tree-like size lower bounds for CNF polytopes
was given as one of the main problems left open in their paper.

2 Definitions

2.1 Multiparty Communication Complexity and Set Disjointness

The k-party number-on-the-forehead (NOF) model of communication complexity computes functions (or
relations) of input vectors (x1, . . . , xk) ∈ X1× . . .×Xk distributed among k parties, such that party i ∈ [k]
sees all xj for all j ∈ [k], j 6= i. It is as if player i has the i’th input on his forehead, hence the name.
The players communicate by transmitting bits over a channel shared by all players. The communication
complexity of a protocol is the number of bits exchanged. For a function f : X1 × . . .×Xk → {0, 1}, we
define Rk

ε (f) to be the minimum cost of a randomized protocol that computes f with probability of error
at most ε. For a more thorough treatment of communication complexity, see the monograph by Kushilevitz
and Nisan [20].

The k-party set disjointness problem DISJk,m : ({0, 1}m)k → {0, 1} is defined by DISJk,m(~x) = 1 if
and only if there is some j ∈ [m] such that xi,j = 1 for all i ∈ [k]. Although it might be more appropriate
to call this function set intersection rather than disjointness, we follow standard terminology. A (0, ε)-error
k-party NOF communication protocol for set disjointness is a protocol that for every disjoint input produces
output 0 and for intersecting inputs outputs 1 with probability at least 1− ε.

It is conjectured that for all constants k ≥ 2 the k-party set disjointness problem of length n requires
randomized NOF communication complexity that is Ω(n/2k) [3]. The conjecture is proven for k = 2 [18],
but the best known lower bound for k ≥ 3 is Ω(log n) for general models and Ω(n1/k) for more restricted
models [3].
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2.2 Threshold Logics

The best known classes of threshold logics are Gomory-Chvátal cutting planes [9], the matrix cuts of Lovász
and Schrijver [21], and the lift-and-project relaxations of Sherali and Adams [27]. First we briefly describe
Gomory-Chvátal cutting planes, which is referred to in the literature as simply Cutting Planes (CP). A CP
proof of unsatisfiability of a set of integer linear inequalities f = {~a1 ·~x ≥ b1, . . .~am ·~x ≥ bm} is a sequence
of integer linear inequalities ~c1 ·~x ≥ t1, . . . ,~cq ·~x ≥ tq such that each ~ci ·~x ≥ ti is either an inequality from
f , an axiom (x ≥ 0 or 1− x ≥ 0), or is obtained by one of the two rules: (i) ~ci · ~x ≥ ti is a positive integer
linear combination of some previously derived inequalities; or (ii) ~ci · ~x ≥ ti is obtained from a previous
inequality d~ci · ~x ≥ ti by rounding (to obtain ~ci · ~x ≥ dti/de).

There are several cutting planes proof systems defined by Lovász and Schrijver [21], collectively referred
to as matrix cuts. These systems allow one to “lift” the linear inequalities to degree-two polynomials and
then project back to degree one, using the fact that x2 = x for x ∈ {0, 1}. To see that the definitions below
are equivalent to the original definitions of Lovász and Schrijver, see [12].

Definition 2.1. Given a polytope P ⊆ Qn defined by ~ai · ~x ≥ bi for i = 1, 2, . . . ,m:

(1) An inequality d− ~c · ~x ≥ 0 is called an N -cut for P if

d− ~c · ~x =
∑
i,j

αij(bi − ~ai · ~x)xj +
∑
ij

βij(bi − ~ai · ~x)(1− xj) +
∑

j

λj(x2
j − xj),

where αij , βij ≥ 0 and λj ∈ R for i = 1, . . . ,m, j = 1, . . . , n.

(2) A weakening of N -cuts, called N0-cuts can be obtained if when simplifying to the term d − ~c · ~x, we
view xixj as distinct from xjxi.

(3) An inequality d− ~c · ~x is called an N+-cut if

d− ~c · ~x =
∑
i,j

αij(bi − ~ai · ~x)xj +
∑
ij

βij(bi − ~ai · ~x)(1− xj)

+
∑

j

λj(x2
j − xj) +

∑
k

(gk + ~hk · ~x)2,

where again αij , βij ≥ 0, λj ∈ R for i = 1, . . . ,m, j = 1, . . . , n and gk +~hk · ~x is an affine function
for k = 1, . . . , n+ 1.

The operators N , N0 and N+ are called the commutative, non-commutative and semidefinite operators,
respectively. All three are collectively called matrix-cut operators.

Definition 2.2. A Lovász-Schrijver (LS) refutation for f is a sequence of inequalities g1, . . . , gq such that
each gi is either an inequality from f or follows from previous inequalities by an N -cut as defined above,
and such that the final inequality is 0 ≥ 1. Similarly, a LS0 refutation uses N0-cuts and LS+ uses N+-cuts.

Definition 2.3. Let P be one of the proof systems CP, LS, LS0 or LS+. Let S be an P-refutation of f ,
viewed as a directed acyclic graph. If the underlying directed acyclic graph is a tree, then S is a tree-like
P-refutation of f . The inequalities in S are represented with all coefficients in binary notation. The size of
S is the sum of the sizes of all inequalities in S; the rank of S is the depth of the underlying directed acyclic
graph. For a set of boolean inequalities f , the P-size of f is the minimal size over all P refutations of f .
Similarly the P-treesize of f is the minimal size over all tree-like P-refutations of f .
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The inference rules and axioms for the CP, LS, LS0, and LS+ systems are easily seen to be sound.
Furthermore, it has been shown that, in their tree-like forms, each of CP, LS, LS0, and LS+ can p-simulate
tree-like resolution (cf. [2]). Therefore, by the completeness of tree-like resolution, the tree-like systems
CP, LS, LS0, and LS+ can refute every unsatisfiable CNF.

All of above proof systems are special cases of the more general semantic threshold logic proof systems
which we define now. A k-threshold formula over Boolean variables x1, . . . , xn is a formula of the form∑

j γjmj ≥ t, where γj , t are integers, and for all j, mj is a multilinear monomial of degree at most k. The
size of a k-threshold formula is the sum of the sizes of γj and t, written in binary notation. Let f1, f2, g be
k-threshold formulas in the variables ~x. We say that g is semantically entailed by f1 and f2 if for every 0/1
assignment to ~x that satisfies both f1 and f2, g is also satisfied.

Let f be an unsatisfiable CNF formula over x1, . . . , xn, and let t1, . . . , tm be the underlying set of
clauses of f , written as 1-threshold inequalities. A Th(k) refutation of f , P , is a sequence of k-threshold
formulas, L1, . . . , Lq, where each Lj is one of the inequalities ti, i ∈ [m], or is semantically entailed by two
formulas Li and Li′ with i, i′ < j, and the final formula Lq is 0 ≥ 1. The size of P is the sum of the sizes
of all k-threshold formulas occurring in P . The proof is tree-like if the underlying directed acyclic graph,
representing the implication structure of the proof, is a tree. (That is, every formula in the proof, is used at
most once as an antecedent of an implication. It is allowed, and quite often necessary, that Li = Lj , and Li

and Lj are used as antecedents for two different inferences. In this way, a formula must be re-derived each
time it is used.)

Note that in our definition of these cutting planes systems, we can derive a new inequality from any
number of previous inequalities in one step, whereas in the Th(k) proof system, we are restricted to fan-in
two. Because the vector space of degree-at-most-one inequalities has dimension at most n + 1, in light
of Caratheodory’s theorem, every inequality derived by purely linear operations in a CP refutation can be
derived from at most n + 2 many previous equations. Therefore, we can assume without loss of generality
that the fan-in is at most n+ 2 in CP, and similarly, at most

(
n
2

)
+ n+ 2 in LS, LS0, and LS+. Because of

this bound on fan-in, refutation size increases by at most an O(n2) factor when the sums are taken by fan-in
two inferences of the form “from f ≥ a and g ≥ b infer f + g ≥ a+ b”. Thus, superpolynomial size lower
bounds for tree-like Th(2) semantic refutations imply superpolynomial size lower bounds for all tree-like
Lovász-Schrijver systems.

Because the inference rule in Th(k) is semantic entailment, lower bounds for the Th(k) system apply
to almost any tree-like system for deriving polynomial inequalities with reasonable axioms and inference
rules, not only the Lovász-Schrijver systems. For example, division operators such as “from ~c · ~x > 0 and
(b− ~a · ~x)~c · ~x ≥ 0 infer ~a · ~x ≥ b” are semantically valid inference rules of fan-in two, and variants of the
LS system incorporating such rules fall under our analysis. Furthermore, CP refutations are a special case
of Th(1) semantic refutations, and thus lower bounds for tree-like Th(1) semantic refutations imply similar
lower bounds for tree-like CP. This connection was exploited to prove lower bounds for tree-like CP [17].

