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Abstract 

The combinatorial matching principle states that 
there is no perfect matching on an odd number 
of vertices. This principle generalizes the pigeon- 
hole principle, which states that for a fixed bi- 
partition of the vertices, there is no perfect match- 
ing between them. Therefore, it follows from re- 
cent lower bounds for the pigeonhole principle that 
the matching principle requires exponential-size 
bounded-depth F'rege proofs. Ajtai [AjtSO] previ- 
ously showed that the matching principle does not 
have polynomial-size bounded-depth F'rege proofs 
even with the pigeonhole principle as an axiom 
schema. His proof utilizes nonstandard model the- 
ory and is nonconstructive. We improve Atjai's 
lower bound from barely superpolynomial to expo- 
nential and eliminate the nonstandard model the- 
ory. 

Our lower bound is also related to the inher- 
ent complexity of particular search classes (see 
[PapSl]). In particular, oracle separations between 
the complexity classes P P A  and PPAD, and be- 
tween P P A  and P P P  also follow from our tech- 
niques ([BP93aJ). 

1 Introduction 

Recently, it has been shown that the propositional 
pigeonhole principle requires exponential-size, 
bounded-depth Frege proofs [BIK+92, KPW91, 

'Research supported by NSF grants CCR-8858799 and 

Research supported by an NSF postdoctoral fellowship 
CCR-890'7960 

PBI]. It is natural to ask what new theorems 
can and cannot be proven in polynomial size, and 
bounded depth, if we d o w  the pigeonhole principle 
as an axiom schema. 

The propositional pigeonhole principle can be 
expressed by a family of propositional formulas, 
(PHP, : m 2 0 } ,  where PHP, asserts that there 
is no 1-1 mapping from a set DO of size m + 1 to 
a set D1 of size m. A related, but more general 
principle is the perfect matching principle, N Phi,, 
which states that no graph on 2n+ 1 nodes consists 
of a perfect matching. We encode NPM, using (2nz1) matching variables, P{i,j}, i ,  j 5 2n+ 1. IJs- 
ing these variables, NPMn can be written as Ihe 
disjunction of the following matching clauses: 

It is not too hard to see that if there are short, 
bounded-depth Frege proofs of N PM,, then there 
are also short, bounded-depth Frege proofs of the 
onto version of the pigeonhole principle. Expressed 
propositionally, the onto version of PHP has ad'di- 
tional terms which imply that the function is also 
surjective. The recent exponential size lower bound 
for bounded-depth Frege proofs of the onto version 
of P H P  [BIK+92] thus also establishes an expo- 
nential size lower bound for bounded-depth Frege 
proofs of NPMn. (A proof of Urquhart [Urq87] 
shows that NPM,, like PHP,, does have a poiy- 
nomial size Frege proof of logarithmic depth.) 

is the 
matching principle strictly stronger than the pi- 
geonhole principle? Ajtai [AjtSO] was the first to 

This suggests the following question: 
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show that, in a precise sense, the matching princi- 
ple is stronger than the pigeonhole principle. One 
can generalize the pigeonhole principle by allow- 
ing each variable in the PH P formula to represent 
an arbitrary formulo over some underlying set of 
propositional variables. Now consider a bounded- 
depth Frege proof system, with underlying match- 
ing variables P{;,j}, where the system is strength- 
ened by allowing all bounded-depth instances of 
the PHP as axioms. In [AjtSO], Ajtai showed that 
N PM, does not have polynomial-sized, bounded- 
depth Frege proofs, even in this stronger system. 

The structure of Ajtai’s argument extends the 
proof technique in his superpolynomial lower 
bound for the PHP [Ajt88]. He first sketches a 
restriction lemma giving small ‘covering sets’ for 
formulas over the matching variables. Then, in the 
novel part of the paper, he shows how the restric- 
tions cannot have falsified the PHP axioms. This 
is done by first showing that all the information 
about a given pigeon or hole in a PHPaciom can 
be determined by the values of the matching vari- 
ables touching a small covering set and then show- 
ing that it is not possible to have the information 
about pigeons or holes locally appear to describe a 
1-1 function and yet be globally consistent. This 
last piece forms the bulk of the paper and uses a 
somewhat involved counting argument. 