2.3 Miscellaneous Notation

We use the standard asymptotic notation of Ω, O, ω, and o that is found in theoretical computer science and
discrete mathematics. We use the ± notation in the following nonstandard way: When we write x = a± b,
we mean that x ∈ [a− b, a+ b]. We use this in asymptotic sense as well. When we write x = (1± o(1))M
we mean that there is a value t with |t| = o(1) so that x ∈ [(1− t)M, (1 + t)M ].
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3 Relating the Size of Threshold Logic Refutations to the Communication
Complexity of Search Problems

Let f be an unsatisfiable CNF formula. We will be interested in the following search problem, Searchf

associated with f : Given a truth assignment α, find a clause from f which is falsified by α. The model for
this computation is a decision tree whose nodes evaluate polynomial threshold functions:

A k-threshold decision tree is a rooted, directed tree whose vertices are labeled with k-threshold func-
tions and edges are labeled with either 0 or 1. The leaves of the tree are labeled with clauses of f . A
k-threshold decision tree solves Searchf in the obvious way: Start at the root and evaluate the threshold
function; follow the edge that is consistent with the value of the threshold function; continue until the com-
putation reaches a leaf and output the associated clause. The size S of a k-threshold decision tree is the sum
of the sizes of all threshold formulas in the tree, where the coefficients are written in binary. The depth of a
k-threshold decision tree is the depth of the underlying tree.

The following lemma, similar to the degree 1 case in [17], shows that from a small tree-like Th(k)
refutation of an unsatisfiable formula f , a small-size, small-depth k-threshold decision tree for Searchf can
be extracted.

Lemma 3.1. Let P be a tree-like Th(k) refutation of f of size S. Then there is a k-threshold decision tree
for Searchf of depth O(logS) and size O(S). Furthermore, every threshold formula labeling a node of the
decision tree is either a formula in the refutation P , or the vacuously true inequality 0 ≥ 0.

Proof. Assume that P is a size S tree-like Th(k) refutation of f . We will describe a depth O(logS), size
O(S), k-threshold decision tree which computes the search problem associated with f . The proof is by
induction on S; clearly if S = 1 then the unsatisfiable formula is a single, false threshold formula, so the
lemma holds. For the inductive statement, assume that the size of P is S > 1. Because the DAG of the
proof is a binary tree, there is an intermediate formula f in P such that the number of formulas above f
(ancestors in the tree) is at least S/3 and at most 2S/3. Let the subtree of P with root formula f be denoted
by A and write B for the remainder of P , that is, all formulas of P that are not in A and with f replaced
by 0 ≥ 0. In the decision tree, the root is labeled with f . Beneath the edge labeled 0, we inductively apply
the lemma to the subtree A, and beneath the edge labeled 1, we inductively apply the lemma on the subtree
B. Both A and B have size at most 2S/3, so we may apply the induction hypothesis and conclude that
the height of the decision tree obtained will be at most log3/2(S) + 1 which is O(logS). To see that the
decision tree computes the search function, notice that if f evaluates to false on a given truth assignment φ,
then we proceed on the subproof A. By soundness of the proof, at least one of the leaf formulas of A must
be falsified by φ. A similar argument holds when f evaluates to true.

The next lemmas, adapted from arguments in [23], show that any relation computed by a shallow k-
threshold decision tree can also be efficiently computed by a k + 1 player communication complexity pro-
tocol in the number-on-forehead model, over any partition of the variables.

Lemma 3.2. Suppose that a relation R(x1, . . . , xkn) is computed by a depth d k-threshold decision tree in
which all coefficients are bounded byN ≥ n. For any partition of the inputs into k sets, there is a k+1-party
deterministic NOF communication complexity protocol for R in which O(d logN) bits are communicated
in total.

Proof. Fix a partition of x1, . . . xkn. Observe that for each monomial in each k-threshold formula there is
at least one party that can evaluate the monomial. Let α1m1 + . . .+ αqmq ≥ t be the k-threshold formula
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queried at the root of the k-threshold decision tree for f . The set of monomials mj can be partitioned into
k + 1 groups, where group i contains monomials that can be “seen” by the ith player. Each player (in turn)
communicates the weighted linear combination of their monomials to the other players. After all players
have spoken, each player can simply add up the total sum and see if it is greater than the target t, in order
to evaluate the k-threshold formula. The k + 1 players then continue on the half of the decision tree which
agrees with the value of this formula. The protocol terminates after d rounds, and each round requires
O(logN) bits of communication.

In order to prove the randomized version of the above lemma we use a standard randomized protocol for
testing linear inequalities. The protocol works in the number-in-hand model which is more restricted than
the number-on-the-forehead model. In the number-in-the-hand model, each player i = 1, . . . k has private
access to the input xi (whereas in the NOF model, player i sees inputs x1, . . . xi−1, xi+1, . . . xk).

Lemma 3.3. Let y1, . . . , yk+1 be (signed) integers with n-bit binary representations and let c > 0. Then
there is an O(k log2 n)-bit (k + 1)-player number-in-hand probabilistic protocol with error less than 1/nc

for determining whether y1 + . . .+ yk+1 ≥ 0.

Proof. The players follow a binary search strategy on the bits of the yi.
Suppose n ≥ 2. (If n ≤ 2 the parties simply send their inputs.) Let yH

i be the high order dn/2e bits
that under-approximate yi/2bn/2c and yL

i be the corresponding low order bits for 1 ≤ i ≤ k + 1. (Some
of the yi may be negative but then the yL

i will all be positive.) If
∑

i y
H
i > 0 then

∑
i yi > 0; similarly, if∑

i y
H
i < −k then

∑
i yi < 0. Thus, unless

∑
i y

H
i ∈ {−k, . . . , 0}, the answer can be found by determining

whether yH
1 + . . .+ yH

k+1 ≥ 0. If
∑

i y
H
i = −j ∈ {−k, . . . , 0} then the answer can be found by comparing

yL
1 + . . .+ yL

k + yL
k+1 − j · 2bn/2c to 0.

Player 1 randomly selects a prime number p ∈ [nc+2 log n, 2nc+2 log n] and sends (p, yH
1 mod p). For

i = 2 to k, player i, sends yH
i mod p. Then, using these values and his own private input, player k + 1

computes z =
∑k+1

i=1 y
H
i mod p.

If z 6≡ −j (mod p) for j ∈ {0, . . . , k} then player k + 1 sends the bit 1 and the protocol continues
recursively, using yH

1 , . . . , y
H
k+1 instead of y1, . . . , yk+1.

If z ≡ −j (mod p) for j ∈ {0, . . . , k} then player k+1 sends the bit 0 and j and the protocol continues
recursively with players 1 to j using (yL

1 −2bn/2c), . . . , (yL
j −2bn/2c) instead of y1, . . . , yj and players j+1

to k + 1 using yL
j+1, . . . , y

L
k+1 instead of yj+1, . . . , yk+1.

In both of the recursive calls the integers each have at most bn/2c + 1 bits. At each stage, we send
O(log n) bits, and the total number of stages is O(log n) for a total of O(log n)2 bits sent. The probability
of error at each stage is O(1/nc+1) and therefore the total error is less than 1/nc (for sufficiently large
n).

Lemma 3.4. Suppose that a relation R(x1, . . . , xkn) is computed by a depth d k-threshold decision tree
in which all coefficients are bounded by N ≥ n. For any partition of the inputs into k sets, there is a
(k + 1)-party randomized NOF communication complexity protocol for R in which O(d(log logN)2) bits
are communicated in total which is correct with probability at least 1− 1/n.

Proof. As in the proof of Lemma 3.2, the players proceed in d rounds, at each step evaluating the threshold
formula and proceeding on the consistent subtree. Let p(~x) ≥ t be the threshold formula at the root of the
decision tree. As before, partition the monomials of p(~x) into k+1 groups where the ith player can “see” the
monomials in group i. Each of the k+ 1 players computes the weighted sum of their respective monomials.
Call these sums y1, . . . , yk+1, respectively. Player k + 1 uses y′k+1 = yk+1 − t and by applying Lemma 3.3
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with n = log2N and c such that 1/nc < 1/(dn), there is a probabilistic protocol allowing the players to
determine with error at most 1/(dn) whether the sum of the yi’s is at least t, where O((log logN)2) bits are
exchanged. After evaluating p(~x) ≥ t, the players then continue on the branch of the decision tree which
agrees with the value of p(~x) ≥ t. The protocol terminates after d rounds, for a total of O(d(log logN)2)
bits of communication. By the union bound, the probability of encountering an error at some level of the
recursion is at most d · 1/(dn) = 1/n

The following theorem is an easy corollary of the above lemmas.

Theorem 3.5. Suppose that f has a tree-like Th(k) refutation of size S. Then there exists a (k + 1)-party
randomized NOF communication complexity protocol for Searchf (over any partition of the variables into
k groups) that communicates O(log3 S) bits and has error probability at most 1/n.

Further, if all k-threshold formulas in the Th(k) refutation have coefficients bounded by a polynomial in
n, then there is a randomized protocol using O(logS(log log n)2) many bits and error probability at most
1/n, and a deterministic protocol using O(logS log n) bits.

Proof. We apply Lemma 3.1 to produce a k-threshold decision tree for Searchf of depth O(logS) and
size O(S). Because every label of a node of the decision tree is a formula of the refutation, or the triviality
0 ≥ 0, N is no larger than the maximum absolute value of a coefficient in the refutation.

For the first claim, set N to be the maximum absolute value of any coefficient appearing in the decision
tree; by the definition of the size of a proof, N = 2O(S). For the second claim, we by hypothesis that N =
nO(1). We apply Lemmas 3.2 and 3.4 to this decision tree to yield the claimed size and error bounds.

4 The Difficult CNFs, their Search Problems, and an Outline of the Lower
Bound Proof

Our hard examples are based on the well-known Tseitin graph formulas. Let G = (V,E) be any connected,
undirected graph and let ~c ∈ {0, 1}V . The Tseitin formula for G with respect to charge vector ~c, TS(G,~c),
has variables Vars(G) = {ye | e ∈ E}. The formula states that for every vertex v ∈ V , the parity of the
edges incident with v is equal to the charge, cv, at node v. It is expressed propositionally as the conjunction
of the clauses obtained by expanding ⊕e3vye = cv for each v ∈ V . Note that for a graph with maximum
degree d, each clause is of width at most d and the number of clauses is at most |V |2d.

Notice that TS(G,~c) is satisfiable if and only if
∑

v∈V cv is even. For odd ~c, the search problem
SearchTS(G,~c) takes a 0/1 assignment α to Vars(G) and outputs a clause of TS(G,~c) that is unsatisfied. In
other words, a solution to SearchTS(G,~c) on input α is a vertex v such that a parity equation at the vertex v
is violated by α.

To make the search problem hard for k-party NOF communication protocols, and by Theorem 3.5, hard
for (k−1)-threshold decision trees, we modify TS(G,~c) by replacing each variable ye by the conjunction of
k variables,

∧k
i=1 y

i
e, and expanding the result into clauses by use of deMorgan’s law. We call the resulting

k-fold Tseitin formula, TSk(G,~c), and its variable set, Varsk(G) = {yi
e | e ∈ E, i ∈ [k]}.

For a fixed graph G and different odd-charge vectors ~c ∈ {0, 1}V (G), the problems SearchTSk(G,~c)

are very closely related. Define ODDCHARGEk(G) to be the k-party NOF communication search problem
which takes as input an odd charge vector ~c ∈ {0, 1}V (G), seen by all players, and an assignment α to
Varsk(G), in which player i sees all values but the assignment αi

e to yi
e for e ∈ E(G), and requires that the

players output a vertex v that is a solution to SearchTSk(G,~c).
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The communication complexity of ODDCHARGEk(G) depends on the graph G, and we use a carefully
modified expander to obtain our lower bounds. We use a family of graphsHn such that eachHn is the union
of two edge-disjoint graphs on the same set of n vertices [n], Gn and Tn. Gn is a ∆-regular expander graph
of the form defined by Lubotzky, Phillips, and Sarnak [22] for ∆ = Θ(log n). Since Gn has degree > n/2,
there is a spanning tree Tn of maximum degree 2 (one can take the Hamiltonian path guaranteed by Dirac’s
Theorem, cf. [14]) in Gn. Clearly Hn also has maximum degree Θ(log n) and thus TSk(Hn,~c) has size
nO(k). (Notice that the graph Hn has degree O(log n), so the CNF TSk(Hn,~c) has size nO(1) and width
O(log n).)

Now we are ready to describe the sequence of reductions to show that an efficient k-party NOF com-
munication complexity protocol for ODDCHARGEk(Hn) will imply an efficient 1-sided error randomized
k-party NOF protocol for the set disjointness relation. The reduction passes through two intermediate prob-
lems: A search problem called EVENCHARGEk(Hn), and set-disjointness with the promise that for every
input under consideration, the size of the intersection is either zero or one. Reducing the general set disjoint-
ness problem to this zero/one set disjointness problem is a standard application of Valiant-Vazirani isolation
(Lemma 5.4, after [28]). Our reduction from zero/one set disjointness to ODDCHARGEk(Hn) goes via an
intermediate problem, EVENCHARGEk(Hn), which is the exact analog of ODDCHARGEk(Hn) except that
the input charge vector ~c is even rather than odd and the task is to either find a charge violation or to deter-
mine that no charge violation exists. For an assignment α and a charge vector ~c, we define Err(α,~c) to be
the set of vertices at which the parity constraints are violated by α.

Theorem 4.1. Let k ≥ 2 and m = n1/3/ log n. For each n there is an odd charge vector ~c ∈ {0, 1}n

such that for any ε < 1/2 the size of any tree-like Th(k-1) refutation of TSk(Hn,~c) is at least
2Ω((Rk

ε (DISJk,m)/ log n)1/3). Further if the coefficients in the Th(k-1) refutations are bounded by a poly-
nomial in n then the refutation size must be at least 2Ω(Rk

ε (DISJk,m)/(log n(log log n)2)).

The proof of Theorem 4.1 is presented at the end of Section 5. Here we provide a high-level outline of
the proof and its component lemmas. In the sketch, quantities are left out, and definitions are not precise.
Proof Sketch: Suppose the sake of contradiction that there is a small Th(k− 1) refutation of TSk(Hn,~c).

1. We apply the refutation-to-search conversion of Theorem 3.5 to obtain a low-communication k-player
NOF protocol for the ODDCHARGEk(Hn) search problem.

2. Using Lemma 5.1, we convert the search protocol for ODDCHARGEk(G) to a search protocol for
EVENCHARGEk(Hn) that correctly solves “most” EVENCHARGEk(Hn) instances. “Most” is mea-
sured by a distributionDt on the EVENCHARGEk(Hn) instances in which there are exactly 2t nodes at
which the parity constraints are violated. The distribution is Dt defined in Definition 5.2 of Section 5.

3. In Lemma 5.2 we show that the 0/1 set-disjointness problem randomly reduces to
EVENCHARGEk(Hn) in the following sense: For each set disjointness instance ~x, there is a dis-
tribution R(~x) on EVENCHARGEk(Hn) instances so that if |∩~x| = 0, the instance generated satisfies
all parity constraints, and if | ∩ ~x| = 1, the instance generated has exactly two nodes at which the
parity constraints are violated.

4. The distributions R(~x) and Dt do not coincide, but they are close enough. In Lemma 5.3, it is shown
that when | ∩ ~x| = 0, R(~x) and D0 are ε-close in l1 distance, and similarly, when | ∩ ~x| = 1, R(~x)
and D1 are ε-close in l1 distance. Therefore, using the protocol of Lemma 5.1 on inputs generated by
R(~x) correctly solves 0/1 set-disjointness with added probability of error at most ε. Lemma 5.3 is the
most delicate part of the argument, and it is where most of the work is invested.
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A simple argument shows that the lower bound of Theorem 4.1 holds for all odd charge vectors.

Theorem 4.2. The same lower bounds as Theorem 4.1 hold for every odd charge vector ~c ∈ {0, 1}n.

Proof. Observe that distributions Dt and R(~x) on the assignments to Varsk(Hn) both have the property that
for each edge e of Tn, α1

e = · · · = αk
e . Therefore in the proof of Theorem 4.1 observe that we can replace

TSk(Hn,~c) by T̃ S
k
(Hn,~c) = TSk(Hn,~c) ∧EQ(Tn) where EQ(Tn) is the conjunction of (¬yi

e ∨ y
j
e) for

every i 6= j ∈ [k] and every e ∈ Tn. The size of any Th(k-1) refutation of TSk(Hn,~c) is at least that of

T̃ S
k
(Hn,~c). Moreover, it is not hard to see that for any odd weight vectors ~c, ~d ∈ {0, 1}n, T̃ S

k
(Hn,~c)

and T̃ S
k
(Hn, ~d) have proof sizes that differ by at most a polynomial additive term: Given a small proof of

T̃ S
k
(Hn, ~d), let S ⊂ [n] be the set of vertices v for which cv 6= dv. Since both c and d are odd weight

vectors, |S| is even. Let M ⊂ E(Tn) be the set of edges of corresponding to |S|/2 disjoint sub-paths in Tn

that match the elements in S.
Applying the substitution of yi

e = ¬yi
e for each e ∈ M and i ∈ [k] almost converts a refutation of

T̃ S
k
(Hn, ~d) into a refutation of T̃ S

k
(Hn,~c). A positive literal yi

e in a clause from TSk(Hn,~c), with e on
a toggled path, becomes ¬yi

e, rather than ¬y1
e ∨ . . . ∨ ¬yk

e which is the proper form for negative literals in
clauses of TSk(Hn, ~d). This is corrected by application of the subsumption rule. A disjunction of negative
literals ¬y1

e ∨ . . .∨¬yk
e in a clause from TSk(Hn,~c), with e on a toggled path, becomes y1

e ∨ . . .∨yk
e , rather

than one of y1
e , . . . , y

k
e , as is the proper form for positive literals in clauses of TSk(Hn, ~d). Application of

the axioms ¬yj
e ∨ yi

e, with resolution steps, correct this. These corrections increase the size of the proof by
at most an O(k) factor.