In this paper, we present a qew proof and 
we improve the lower bound from superpolyno- 
mial to exponential. This result uses the proof- 
theoretic methods from [BIK+92, BPU91, KPWSl] 
and a modification of the switching lemma from 
[BIK+92, PBI]. The most difficult new part of this 
proof is showing that each restricted PH P axiom is 
converted to an approximation of a true formula af- 
ter the various conversions are made. The structure 
of this argument is similar to  Ajtai’s: As in [AjtSO] 
we use a bit-wise encoding of the PHP formulas to  
obtain small descriptions of what happens.to each 
pigeon or hole. In our case, rather than small cover- 
ing sets we use small height matching decision trees 
along the lines of [BIK+92, PBI]. This difference 
is fortuitous because it turns out that this permits 
a much simpler counting argument to show that it 
is impossible for the converted subformulas of the 
PHP axiom to locally describe a 1-1 function and 
be globally consistent. 

The lemma which shows this latter result, is of 
independent interest. In particular, in [BP93a], we 
use it to demonstrate oracle separations between 
certain complexity classes of search problems: be- 
tween classes PPA and PPAD and between classes 
PPA and PPP. These complexity classes, which 
characterize the complexity of many interesting 
problems, were defined by Papadimitriou [Pap911 
and lie between the function versions of P and NP. 

In this extended abstract we emphasize the 
proof-theoretic aspects and mostly concentrate on 
places where there are significant differences from 
[BIK+92, PBI] in the structure of the argument. 
Omitted details are given in the full paper [BP93b]. 

We note that, independent of this work, Soren 
Riis (private communication) has shown similar re- 
sults using methods of nonstandard model theory. 

2 The Proof System 
H + PH%(F)  

The proof system we use is based on the Frege 
proof system H from [BPUSl, PBI, BIK+92] aug- 
mented with an axiom schema pHPb(F) which we 
describe below. H is a modification of a F’rege sys- 
tem with NOT gates and unbounded fan-in OR 
gates. Excluded middle is the only axiom of H, 
and the cut rule is the main rule of inference, with 
extra merging and unmerging rules to manipulate 
the unbounded fan-in OR’s. (By methods of Cook 
and Reckhow [CR77] the exact choice of the con- 
stant depth Frege system over unbounded fan-in A, 
V, and 7 we use is not crucial.) We now describe 
the axiom schema PHPb(F). 

Let F = { F ( i , j )  I i 5 m + l , j  5 m} be a set 
of bounded-depth formulas over the propositional 
variables P{i,j}, i , j  5 n. The natural form of the 
pigeonhole principle using V and 7 based on F ,  
PHP(F), is an OR of the following subformulas: 
Cl(F,z)  = i (F(z,  1) v F(z,2) v ..., vF(z ,n ) )  for 
each 2 5 m + 1, which expresses the fact that 
2 is not mapped to any hole; C2(F,21,22,y) = 
l ( l F ( z 1 , y )  V l F ( z 2 , y ) )  for each 2 1 , ~  5 m + 1 
and y 5 m, which expresses the fact that hole y 
has pigeons 21 and 22 mapped to it; and finally 
C3(F, 2, YI, YZ)  = l ( lF(2 ,  Y I ) V - F ( ~ ,  YZ))  for each 
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x 5 m + 1 and y1, yz 5 m which expresses the fact 
that pigeon x is mapped to holes y1 and y2: 

Unfortunately P H P ( F )  is not a convenient form 
of the pigeonhole principle for our purposes. For 
x 5 m + 1 let xi denote the i-th bit of x in binary 
notation. For each F(z,y), we can express F in 
"left bitwise" notation by the formula FL(z, y): 

FL(~,Y) = 7 V +,fyi(z) = A Cfyi(x), 

where 
F$(x) = v F(z,z). 

Podm+l)l PoLodm+l)l 

i=l i=l 

zsm,  z,=b 
Similarly, we can also express F in the "right bit- 
wise" notation by the formula FR(z, y): 

Po.5 ml b . 5  ml 
FR(~,Y) = v 7 & ; i ( ~ )  = A F&(Y), 

i=l  i= 1 

where 

f$(Y) = v F(z,?/) .  
z<m+l, z;=b 

Let PH&( F )  denote the pigeonhole principle 
expressed as an OR of the following subformulas: 

{clb(F,x) I x 5 m + 1) 
U 

U 
{c2(FR,zl,zZ,y) I 2 1 9 x 2  5 m +  1, Y 5 m} 

{C3(FL,2,YI,Y2) I YI,Yz 5 '7% z I m +  1)) 

where 

c l b ( F , s ) =  lv{F; fs (z ) (1  5 is Pogm],b=0,1}, 

c2(FR, 21,zZ, y) = -'(lFR(Zl, ?/) v -FR(Z2r y)), 

c3(FL,  5, Yi, Y2) = l(lFL(2, Y l )  v 7FL(z ,Y2) )  

Lemma 1: Let F = {F(z,y) I z 5 m +  1 , y  5 
m},  where each F(s,y) is a bounded-depth for- 
mula over the matching variables. Then there ex- 
ists a bounded-depth, polynomial-size F'rege proof 
of PH P( F )  from PH%( F). 