5 Reduction from Set Disjointness to ODDCHARGE

The reduction from EVENCHARGEk(Hn) to ODDCHARGEk(Hn) works by planting a single randomly
chosen additional charge violation. This yields a protocol for EVENCHARGEk(Hn) that works well on
average for each class of inputs with a given number of charge violations. This is similar in spirit to a
reduction of Raz and Wigderson [26], and the reader might profit by first becoming familiar with that
argument.

The difficult part of our argument is the reduction from zero/one set disjointness to
EVENCHARGEk(Hn). The key idea is that for even ~c, charge violations of TSk(Hn,~c) come in pairs:
Given an instance ~x ∈ ({0, 1}m)k of zero/one set disjointness, using the public coins, the players randomly
choose an even charge vector ~c and m vertex-disjoint paths in Hn, p1, . . . , pm, for each j ∈ [m], the players
plant the x1,j , . . . , xk,j as the assignment along each edge of path pj , in a random solution that otherwise
meets the chosen charge constraint. By construction, a charge violation can occur only at the endpoints of a
path and only if there is an intersection in the set disjointness problem.

The challenges arise when we would like to apply the average case properties of the EVENCHARGEk(Hn)
protocol to the instances created by the above distribution. Unfortunately, this distribution is not quite uni-
form and we need that the distribution is close to uniform. The bulk of the work is in using the properties of
Hn, rapid mixing, modest degree, and high girth, to show that the distribution generated by the reduction is
sufficiently close to uniform.

Distributions on labeled graphs Let n be given, let Hn be the graph described in Section 4, and let ~c be
an even charge vector.
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Definition 5.1. We define Sol(Hn,~c) to be the set of all 0/1 assignments to the edges of Hn so that for
each vertex v ∈ [n], the parity of edges incident with v is equal to cv. A uniform random distribution over
Sol(Hn,~c) can be obtained by first selecting 0/1 values uniformly at random for all edges in Gn and then
choosing the unique assignment to the edges of Tn that fulfill the charge constraints given by ~c.

Given a bit value b associated with an edge e ∈ Gn, we can define a uniform distribution Lk(b) over
the corresponding variables yi

e, i ∈ [k]. Such an assignment is chosen randomly from Lk on input b by the
following experiment. If b = 1 then set all variables associated with edge e, yi

e, i ∈ [k] to 1. Otherwise if
b = 0, set the vector (~ye)i∈[k] by choosing uniformly at random from the set of 2k − 1 not-all-1 vectors (ie.
{0, 1}k \ {0k}).

Definition 5.2. For any t ≥ 0 let Dt be a distribution given by the following experiment on input Hn =
Gn ∪ Tn.

1. Choose an even charge vector ~c ∈ {0, 1}n uniformly at random.

2. Choose β ∈ Sol(Hn,~c) uniformly at random.

3. For each e ∈ Gn, select the values for the vector (ye)i∈[k] from Lk(βe) and for each e ∈ Tn, set
yi

e = βe for all i ∈ [k].

4. Select a random subset U ⊆ [n] of 2t vertices and produce charge vector ~c U from ~c by toggling all
bits cv for v ∈ U .

5. Return the pair (α,~c U ) where α is the boolean assignment to the variables yi
e, i ∈ [k], e ∈ Hn.

Reduction from EVENCHARGE to ODDCHARGE

Lemma 5.1. Let n be given, and let ∆ be the maximum degree of a vertex in Hn. Suppose that Πodd is a
randomized k-party NOF protocol for ODDCHARGEk(Hn) that produces a vertex with probability at least
1 − ε, is correct whenever it produces a vertex, and uses at most s bits of communication. Then there is a
randomized k-party NOF protocol Πeven for EVENCHARGEk(Hn) that uses s + ∆ bits of communication
and has the following performance:

Pr
(α,~c)∈D0

[Πeven(α,~c) = true] = 1

Pr
(α,~c)∈Dt

[Πeven(α,~c) ∈ Err(α,~c)] ≥ 2/3− ε, for t ≥ 1.

Proof. Let Πodd be a protocol for ODDCHARGEk(Hn). We give a protocol Πeven for EVENCHARGEk(Hn).
On input (α,~c) and random public string r: Using r, choose a random vertex v ∈ [n]. Check whether the
parity equation associated with vertex v is satisfied by α using at most ∆(G) bits of communication. (This
can be done by having Player 1 broadcast y2

e for each e 3 v, and then having Player 2 compute whether the
constraint at v is obeyed or violated.) If it is not, return v. Otherwise, create an odd charge vector, ~c {v},
which is just like ~c except that the value of cv is replaced by 1 − cv. Now run Πodd on input (~c {v}, α). If
Πodd returns the planted error v or if Πodd does not return a value then return “true”; if Πodd returns u 6= v,
output u.

Suppose that (α,~c) ∈ D0. Then α satisfies all charges specified by ~c, so when Πodd returns a vertex the
above protocol must output “true” because Πodd has one-sided error–that is, Πodd will only return a vertex u
when there is an error on the parity equation associated with u. Now suppose that (α,~c) ∈ Dt so exactly 2t
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parity equations are violated. If the parity constraint about the vertex v that is not satisfied, then the protocol
detects this and correctly reports the location of the error. The remaining case is when the parity constraint
at v is satisfied, and in this case we call Πodd on a pair (α,~c {v}) where exactly 2t + 1 parity equations are
violated.

We show the probability bound by conditioning separately on the events Err(α,~c {v}) = T for each T ∈(
[n]

2t+1

)
. Because the events Err(α, ~c′) = T partition the probability space, this proves the claim. By sym-

metry, for T ∈
(

[n]
2t+1

)
and any function g whose range is a subset of T , we have that Prα,~c,v[g(α,~c {v}) =

v | Err(α,~c {v}) = T ] = 1/(2t + 1) since it is equally likely for ~c′ = ~c {v} to be generated as ~c {u} for any
u ∈ T . Thus we obtain:

Pr
α,~c,v

[Πeven(α,~c {v}) errs | Err(α,~c {v}) = T ]

= Pr
α,~c,v

[Πodd(α,~c {v}) = v or Πodd(α,~c {v}) is not defined | Err(α,~c {v}) = T ]

≤ 1/(2t+ 1) + ε ≤ 1/3 + ε

for t ≥ 1.

Reduction from Zero/One Set Disjointness to EVENCHARGE: We now show how to use a k-party
NOF communication complexity protocol Πeven for EVENCHARGEk(Hn) as guaranteed by Lemma 5.1
to produce a k-party NOF protocol for the zero/one set disjointness problem which uses the following
definition. In this reduction, we place the set-disjointness variables on the variables labeling some randomly
chosen paths in the graph Gn. For the purposes of analyzing the distribution, the paths are chosen to be of
length l = d log n

log log ne where c1 > 0 is a constant. The constant c1 is determined by Proposition 6.6. This is
necessary for the proof of Lemma 5.3. For a more thorough discussion of this choice, see Section 6.2.

Definition 5.3. Let P (m)
l be the set of all sequences of m vertex-disjoint length l paths in Gn.

Lemma 5.2. Let m = n1/3/ log n. For sufficiently large n and for any even charge vector ~c, if there is a
probabilistic k-party NOF communication complexity protocol, Πeven for EVENCHARGEk(Hn) using s bits,
satisfying the conditions in Lemma 5.1 forD0 andD1, then there is a randomized (0, 1/3+ε+o(1)) error k-
party NOF communication complexity protocol Π01disj for zero/one set disjointness on input ~x ∈ ({0, 1}m)k

that uses s bits of communication.

Proof. Let ~x be an instance of zero/one set disjointness. Protocol Π01disj will call Πeven on the graph Hn,
on a pair (α,~c) chosen according to the following distribution/experiment:

1. On input ~x with public coins r:

(a) Using public coins r, choose a random even charge vector ~c ∈ {0, 1}n.

(b) Using public coins r, choose a sequence ofm vertex-disjoint length l paths, p1, . . . pm uniformly
at random from P

(m)
l .

(c) Using the public coins r, choose β ∈ Sol(Hn −
⋃m

j=1 pj ,~c)

2. For all edges e ∈ Hn, all players other than player i compute αi
e as follows:

(a) If e ∈ pj for j ∈ [m], set αi
e = xi,j
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(b) If e ∈ Gn and e 6∈
⋃m

j=1 pj , choose the vector α1
e . . . α

k
e according to the distribution Lk(βe).

(c) For the remaining edges e ∈ Tn, set all variables αi
e for i ∈ [k] equal to βe.

3. Return (α,~c)

We write R(~x) to denote the distribution on assignment/charge pairs produced by reduction Π01disj

when given an input ~x. The following lemma shows that when | ∩ ~x| = 1, although R(~x) is not the same as
D1, R(~x) is close to the distribution D1 in the `1 norm. This is the main technical lemma in the proof. The
proof of this lemma can be found in the next section.

Lemma 5.3. Let ~x ∈ ({0, 1}m)k and | ∩ ~x| = 1. Then ||R(~x)−D1||1 is o(1).

The protocol Π01disj will output 0 if Πeven returns “true” and 1 otherwise. If ∩~x = ∅, by the above
construction, the support of R(~x) is contained in that of D0 and thus on R(~x), Πeven must answer “true”
and the vector ~x is correctly identified as being disjoint. In the case that ∩~x contains exactly one element,
Pr[Π01disj(~x)) = 0] ≥ 2/3− ε− o(1). This completes the proof of Lemma 5.2.

Reduction from Set disjointness to Zero/One Set disjointness

Lemma 5.4. If there is an (0, ε) randomized NOF protocol for the k-party zero-one set-disjointness problem
that uses s bits of communication where ε is a constant < 1, then there is a (0, 1

3) randomized NOF protocol
for the k-party set-disjointness problem that uses O(s log n) bits of communication.

Naturally, our starting point is the well-known result of Valiant and Vazirani [28].

Lemma 5.5 (Valiant-Vazirani). Let a be a positive integer. Fix a nonempty S ⊆ {0, 1}a, and choose
w1, . . . wa ∈ {0, 1}a independently and uniformly. With probability at least 1/4, there exists j ∈ {0, . . . , a}
so that |{x ∈ S | ∀i ≤ j, x · wi = 0}| = 1.

Proof of Lemma 5.4. Let Π be the protocol for the promise problem. Set a = dlog ne. Using public coins,
independently and uniformly choose w1, . . . wl ∈ {0, 1}a. For j ∈ {0, . . . a}, the players run the protocol
Π, using the following rule for evaluating the input xi,r for i ∈ [k], r ∈ [m]: interpret r as a vector in
{0, 1}a, and replace the value of xi,r by zero if for some j′ ≤ j, wj′ · r 6= 0, and use the value xi,r if for all
j′ ≤ j, wj′ · r = 0. If the protocol Π returns 1, the players halt and output 1, otherwise, the players proceed
to round j + 1. If no intersection is found after all a + 1 rounds, the players announce that the inputs are
disjoint.

Clearly, this protocol usesO(s log n) bits of communication, and by the 0-error property of Π on disjoint
inputs, it never outputs 1 when the inputs are disjoint. When the inputs are non-disjoint, the Valiant-Vazirani
construction ensures that with probability at least 1/4, at some round j the protocol Π is used on an input
with a unique intersection, and therefore, conditioned on this event, the correct answer is returned with
probability at least 1− ε. Therefore, the correct answer is returned with probability at least 1

4 −
ε
4 . Because ε

is bounded away from 1 and the error is one-sided, a constant number of repetitions decreases the probability
of error to 1/3.
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Combining the reductions to prove Theorem 4.1

Proof. (of Theorem 4.1) By Theorem 3.5 and the definition of ODDCHARGEk(Hn), if for every ~c ∈ {0, 1}n

there is tree-like Th(k-1) refutation of TSk(Hn,~c) of size at most S, then there is a 1/n-error randomized
k-party NOF communication complexity protocol for ODDCHARGEk(Hn) in which at most O(log3 S) bits
are communicated. By communicating the values of the edges incident to the vertex to be output by this
ODDCHARGEk(Hn) protocol, the players can check that this vertex is indeed in error and not produce a
vertex otherwise. This gives a 0-error protocol that outputs the correct answer with probability at least 1 −
1/n. By Lemma 5.1 this yields a randomized 0-error k-party NOF protocol Πeven for EVENCHARGEk(Hn)
that uses O(log3 S + log n) bits, produces the correct answer for all inputs in the support of D0 and for
inputs randomly chosen according to D1 produces a correct answer with probability at least 2/3 − 1/n.
Applying Lemma 5.2 this yields a (0, 1/3+1/n+ o(1))-error k-party protocol for zero/one set disjointness
on ({0, 1}m)k also of complexity O(log3 S + log n). Finally applying Lemma 5.4 yields an error 1/3
randomized k-party NOF protocol for DISJk,m of complexity O(log3 S log n + log2 n) bits in total. The
case for polynomially-bounded coefficients is obtained by applying a similar reduction using the other part
of Theorem 3.5.

6 Proximity of distributions D1 and R(~x) when | ∩ ~x| = 1

In this section we prove Lemma 5.3: that for | ∩ ~x| = 1 the distributions R(~x) and D1 are close in the `1
norm. Let µD1 and µR(~x) be their associated probability measures. We will show that for all but a set of
(α,~c) with µD1 measure o(1), µD1(α,~c) = (1± o(1))µR(~x)(α,~c).

Given an instance of the set disjointness variables, ~x = ({0, 1}m)k, for j ∈ [m] we say that the color of
j is the tuple (x1,j , . . . , xk,j) ∈ {0, 1}k. By construction, the assignment R(~x) has color (x1,j , . . . , xk,j) on
each edge of the path pj .

Definition 6.1. Given an ordered sequence of paths ~p ∈ P
(m)
l , an ~x ∈ ({0, 1}m)k, and an assignment α,

write χ(α~p) = ~x if and only if every edge on path pj has color (x1,j , . . . , xk,j) for every j ∈ [m].

We first observe that for any (α,~c) with |Err(α,~c)| = 2 the probability µD1(α,~c) depends only on the
number of edges e ∈ Gn having color 1k in α.

Definition 6.2. Let φ(a, b) = 2−a(2k − 1)−(a−b).

Lemma 6.1. For any (α,~c) with |Err(α,~c)| = 2 and m1 = |{e ∈ E(Gn) | αe = 1k}|,

µD1(α,~c) =
φ(|E(Gn)|,m1)

2n−1
(
n
2

) .

Proof. Let U = Err(α,~c). The probability under D1 that U is chosen to be flipped is 1/
(
n
2

)
and, given U ,

the probability that the charge vector ~c is produced by the experiment is simply the probability that ~cU is
generated by the uniform distribution over all 2n−1 many even charge vectors, that is, 2−(n−1). Conditioned
on the event that U is chosen to be flipped, and that the charge vector is ~c, the chance that α labels the edges
for the randomly selected element of Sol(Hn,~c) is 2−|E(Gn)|(2k−1)−(|E(Gn)|−m1) = φ(|E(Gn)|,m1).

Definition 6.3. For U ⊂ V with |U | = 2 let P (m)
l (U) be the set of all elements of P (m)

l that have a path
whose endpoints are U .
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Now consider the measure µR(~x)(α,~c). Let {i} = ∩~x ⊆ [n], U = Err(α,~c) with |U | = 2, and
m1 = |{e ∈ E(Gn) | αe = 1k}|. By the definition of R(~x),

µR(~x)(α,~c) = Pr
~p∈P

(m)
l

[Ends(pi) = Err(α,~c) ∧ χ(α~p) = ~x]

· Pr
~c′∈{0,1}n

α′∈Lk(Sol(Hn−~p,~c′))

[α′ = αGn−~p and ~c′ = ~c]

= Pr
~p∈P

(m)
l

[Ends(pi) = Err(U)] · Pr
~p∈P

(m)
l (U)

[χ(α~p) = ~x]

· φ(|E(Gn)| −ml,m1 − l)/2n−1.

Observe that pi is a uniformly chosen element of Pl and we can analyze the first term using the following
property of random paths on LPS expanders proved as part of Lemma 6.9 in Section 6.2.2.

Lemma 6.2. For u 6= v ∈ V (Gn) and l ≥ c1 log n/ log log n, Prp∈Pl
[Ends(p) = {u, v}] = (1±o(1))/

(
n
2

)
.

Thus

µR(~x)(α,~c) = (1± o(1))
φ(|E(Gn)| −ml,m1 − l)(

n
2

)
2n−1

· Pr
~p∈P

(m)
l (U)

[χ(α~p) = ~x]

= (1± o(1))
µD1(α,~c)
φ(ml, l)

· Pr
~p∈P

(m)
l (U)

[χ(α~p) = ~x].

It follows that we will obtain the desired result if we can show that for all but a o(1) measure of (α,~c) under
µD1 ,

Pr
~p∈P

(m)
l (U)

[χ(α~p) = ~x] = (1± o(1))φ(ml, l) = (1± o(1))2−ml(2k − 1)−(m−1)l

where U = Err(α,~c). In the case that this happens, we say that (α,~c) is well-distributed for ~x.
Using the second moment method we prove the following lemma which shows that for all but a o(1)

measure of (α,~c) under µD1 , (α,~c) is indeed well-distributed for ~x. The detailed proof is given in Sec-
tion 6.1.