Let Fb(x,*) denote the set of formulas 
{F~(z,y) I y 5 m}. Similarly, let Fb(*,z) denote 
the set of formulas {FR(~,z) I y 5 m + 1). Note 
that for each 2, all formulas in Fa(z, *) U Fb(*, 2 )  

are boolean formula over the O(1og m )  subformulas, 
I {Fif6(4 I i 5 Pogm1, b E (0,1)}, and {Fip,(z) I 

Podm + U, b E (091)). 

3 Restrictions, Decision Trees 
and the Switching Lemma 

We now give the definitions for partial matching re- 
strictions useful for the matching principle. The.se 
are entirely analogous to those in [BIK+92, PBI] 
but we include them for definiteness. The variabIes 
over D are {Pj;, j}  : i # j E D}. The i and j will 
be called the endpoints of P{i,j}. For convenience 
we will write both Pjj and Pji to represent variable 
P{;,,}. A map over D is defined to be a conjuncticln 
of the form AI', where I' is a set of variables over 
D such that distinct variables in I' have distinct 
endpoints. Maps describe partial matchings on the 
set D .  The size of a map AI' is Irl. An OR of 
maps is called a map disjunction. The mapsize 3f 
a map disjunction is the size of the largest map in 
the disjunction; if all the maps are of size at most 
t, then it will be called a t-disjunction. A map (7' 

extends map U if U = A I' and U' = A r' such that 
r C I". We say that two maps U and r are compat- 
ible if there is some map A that extends both U ar,d 
r and we denote the smallest such map A by UT.  A 
truth assignment cp over D is any total assignment 
of {0,1} to the variables over D .  Let D' D .  A 
truth assignment cp over D is a matching on D' if 
for all i E D' there is a unique j E D such that 

If Y is a map or a set of variables, then u(Y) 
denotes the set of endpoints of variables in Y. 

We will now define a probability space of partial 
matchings on D, where ID1 = 2n t 1 The probabil- 
ity space M f  is the set of all pairs p =< A,A* > 
where A is a random matching of n edges in D and 
A. is a random subset of the edges of A where each 
edge of A* is chosen independently at  random with 
probability p. 

Every p = (R,A,) in M f  determines a unique 
restriction, T ,  of the variables over D as follows. 

1 if { i , j }  E A \ A. 

Pjj = 1. 

r(Pi,)  = 
0 if there is an k such that {i, k} { o r { j , k } E i r \ r .  
* otherwise 

In this way, the distribution MF defines a pro1)- 
ability distribution of restrictions. If T is a ran- 
dom restriction obtained by choosing a random p 
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according to M F ,  we will refer to both the restric- 
tion and the random partial matching by p. For 
'a Boolean formula F and an element p E M f ,  F 
restricted by p will be denoted by Ft,. 

3.1 Matching Decision Trees 

A matching decision tree over domain D is defined 
as follows. It is a rooted tree where each interior 
node v is labelled by a query i E D and each edge 
is labelled by some pair { i , j }  where j # i E D. 
Leaves are labelled with either "0" or "1". For each 
interior node v labelled by i E D, there is exactly 
one out-edge labelled { i , j }  for each j E D \ {i} 
that does not appear in any edge label on the path 
from the root to v.  The label of an interior node 
v may not appear in any edge label on the path 
from the root to  v.  Thus the set of edge labels 
on any path defines a map. A matching decision 
tree where all of the leaves are labelled "1" will be 
called a 1-tree. A matching decision tree T' eztends 
a matching decision tree T if, for any root to leaf 
path p' in TI, there is a unique path p in T such 
that the map U' defined by p' extends the map U 

defined by p. (Note that the leaf labels are not 
required to be related in this definition.) 

A matching decision tree T over D represents a 
function f over domain D if for all leaf nodes v E T, 
if we let U be the map defined by the path in T from 
the root to v then for all truth assignments a over 
D that are matchings on .(U) and satisfy U ,  f(a) 
is equal to the label of v.  For a boolean function f 
over domain D, we define d ~ ( f )  to be the minimum 
height of all matching decision trees computing f .  

Let T be a matching decision tree. In the re- 
mainder of this paper, the function represented by 
T is defined to be the map-disjunction, mups(T), 
consisting of the labels of all of the paths in T that 
end in leaves labelled 1. Note that if T has height t, 
then the function computed by T is a t-disjunction. 
Furthermore note that for any partial matching re- 
striction p over D ,  mups(T1,) = maps(T)t,. 

Extending this definition, if f is a tree with in- 
termediate nodes labelled by OR and NOT gates, 
and leaf nodes labelled by matching decision trees, 
then the function computed by f is obtained by it- 
eratively computing the functions evaluated by the 
subtrees of f .  

If p is a partial matching restriction over D and T 
is a matching decision tree over D, then define 2'1, 
to be the decision tree obtained from T by removing 
all paths which have a label that has been set to 
"0" by p, and contracting all edges whose labels are 
set to "1" by p. 

Lemma 2: Let f be a boolean function over D 
and let T be a matching decision tree representing 
f over D. If p is a partial matching restriction over 
D, then T t p  is a matching decision tree for f 1, 
over DIP. 

Note that if T represents f over D then the tree 
TC obtained by switching the 1's and 0's labelling 
the leaves of T represents lf. The lemma in the 
next section actually is a switching lemma in the 
spirit of [His871 because it will allow us to obtain 
a map disjunction that approximates the negation 
of f by representing f by a matching decision tree 
T and then taking mups(TC). 

Where it is convenient, we shall assume that an 
ordering is given on D. Whenever we write a real 
number where an integer is required, we mean the 
integer part of the real number (floor). Iff  is a map 
disjunction defined over a set D and p is a restric- 
tion on D then we will use the notation S(f1,) for 
d ~ ~ , , ( f  1,). We now state the main combinatorial 
lemma. 

Lemma 3 (Switching Lemma) Let f be an 
?-disjunction over D C D". Choose p at random 
from M F .  If s 2 0 and pn 2 ( r  + s ) ( ~ T  + 2s + 1) 
then 

W ( f t p )  1 SI < as, 

where a > 0 satisfies (1 + 225p4n3/a2)r 5 2. 

The inequality ( 1+225p4n3/cu2)' 5 2 holds when 
a = 19p2n3/2r'/2. This can be seen by taking the 
natural logarithm of both sides and the applying 
the inequality In( 1 + z) 5 z. 

The proof of the Switching Lemma is not in- 
cluded, but is similar to the proof in [PBI]. 

4 Exponential Lower Bounds 

The overall structure of the exponential lower 
bound argument is very similar to the argument 
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in [KPWSl] and in [BIK+92]. Given an alleged 
proof, P ,  of depth d and size S, a series of d re- 
strictions are applied and after each one the proof 
is converted using a switching lemma to reduce the 
depth, until we end up with a sequence of formu- 
las, each of which can be represented by matching 
decision trees. We will show that if P had size 
no greater than S, then after the d conversions, 
each matching decision tree is a 1-tree. But on the 
other hand, the final formula in the proof is the 
converted N P M  formula, which becomes a match- 
ing decision tree which is not a 1-tree, and hence 
we have reached the contradiction. 

The new part of the argument is showing that 
each instance of a P H P  axiom schema gets con- 
verted into a 1-tree. This is the subject of section 
5. 

There are some formal and technical differences 
from [BIK+92, PBI] in how we apply the depth 
reduction in our argument. First of all, for con- 
venience, we maintain a proof with small height 
matching decision trees at  the leaves rather than 
formulas and finish reduction when each formula is 
a small height matching decision tree. More im- 
portantly, in order to preserve the formulas in the 
bit-wise version of the PHPb(F) axiom schema we 
do not always apply the switching lemma to V's 
of decision trees. If the V has fan-in at most l o g s  
then we simply 'stack' the decision trees one on the 
top of the other in the natural way creating a new 
deeper decision tree that evaluates all of the l o g s  
trees along each branch. 

Using the switching lemma one can easily main- 
tain via induction that after d levels of conversions 
have been applied the height of the decision trees 
at the leaves of the formulas in the proof is at most 
log's. The domain, D, of the matching variables 
declines by a fixed fractional power at each step. 

In this section we will prove the following theo- 
rem. 

Theorem 4: Any proof of NPM, in H + 
PHPb(F) of depth d must have size at least S = 
exp [ ( 7 ~ - ( ~ + ' ) ) ] .  

Corollary 5: Any proof of N P M ,  in IT + 
P H f i ( F )  of polynomial-size must have depth 
R(logl0g n). 

The Conversion Process 

The conversion proceeds in rounds where each 
round reduces the depth of the formulas by 1. [n 
each round subformulas lying just above the leaves 
are converted into decision trees. A certain set 
of these are converted using the switching lemma, 
others are converted by simpler means. Based 
on the set of subformulas for which the switching 
lemma is to  be applied, a restriction U is chosen to 
keep the heights of all the resulting decision trees 
small. Then the conversions themselves are done 
using the method previously decided upon for each 
subformula. A given subformula will, in general, 
appear several times throughout the proof. Each 
time it appears, the same conversion is applied. 