Lemma 6.3. Let m ≤ n1/3/ log n and l = 2dc1 log n/ log log ne and ~x ∈ ({0, 1}m)k with | ∩ ~x| = 1. For
almost all U ⊂ [n] with |U | = 2,

Pr
(α,~c)∈D1

[(α,~c) is well-distributed for ~x | Err(α,~c) = U ] = 1− o(1)

Lemma 5.3 follows from this almost immediately.

Proof of Lemma 5.3. Let ~x ∈ ({0, 1}m)k and | ∩ ~x| = 1. By Lemma 6.3 and the preceding argument, for
all U ∈

(
[n]
2

)
except for a set B that forms an o(1) fraction of

(
[n]
2

)
,

Pr
(α,~c)∈D1

[µR(~x)(α,~c) = (1± o(1))µD1(α,~c) | Err(α,~c) = U ] = 1− o(1).

By Lemma 6.2, Pr(α,~c)∈D1
[Err(α,~c) ∈ B] = o(1). Therefore by summing over distinct choices of U , we

obtain that with probability 1−o(1) over (α,~c) ∈ D1, µR(~x)(α,~c) = (1±o(1))µD1(α,~c). This is equivalent
to the desired conclusion that ||D1 −R(~x)||1 is o(1).

16



6.1 Most (α,~c) are well-distributed

In this section we use the second moment method to prove Lemma 6.3. For this purpose we will need the
following property of the LPS expander graphs Gn, proved in Section 6.2 which will allow us to show that
the correlations considered in the second moment method are low.

Definition 6.4. For ~p, ~q ∈ P
(m)
l we write ~p ∼s ~q when ~p and ~q share exactly s edges. Let γ > 0 be a

positive real number. We say that U ⊂ V (Gn) is γ-nice if for all s ≥ 0, Pr
~p,~q∈P

(m)
l (U)

[~p ∼s ~q] ≤ γs.

Theorem 6.4. (proved in § 6.2) Suppose that m ≤ n1/3/ log n and l = 2dc1 log n/ log log ne. There are
constants c > 0 and c′ such that for all but a o(1) fraction of setsU = {u, v} ⊂ V (Gn), for all ~q ∈ P (m)

l (U)
and every integer s ≥ 0,
Pr

~p∈P
(m)
l (U)

[~p ∼s ~q] ≤ (c′/(log log n)1/4 + (log n)−c)s,

i.e. almost every U ∈ V (2) is (c′/(log log n)1/4 + 1/ logc n)-nice.

We now use this in our application of the second moment method to prove that most (α,~c) pairs are
well-distributed:

Lemma 6.5. Let m ≤ n1/3/ log n and l = 2dc1 log n/ log log ne, ~x ∈ ({0, 1}m)k with | ∩ ~x| = 1, and
|U | = 2. If U is γ-nice with γ = o(2−k), then

Pr
(α,~c)∈D1

[(α,~c) is well-distributed for ~x | Err(α,~c) = U ] = 1− o(1)

Proof. For each ~p ∈ P (m)
l (U), let X~p denote the indicator variable for the event that χ(α~p) = ~x.

We now calculate E(α,~c)∈D1
[X~p]. For (α,~c) chosen according to D1, the assignment α~p is distributed

according to (Lk)ml; therefore, since for χ(α~p) to equal ~x, α~p must have precisely l edges whose color is
1k and l(m− 1) edges whose color is a lift of label 0,

E(α,~c)∈D1
[X~p] = Pr

(α,~c)∈D1

[X~p = 1] = φ(ml, l) = 2−ml(2k − 1)−(m−1)l.

Let X =
∑

~p∈P
(m)
l (U)

X~p. X is the random variable denoting the number of sequences ~p ∈ P
(m)
l (U) for

which χ(α~p) = ~x. By the linearity of expectation, E(α,~c)[X] = φ(ml, l) · |P (m)
l (U)|.

We use the second moment method to show that X is concentrated near its expectation. For ~p, ~q ∈
P

(m)
l (U), the random variables X~p and X~q are correlated if and only if ~p and ~q share an edge. Because U is
γ-nice Pr

~p,~q∈P
(m)
l (U)

[~p ∼s ~q] ≤ γs.

When X~p = 1, the colors of all edges of ~p are determined. Therefore given X~p = 1, if ~p ∼ ~q, either
some edge that ~p and ~q share ensures that X~q = 0, or the probability that X~p = X~q = 1 is non-zero. In the
latter case consider G′ =

⋃m
i=1(pi∪ qi) which contains 2ml− s edges. Because the marginal distribution of

α to the edges ofG′ independently assigns each e ofG′ a label using the distribution Lk (per Definition 5.1),
we have that the probability that χ(α~p) = χ(α~q) = ~x is larger than [φ(ml, l)]2 by a factor of either 2 or
2(2k − 1) per shared edge depending on whether that edge has label 1 or 0.
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Let D =
∑

~p∼s~q Pr(α,~c)[X~p = X~q = 1].

D =
ml∑
s=1

∑
~p∼s~q

Pr
(α,~c)

[X~p = X~q = 1]

≤
ml∑
s=1

∑
~p∼s~q

(2(2k − 1))s Pr
(α,~c)∈D1

[X~p = 1] Pr
(α,~c)∈D1

[X~q = 1]

=
ml∑
s=1

∑
~p∼s~q

(2(2k − 1))s(φ(ml, l))2

=
ml∑
s=1

|P (m)
l (U)|2 Pr

~p,~q∈P
(m)
l (U)

[~p ∼s ~q](2(2k − 1))s(φ(ml, l))2

= (|P (m)
l (U)| · φ(ml, l))2

lm∑
s=1

Pr
~p,~q∈P

(m)
l (U)

[~p ∼s ~q](2(2k − 1))s

= (E(α,~c)∈D1
[X])2

ml∑
s=1

Pr
~p,~q∈P

(m)
l (U)

[~p ∼s ~q](2(2k − 1))s

≤ (E(α,~c)∈D1
[X])2

ml∑
s=1

γs(2(2k − 1))s.

Since γ = o(2−k) by hypothesis,
∑∞

s=1 γ
s(2(2k − 1))s is o(1) and thus D is o((E(α,~c)∈D1

[X])2).
Therefore, E(α,~c)(X2) = D + E(α,~c)(X) = o((E(α,~c)[X])2) + E(α,~c)(X) and by the second moment
method,

Pr
(α,~c)∈D1

[|X − E(α,~c)∈D1
(X)| ≥ εE(α,~c)∈D1

(X)] ≤
D + E(α,~c)∈D1

[X]
ε2E(α,~c)(X)2

= o(1).

By choosing ε as an appropriate function that is o(1), we obtain that with probability 1 − o(1) in the
choice of (α,~c) ∈ D1, X = (1±o(1))φ(ml, l) · |P (m)

l (U)| and therefore with probability 1−o(1) in (α,~c),
Pr

~p∈P
(m)
l (U)

[χ(α~p) = ~x] = (1± o(1))φ(ml, l) and thus (α,~c) is well-distributed for ~x.

Proof of Lemma 6.3. Let ~x ∈ ({0, 1}m)k and | ∩ ~x| = 1. By Theorem 6.4 there is a δ > 0 so that for all but
a o(1) fraction of sets U ⊂ V (Gn) with |U | = 2, U is γ-nice for γ = c′′/(log log n)1/4 for some constant
c′′ and γ is o(2−k). Therefore, Pr(α,~c)∈D1

[Err(α,~c) is γ-nice] = 1− o(1) and by Lemma 6.5,
Pr(α,~c)∈D1

[(α,~c) is well-distributed for ~x | Err(α,~c) = U ] = 1− o(1).

6.2 Graph Theoretic Properties of LPS Expanders

6.2.1 The Lubotzky-Phillips-Sarnak Expanders

In the analysis ofR(~x), we want the endpoints of the random paths inGn to be almost uniformly distributed.
We base our proof of this upon the fact that the endpoints of random walks in expander graphs are almost
uniformly distributed (Proposition 6.6). Since a walk is allowed to repeat vertices but a path does not repeat
vertices, the length of the walk is too large with respect to the degree, it is very likely that a random walk
will not be a path. To transfer Proposition 6.6 from walks to paths, we use a graph in which random walks of
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length l will have their endpoints almost uniformly distributed but the walks are short enough with respect to
the degree so that a random walk very likely to be a path. We use the Lubotzky-Phillips-Sarnak expanders.
The crucial properties of the expander graphs Gn constructed in [22] that we need are:

1. Gn is regular of degree ∆ = Θ(log n).

2. Gn is connected and non-bipartite.

3. The second eigenvalue of Gn is O(
√

log n).