More formally, after U is applied, if f is TT 
for some decision tree T then the conversion of f ,  
C[f] = T" and if f is VL, T; then 

(a) if q > logs,  then C[f] is the result of 
applying the switching lemma argument to 
v;"=, maps(T;), and 

(b) if q logs,  then C[f] is obtained by stack- 
ing the decision trees T, such that a leaf at the 
end of path p is labelled "1" if p forces some '2'; 
to 1. (One stacks decision trees TI and T2 by 
replacing each leaf of TI by a copy of T2, delet- 
ing incompatible paths, contracting redundant 
queries, and labelling the leaves of this copy of 
T2 by the OR of the original leaf value and the 
the value of the leaf of TI that this copy of 7'2 
replaced. ) 

Note that f is -T of f is vh, T; for q 5 log,$, 
i.e. the stacking method (b) is used to produce C[ f] 
then the application of any restriction p commutes 
with the conversion process on f ,  i.e. C[f]r,= C[f b p  

1, although this is not true in general if the switch- 
ing lemma is used. 

To prove Theorem 4, we will need the following 
theorem, which will be proven in the subsequeiit 
section. 

Theorem 6: (PHP Axiom Soundness) Let 
PH&(F) be an instance of the PHPb axio~m 
schema with depth at  most d. Let T be the match- 
ing decision tree obtained by applying the conver- 
sion procedure d times to PHPb(F). Then T is a 
1-tree. 
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Proof of Theorem 4 

Let P be an alleged proof of NPM, over D ,  
/Dl = 2n + 1, of size less than S, and depth d (in 
H + PHPb(F)). We will first show that there ex- 
ists a sequence of good restrictions which allows 
us to convert the formulas in P into small-depth 
decision trees. Recall that each formula in P con- 
sists of d levels of OR's and NOT's, followed by 
the bottom level, which are depth-1 decision trees. 
Let po, p', ..., pd be a sequence of restrictions such 
that for all 0 5 k 5 d ,  pk leaves all variables over 
Dk+' unset, lDkl = 2nk + 1. Let P', ..., pd be the 
sequence of formulas where Pk is equal to Pk-' 
converted by pk-'. We will show that for all i < d, 
if each formula in P' has depth d - i, mapsize t;, 
and total size S, then Pi converted by p' yields a 
new sequence of formulas, Pi+', of depth d - ( i + l ) ,  
mapsize t;+l and total size S. 

Let to = logs,  and t; = t i  for i > 0 .  Define 
X(n) = n1l6, and p;  = X(n;)/n;.  If A' is the i-fold 
composition of X with itself, then Xi(n) = n6-'. If 
S < exp (n6-(dt1)),  then for sufficiently large n, 

t i  = < Xd(n). 
Let D be the domain of the formulas in P'. We 

can apply the Matching Switching Lemma, for p 
drawn at random from M :  to each distinct map 
disjunction in P'. For each map disjunction, f, in 
P i ,  for a randomly chosen p E PF, the probability 
that f t p  cannot be represented by a matching de- 
cision tree over D'+' of depth at most t;+1 is most 
ati+l, where 0 < a < 19pTn:/2tr/2. Because the 
size of Pi is at most S, there are at most S map 
disjunctions in Pi ,  and therefore, for a randomly 
chosen p, the probability that some map disjunc- 
tion, f t p ,  in Pi cannot be represented by a depth- 
t;+l matching decision tree over D'+' is at most 
~a**+' 5 sate = SalorS. Since p;  = A(n;)/n;,  

1 9 ~ (  n; ) 2 t t l 2  A ( n  .)5/2 5/12 1 5 - - n' a < 
n; 

The second inequality holds because it can be 
shown that t; 5 nf'". Therefore Salogs is at most 
1/6. 

The expected number of stars (unset variables) 
after applying the restriction p is nip; = X(ni). 
Since the number of stars is binomially distributed, 

for sufficiently large no, a random p leaves at 
least the expected number of stars with probabil- 
ity greater than 1/3. (See, for example, Lemma 4.1 
of [BH]). Thus, there exists a restriction, p,  leav- 
ing n;+l stars, n;+1 2 X(n;), such that each de- 
cision tree in D'+' has depth at most &+'. After 
applying this argument d times, we obtain a se- 
quence V of decision trees over a smaller universe 
of size 2Xd(n) + 1, where each tree has depth at 
most i d  << 2Xd(n) + 1. 

Secondly, we will show that each decision tree in 
D is a 1-tree. The proof proceeds by induction on 
the number of trees in V, or equivalently on the 
number of formulas in P .  The base case is when 
P is a single formula. Therefore, it  is either an in- 
stance of the PHP axiom or the excluded middle 
axiom. By Theorem 6, any instance of the PHP 
axiom is converted into a 1-tree. Otherwise, it is 
some excluded middle axiom, say A V -A. Let TA 
be the decision tree that represents A. By defini- 
tion, the decision tree representing -IA is the tree 
TA, but with the opposite leaf labelling. There- 
fore, the decision tree for A V - A  is a 1-tree. For 
the inductive step, there are four cases, depending 
on the rule of inference. The more difficult cases 
are those involving unbounded fan-in OR gates- 
ie. the merging and unmerging rules. We will first 
sketch the proof when the inference is an applica- 
tion of the cut rule, and then when the inference is 
an application of unmerging. 

Suppose that the inference is the cut-rule, and 
let A be the formula X V Y, let B be the formula 
-X V 2, and let C be the formula Y V 2. Let TA, 
TB and Tc be the corresponding decision trees in 
D. We want to show that if TA and TB are 1-trees, 
then so is T c .  Let Tx, Ty, T z  be the decision 
trees that are obtained for the subformulas X, Y 
and 2, respectively during the conversion process. 
By definition of the conversion process, TA is ob- 
tained by stacking the decision trees Tx and Ty. 
Similarly, TB is obtained by stacking the decision 
trees T i  and T z ,  and Tc is obtained by stacking 
the decision trees Ty and T z .  Suppose, for sake of 
contradiction, that a path, x ,  of Tc has leaf label 
0. Thus there are compatible subpaths AY in Ty 
and x z  in T z  that both have leaf labels 0. Since 
both Tc and Tx have height much smaller than the 
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universe size there is some path p in Tx (and thus 
also in Ti) compatible with A. By construction of 
TA, U = pry labels some path in TA and by con- 
struction of TB, T = p ~ z  labels some path in TB. 
Now, in either Tx or Ti, the path p has leaf label 
0. Thus either U in TA or T in TB has leaf label 0, 
a contradiction. 

Intuitively, the above argument holds because, 
in the case of the cut rule, the OR gate and the 
negations involved in the inference are not approx- 
imated and therefore, since both antecedent for- 
mulas are 1, the derived formula should also be 
1. Now consider the unmerging rule. Let A be 
the formula V{Xl,.., Xn,Yl,.., Ym}, and let B 
be the formula V(V{Xl, .., Xn},V{Yl, ..., Ym}}, 
where B follows from A by the unmerging rule. 
Let TA and TB be the corresponding decision 
trees that are obtained by applying the conver- 
sion procedure. Assume that TA is a 1-tree. Let 
A‘ = V{Txl, ..,Tx,,Tyl, ..,Ty,} denote the for- 
mula obtained during the conversion process, just 
before the final application of the switching lemma 
to obtain TA. (Each Tx; is a decision tree repre- 
senting Xi.) Let Tx denote the decision tree after 
applying the switching lemma to V{Txl, ..,Tx,,}, 
and define Ty similarly. Then TB will be obtained 
by stacking Tx and Ty. 

Fix a path, K labelling TB. We want to 
show that A has leaf label 1. Since both TA 
and TB are decision trees of height much smaller 
than the universe size, there is some path p 
in TA compatible with A. By assumption, the 
path p in TA has leaf label 1. Since TA rep- 
resents A‘, it  follows that A’(p) = 1. There- 

1. Thus either V{Txl,..,Tx,,}(p) = 1 or 
V(Ty1, .., Tym}(p) = 1, say the former. Since p is 
compatible with the path AX in Tx that is a sub- 
path of A, and Tx represents V{Txl, ..,Txn}, this 
path AX of Tx also has leaf label 1. Finally, be- 
cause TB is obtained by stacking the decision trees 
Tx and Ty , the path of TB labelled by A must have 
leaf label 1. The above argument shows that there 
exists a sequence of d restrictions such that P con- 
verts to a sequence of 1-trees. But this contradicts 
the fact that the final formula of P, N P M , ,  con- 
verts to a 0-tree. 0 

fore, V{V{Txl,..,Txn},V{TYl,..,TYm}}(P) = 

5 The soundness of PHPa 

In this section we will prove Theorem 6.  Since the 
decision trees produced are all of small height, in 
order to show that the tree produced by converting 
a pigeonhole axiom is a 1-tree, it suffices to show 
that it is impossible to  force this tree to 0 by a 
small partial matching restriction. 
Proof of Theorem 6. Consider an instance of 

the PHPb axiom schema, PHPb(F), in the original 
proof, P, and let T be the tree into which PH%(P) 
is converted by the conversion procedure. We wi,sh 
to show that T is a 1-tree. 