4. The girth of Gn is Ω(log n/ log log n).

A walk in Gn is chosen by selecting a start node and repeatedly following one of the ∆ edges adjacent
to the current node.

Proposition 6.6. There exists c1 > 0 so that for every u, v ∈ V (Gn), a random walk in Gn of length
l ≥ c1 log n/ log log n starting at u ends at vertex v with probability at least 1/n − 1/n2 and at most
1/n+ 1/n2.

We consider random walks and random paths in the Gn graphs of a fixed length l = l(n) =
2dc1 log n/ log log ne that is twice the minimum length specified in Proposition 6.6 so that their midpoints
are nearly uniformly distributed.

6.2.2 Approximating Paths by Walks

Remark 1. In principle one might replace disjoint paths in the definition of Π01disj by disjoint walks of
the same length, conditioned on each having distinct endpoints. However, in that case it would be over-
whelmingly likely that many walks will repeat edges and therefore, as graphs, they would contain different
numbers of edges. This would significantly complicate the second moment argument of Lemma 6.5.

We show that because Gn is expanding and has high girth, random walks in Gn not only mix well but
they are paths almost surely as well. We state some folklore properties of random walks and observe how
they translate into properties of random paths.

For v ∈ V (Gn), let Wl(v) be the set of all ∆l walks of length l in Gn starting at v and Pl(v) be the set
of all paths of length l inGn with one endpoint v. Let µWl(v) be the measure given by a uniform distribution
over Wl(v) and µPl(v) be the measure given by a uniform distribution over Pl(v).

Lemma 6.7. There exists a universal constant c3 so that for every v ∈ V (Gn) and for each path p ∈ Pl(v),
(1 − c3/ log log n)µPl(v)(p) ≤ µWl(v)(p) ≤ µPl(v)(p). Moreover, for w uniformly chosen from Wl(v) the
probability that w is not a path is at most c3/ log log n.

Proof. Observe that every p ∈ Pl(v) has equal measure under µWl(v) so µWl(v)(p) ≤ µPl(v)(p) and, more-
over, µWl(v)(p) = µPl(v)(p)µWl(v)(Pl(v)).

Set g = girth(Gn). By the properties of Gn, g ≥ c0 log n/ log log n for some constant c0 > 0 and its
degree ∆ ≥ c2 log n for some constant c2 ≥ 0. Notice that for any walk w of length l each vertex in w can
have at most l/(g − 3) many neighbors also in w. (If u is a vertex in w that has two neighbors u′ and u′′

in Gn within distance g − 3 on w then there is a cycle of length g − 1 in w ∪ {(u, u′), (u, u′′)} which is a
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subgraph of Gn.) Therefore

µWl(v)(Pl(v)) ≥
(

∆− l/(g − 3)
∆

)l

≥ 1− l2

∆(g − 3)

≥ 1− 2dc1 log n/ log log ne2

c2 log n · (c0 log n/ log log n− 3)
≥ 1− c3/ log log n

for some constant c3.

The following are folklore properties of random walks in Gn.

Proposition 6.8. Let Wl be the set of all walks of length l in Gn.

1. For each v ∈ V (Gn), Prw∈Wl
[v ∈ V (w)] ≤ (l + 1)/n.

2. For each u 6= v ∈ V (Gn), Prw∈Wl
[Ends(w) = {u, v}] = (1± 2/n)/

(
n
2

)
.

Proof. There is a sequence of l+1 vertices (not necessarily distinct) on each walk w inWl and precisely ∆l

walks in which v is the i-th vertex in w. Therefore, in total there are at most (l+1)∆l walks with v ∈ V (w).
(This is an overcount since v may appear more than once in w.) Since there are precisely n∆l random walks
in Gn of length l, Prw∈Wl

[v ∈ V (w)] ≤ (l + 1)/n.
By Proposition 6.6 the chance that a particular pair of distinct vertices {u, v} appear as endpoints of w

is 2
n(1/n± 1/n2) which is (1± 2/n)/

(
n
2

)
.

We obtain the following easy corollary which includes a proof of Lemma 6.2.

Lemma 6.9. Let Pl be the set of all paths in Gn of length l.

1. Let V ′ ⊆ V (Gn). There exists a constant c so that

Pr
p∈Pl

[V (p) ∩ V ′ 6= ∅] ≤ (1 + c/ log log n)
|V ′|(l + 1)

n
.

2. Let u 6= v ∈ V (Gn). Then Prp∈Pl
[Ends(p) = {u, v}] = (1± o(1))/

(
n
2

)
Proof. By Proposition 6.8, for w a randomly chosen walk of length l in Gn,

Pr
w∈Wl

[V (w) ∩ V ′ 6= ∅] ≤ |V ′|(l + 1)
n

,

and by Lemma 6.7, Prw∈Wl
[w is a path] ≥ 1 − c3/ log log n. The random distribution of paths p of length

l in Gn is the same as the random distribution of walks w of length l in Gn conditioned on w being a path.
Therefore

Pr
p∈Pl

[V ∩ V (p) 6= ∅] = Pr
w∈Wl

[V ∩ V (w) 6= ∅ | w is a path]

≤ |V |(l + 1)
(1− c3/ log log n)n

≤ (1 + c/ log log n)
|V |(l + 1)

n
,

for some constant c.
For u 6= v ∈ V (Gn), by Lemma 6.7 Prp∈Pl

[Ends(p) = {u, v}] is within a 1 ± o(1) factor of
Prw∈Wl

[Ends(w) = {u, v}] and by Proposition 6.8 the latter is (1 ± o(1))/
(
n
2

)
which yields the desired

property.
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6.2.3 The Proof of Theorem 6.4

In this subsection we prove Theorem 6.4. We will actually prove a slightly stronger result in which ~q ∈
P

(m)
l (U) is replaced by any subgraph of Gn with at most m(l+ 1) vertices and maximum degree at most 2.

It will be convenient to consider sequences of length l paths Pm
l that are not necessarily vertex-disjoint.

Let µ
P

(m)
l

be the uniform measure on P (m)
l and µP m

l
be the uniform distribution on Pm

l .

Lemma 6.10. Suppose that m ≤ n1/3/ log n and l = 2dc1 log n/ log log ne. For any ~p ∈ P
(m)
l , (1 −

o(1))µ
P

(m)
l

(~p) ≤ µP m
l

(~p) ≤ µ
P

(m)
l

(~p).

Proof. Conditioned on the paths in ~p ∈ Pm
l being vertex-disjoint µP m

l
is uniform overP (m)

l . By Lemma 6.9,
the probability that the i-th path shares a vertex with paths p1, . . . , pi−1 is at most (1 + c/ log log n)(l +
1)2(m − 1)/n ≤ 2l2m/n and the probability that the paths in Pm

l are not vertex-disjoint is at most
2l2m2/n ≤ 1/n1/3.

We first observe that if we only we required that ~p ∈ P (m)
l rather ~p ∈ P (m)

l (U) – i.e., we had no require-
ment that one path in ~p have its endpoints in U – then the exponentially-decaying bound on intersection size
of Theorem 6.4 would be relatively easy.

Lemma 6.11. Suppose that m ≤ n1/3/ log n and l = 2dc1 log n/ log log ne. There is some constant c ≥ 0
such that for all subgraphs G′ of Gn with at most m(l + 1) vertices and every integer s ≥ 0,

Pr
~p∈P

(m)
l

[|E(∪~p) ∩ E(G′)| ≥ s] ≤ (log n)−cs.

Proof. For ~p ∈ P (m)
l , because each component of ~p is a path of length l, if |E(∪~p)∩E(G′)| ≥ s then there

are at least ds/le paths pi in ~p that that share an edge (and therefore a vertex) with G′. By Lemma 6.9, the
probability that a random pi from Pl shares a vertex with G′ is at most (1 + c/ log log n)(l + 1)2m/n <
2l2m/n. Therefore for elements of Pm

l , the probability that there are least r = ds/le such paths is at most(
m
r

)
(2l2m/n)r < (2l2m2/n)r/2. By Lemma 6.10, the probability that this happens for elements of P (m)

l

is at most (2l2m2/n)r ≤ ns/(3l) = (log n)−cs for some constant c > 0.

The major complication of the proof of Theorem 6.4 is the assumption that ~p contains a path with
endpoints u and v for U = {u, v}, u 6= v. We base the analysis of paths with endpoints U on the analysis
of walks with endpoints U . For some sets U , for example if u and v are adjacent in Gn, the distributions of
random walks and random paths with endpoints U may not be close to each other.3 We will see that for most
choices of U , the probabilities under the two distributions are close to each other and this will be enough to
obtain the bound required by Theorem 6.4.

Definition 6.5. For U = {u, v} ∈ V (Gn) let Wl(U) be the set of all walks in Gn of length n that have
endpoints U .

Lemma 6.12. There is a constant c4 such that for all but at most a c4/ log log n fraction of pairs u 6= v ∈
V (Gn)

Pr
w∈Wl({u,v})

[w is a path] ≥ 2/3.

3Even in these cases the distributions may be sufficiently close but we do not need to analyze them.
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Proof. By Lemma 6.7,
Pr

w∈Wl

[w is not a path] ≤ c3/ log log n.

Therefore by definition,∑
u 6=v∈V (Gn)

Pr
w∈Wl

[Ends(w) = {u, v}] Pr
w∈Wl({u,v})

[w is not a path] ≤ c3/ log log n.

By Proposition 6.8, Prw∈Wl
[Ends(w) = {u, v}] ≥ (1− 2/n)

(
n
2

)−1 and thus

(1− 2/n)
(
n

2

)−1 ∑
u 6=v∈V (Gn)

Pr
w∈Wl({u,v})

[w is not a path] ≤ c3/ log log n,

which says that the expected value

Eu 6=v∈V (Gn)( Pr
w∈Wl({u,v})

[w is not a path]) ≤ c3/ log log n
(1− 2/n)

.

We now apply Markov’s inequality to obtain that the fraction of pairs u 6= v ∈ V (Gn) for which
Prw∈Wl({u,v})[w is not a path] ≥ 1/3, is at most c3/ log log n

(1−2/n)/3 ≤ c4/ log log n for some constant c4.

Bounding Intersection Size of Random Walks

Lemma 6.12 will allow us to use the following analysis involving a random walk with endpoints in U rather
than a random path.

Lemma 6.13. Let G′ be a subgraph of Gn with the property that every vertex has degree at most d in G′.
For fixed v ∈ V (Gn),

Pr
w∈Wl(v)

[|E(w) ∩ E(G′)| ≥ s] ≤
(
l

s

) (
d

∆

)s

.

Proof. There are at most
(

l
s

)
many choices of steps in the random walk in which the first s shared edges

can occur. Fix some such set of steps S ⊆ [l]. For each i ∈ S a necessary condition for the i-th edge in the
walk to lie in E(G′) is that the endpoint u after step i − 1 must lie in V (G′). Since degG′(u) ≤ d, given
that u ∈ V (G′), the probability that the i-th edge lies in E(G′) is then at most d/∆. That is, conditioned
on a shared edge in each of the first j elements in S, the chance of a shared edge in the j + 1-st element in
S is at most d/∆ because every vertex has degree at most d in G′. This yields a total probability at most(

l
s

)
(d/∆)s as required.

In order to analyze the random walks in Wl(U) we need more than the result of Lemma 6.13 since it
constrains only one endpoint of the random walk rather than both endpoints. We can view each half of a
random walk in which both endpoints are constrained as two random walks of half the length with only one
endpoint constrained. (Obviously, these two half-length walks are highly correlated.)

Lemma 6.14. Let l = 2dc1 log n/ log log ne. Let G′ be a subgraph of Gn in which every vertex has degree
at most d. For u 6= v ∈ V (Gn),

Pr
w∈Wl({u,v})

[|E(w) ∩ E(G′)| ≥ s] <
(

2dl
∆

)s/2

.
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Proof. Without loss of generality, walk w ∈ Wl({u, v}) starts at u and ends at v. Let l′ = l/2. Let
w = (wu, wv) where wu and wv each have length l′. We first observe that wu is nearly uniformly distributed
in Wl′(u):

Let w∗ ∈Wl′(u) and let v∗ be the end of w∗.

Pr
w∈Wl({u,v})

[wu = w∗ | w starts at u]

=
Prw∈Wl(u)[wu = w∗ and wv, starting at v∗, ends at v]

Prw∈Wl(u)[w ends at v]

=
Prwu∈Wl′ (u)[wu = w∗] · Prwv∈Wl′ (v

∗)[wv ends at v]
Prw∈Wl(u)[w ends at v]

Clearly Prwu∈Wl′ (u)[wu = w∗] = ∆−l′ = ∆−l/2 and since l > l′ ≥ c1 log n/ log log n by Proposition 6.6,
both Prwv∈Wl′ (v

∗)[wv ends at v] and Prw∈Wl(u)[w ends at v] are 1/n± 1/n2 and thus

Pr
w∈Wl({u,v})

[wu = w∗ | w starts at u] = (1±O(1/n))∆−l/2.

Since Gn is a regular undirected graph, a length l random walk from u to v has the same distribution
as a length l random walk from v to u. Thus by symmetry with the above argument, within a 1 ± O(1/n)
factor, wv is distributed as a (nearly) uniform random walk of length l′ starting at v.

Now if there are a total of s edges in common between w and G′ then at least ds/2e must be shared be-
tween G′ and one of the two halves of w, wu and wv. By Lemma 6.13 and the above argument each of these
probabilities is at most (1+O(1/n))(dl′

∆ )ds/2e and the total probability is at most 2(1+O(1/n))( dl
2∆)ds/2e ≤

(2dl
∆)ds/2e.

Deriving the bound

Lemma 6.15. Let l = 2dc1 log n/ log log ne and m ≤ n1/3/ log n. For any fixed subgraph G′ of Gn with
at most m(l + 1) vertices and maximum degree at most 2, and any set U = {u, v} ⊂ V (Gn),

Pr
(w,~p))∈Wl(U)×P m−1

l

[|(E(w) ∪ E(~p)) ∩ E(G′)| ≥ s] ≤ (c′′/ log log n)s/4 + (log n)−cs/2.

Proof. If there are s edge intersections between E(w) ∪ E(~p) and G′, then at least s/2 of them occur in
either w or ~p. Lemma 6.14 implies that Prw∈Wl(U)[|E(w)∩E(G′)| ≥ s/2] ≤

(
4l
∆

)s/4 ≤ (c′′/ log log n)s/4.
By Lemma 6.11, Pr~p∈P m−1

l
[|E(~p)∩E(G′)| ≥ s/2] ≤ Pr~p∈P m

l
[|E(~p)∩E(G′)| ≥ s/2] ≤ (log n)−cs/2.

We now obtain Theorem 6.4:

Lemma 6.16. Suppose that m ≤ n1/3/ log n and l = 2dc1 log n/ log log ne. For all but a c4/ log log n
fraction of all U = {u, v}, u 6= v ∈ V (Gn), there are constants c, c′ > 0 such that for all subgraphs G′ of
Gn with at most m(l + 1) vertices and maximum degree 2 and for every integer s ≥ 0,

Pr
~p∈P

(m)
l (U)

[|E(∪~p) ∩ E(G′)| ≥ s] ≤ ((c′/ log log n)1/4 + (log n)−c)s.
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Proof. By Lemma 6.12, for all but a c4/ log log n fraction of U , Prw∈Wl(U)[w is a path] ≥ 2/3. For any
such U , since the distribution of w ∈ Wl(U) conditional on w being a path is uniform over Pl(U), the
measure of any event on Pl(U)× Pm−1

l is at most 3/2 times that on Wl(U)× Pm−1
l . Further, by the same

argument as Lemma 6.10, the probability that the paths in ~p chosen from Pl(U)× Pm−1
l are vertex disjoint

is at least 1 − o(1) conditioned on being vertex disjoint the distribution of ~p is uniform over P (m)
l (U).

Therefore the measure of any event on P (m)
l (U) is at most (1+o(1))3/2 ≤ 2 times that onWl(U)×Pm−1

l .
Applying Lemma 6.15 and adjusting constants c and c′ yields the bound.

7 Discussion

There are a couple of interesting open problems related to our work beyond the natural problem of the
communication complexity of DISJk.

The first regards automatizability and the existence of separation oracles. In [21] it was shown that
if a system of 0/1 inequalities has a rank ≤ d LS refutation, then the system of inequalities possesses a
separation oracle that runs in time nO(d). (A separation oracle is a procedure that takes a polytope P and a
point ~x and returns either “true” if ~x ∈ P , or it returns a hyperplane separating ~x and P .) Does semantic
Th(k) have an efficiently computable separation oracle as LS does? A refutation system R is said to be
automatizable ([6], cf. [2]) if there is an algorithm that, given unsatisifable CNF ψ, the algorithm finds a
refutation of ψ in time SO(1) where S is the minimum size of an R refutation of ψ. The question of the
existence of a separation oracle for Th(k) is closely related to whether or not Th(k) is automatizable and
we conjecture that the answer to both questions is negative.

The second question is whether or not it is possible to extend our lower bounds to other tautologies
that would imply inapproximability results for polynomial-time Th(k)-based algorithms. For example, if
we could prove superpolynomial lower bounds for tree-like Th(k) proofs of random 3CNF formulas, this
would imply inapproximability results for Th(k)-based linear programming algorithms for MaxSAT [7].
Of course, lower bounds for random 3CNF formulas are open for the Th(1) systems and even for tree-like
cutting planes with unary coefficients. A first-step towards analyzing random 3-CNFs in the Th(k) systems
would be to improve the analysis of this paper to apply to a graph of degree 3 rather than one of degree
Θ(log n).
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