Suppose that T is not a 1-tree and thus it has a 
leaf labelled 0. Since the height of T is at most t d  
there is some map U of size 5 t d  such that TI,,= 0. 

Let xl, . . . , xd be the sequence of restrictions 
used in the conversion argument applied to proof 
P and let A = ~ 1 ~ 2  - - - ~d be their composition. For 
each proper subformula G of pH%( F )  consider the 
decision tree T(G) created from G when the convw- 
sion process of the lower bound argument reaches 
the root node of G. We will use the notation G’ 
to denote T(G)rTo. Also, for any subformula G of 
PHPb(F) let r(G) denote the portion of A that has 
been applied at the time that G is first converted 
to a decision tree. 

By definition, TI,,= 0 if and only if PH%(F)’ is 
identically 0. The argument that the latter holds 
is based on the properties of the decision trees ob- 
tained for the various subformulas of PH&(E’) .  
The easy cases are when some single decision trl?e 
expresses the fact that either the function is unde- 
fined on one of the m+ 1 points or that the function 
is not 1-1. The difficult case is when these decision 
trees do not obviously contradict the pigeonhole 
principle. That is, each one appears to define a 
part of a one-to-one function from m + 1 to m. 

If there were some partial matching, a, that ex- 
tends some path in every tree, then it is easy to 
see that in this case PHPb(F)’ is not identically 0 
and we are finished. Unfortunately, this ideal sit- 
uation may not hold because a particular partial 
matching may not extend any path in a given de- 
cision tree. For example if the root node of a tree 
queries i, then all matchings where i is unmatched 
will not extend any path of the tree. However, since 
we have required that the matching decision trees 

. 
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are not too deep, we will still be able to show that 
PH%(F) cannot be identically 0. 

Theorem 7: PHPb(F)' is not identically 0. 

Let the size of the universe remaining after RU 
is applied be 2n' + 1 and call the resulting do- 
main D'. By construction, the tree T(PHPb(F))  
represents the v of the maps in the various 
trees T(Clb(F, z)) t,,, T(C~(FR, X I ,  z 2 , ~ ) )  tffl and 
T(C3(F~,z,yl,yz)) I f f ,  over D 1%) where A' '= 
r (PH&(F) ) .  We can apply the restriction AU to 
all of these trees and conclude that PRPb( F)' rep- 
resents the V of the maps in the various Clb( F, z)', 

Thus it suffices to show that at least one of these 
trees has a branch with leaf label 1. 

The trees Cl;, C2', and C3' are obtained by ap- 
plying the conversion argument working upwards 
from the trees T ( F ( z ,  y)) that represent the various 
F(z,y), through the trees T ( F t b ( z ) )  and T(F$(y)) 
for z 5 m + 1 and y 5 m, to obtain the trees 
T(Clb), T(C2), and T(C3) which are then re- 
stricted by TU.  Since pog(m+l)l < log S, the con- 
version procedure will use the stacking method (b) 
at all OR's to  produce the decision trees T(Clb), 
T(C2), and T(C3) from the bitwise trees T(F$(z))  
and T(F$(y)). This means that the application of 
any restriction commutes with the conversion so 
we can obtain the same trees Cl;, C2', and C3' 
by starting with the trees F,$(z) and I$(y) for 
z 5 m + 1 and y 5 m and then applying the con- 
versions afterward. This is convenient because it 
permits us to discuss all the decision trees at the 
upper levels of f H P b ( F )  over the same universe 
D'. 

By the definition of the conversion, F~(z,y) 
will become the tree, F'(z,y), obtained by stack- 
ing the pogml trees, F:$(z). Similarly Fh(z,y) 
will obtained by stacking the pog(m + 1)1 trees 
K!:,(y). For each z, 1 5 z 5 m + 1 we can define 
L,  = {F$(z)  I i 5 Pogm1,b E {O,l}}, and simi- 
larly each tree Fh(y,z), y 5 m is the composition 
of pog(m + 1)1 trees from the set of 2pog(m + 1)1 
trees R, = {F$(Y) I i 5 pog(m+ l ) l , b  E {O,l}}. 

Therefore, for each z, the tree obtained by stack- 
ing the trees in L, U R, is an extension of all of the 
trees FL(z, *),and FA(+, z). We define I, to be this 

C2(FR,zl,z2,y)', and C3(FL,z,Yl,Y2)' Over D'. 

single matching tree over D', 10'1 = 2n'+ 1, which 
simultaneously extends all of the trees F;(z, *) and 
FA(*, z), with the further modification that all the 
root-leaf paths are extended to some fixed length 
k cc n'. This is accomplished by adding queries of 
other matching variables to any paths that are too 
short. Note that 7, still extends all of the trees in 
Fh(s,z) and PL(z, *). The leaves of 7, are labelled 
with pairs {z + ~ 1 , .  . . ,z + U k , q  + 2,. . . , v i  + 

z)} where the pair z + ui is a label of some path, 
p if and only if Ff(z, U;) tp= 1. Similarly, the pair 
vj  -+ z is a label of p if and only if F;2(vj,z)tp= 1. 
Note that since FR(*, m + 1) is not defined, no leaf 
label of Im+l will contain a pair U + m + 1, for 
any U 5 m + 1. We now let 7 = {I, I z 5 m + 1). 

Definition. 7 is a focal function if and only if: 
Vz 5 m + 1, V paths p of 7,, there exists some 
z 5 m such that the leaf label of p contains the pair 
z -+ z. In other words, if the map defined by p is 
p then there exists z 5 m such that FL(z,z)t,,= 1. 

Definition. 7 is iocalZy 1-1 if for all z and for all 
paths, p, in 7,, the leaf associated with p has at 
most one label of the form z + z1 and at most one 
label of the form 2 2  4 z. 

Definition. 7 is consistent if for all z, y 5 m + 1 
and for all pairs of paths, p ,  in 7= and pv in 7y, if 
the maps they define, p, and py respectively, are 
compatible then z + y labels the leaf of pz if and 
only if z -+ y labels the leaf of py. 

We first show that if either 7 is not locally 1- 
1 or not a local function then PHPb(F)' is not 
identically 0. Then we will argue that one of these 
cases must be true. We do this by showing, using 
the way that 7 is constructed, that if 7 is locally 
1-1 then it is also consistent and then showing that 
it is impossible for 7 to be consistent as well as 
both a local function and locally 1-1. This latter 
proof requires a combinatorial argument. 

Lemma 8: If 7 is not locally 1-1, then 
PHPb(F)' is not identically 0. 

Proof: Assume that 7 is not locally 1-1. Then 
there exists an x 5 m + 1, and a path p in 7, such 
that leaf label associated with p contains either (1) 
x + z1 and z + 22, z1 # 2 2 ,  or (2) 21 + z and 
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zz -+ z, 21 # 22. Consider the first case. Let p 
be the map defined by p. Since 7, extends both 
q ( Z ,  21) and FL(z,z2), 

FL(2, 21) tp=  FL(z,z2) t p =  1 

and thus C2(F’,z,21,22)’tp= 1 which means that 
PAIj,(F)‘ is not identically 0. The second case is 
handled similarly. 0 

Lemma 9: If 7 is not a local function, then 
PA%( F)’ is not identically zero. 

Proof: If 7 is not a local function, then for 
some x 5 m+ 1, there exists a path, p ,  of I=, whose 
leaf label does not contain z + y, for any y 5 m. 
Let p be the map defined by p. Since 7, extends 
all F$(z), for every i 5 pogml and b = 0 or 1 
we have <!,$(x) tp= 0 and thus Clb(F, z)‘tp= 1 so 
PHIj,(F)’ is not identically 0. 0 

Lemma 10: If 7 is locally 1-1 then 7 is consis- 
tent. 

Proof: We will prove the contrapositive. Sup- 
pose that 7 is not consistent. Then there exists 
z ,y  5 m + 1 and compatible maps, pt labelling 
path pt in 7=, and py labelling path pv in q, such 
that either Fj!,(z,y)tp,= 1 and FA(x,y)t,,= 0 or 
vice versa. We’ll assume that the former case oc- 
curs (in which case we also know that y m); the 
latter case is completely analogous. 

We now sketch the remainder of the argument. 
Since F’(z, y) and FR(x, y) are constructed from 
the bit-wise versions of F, this inconsistency occurs 
exactly if z is mapped to at least two different Z’S 

in F, at  least one of which agrees with y in each 
bit position (in effect the left bit-wise version sees 
a phantom edge not really present in F.) Thus the 
underlying F is not 1-1 and this is easily translated 
upward to show that 7 is not locally 1-1. The 
formal argument ‘follows. 

Recall that 

G(z, 3) rp,= C b  v +341 tP, 

i=l,..,Pogml 

Because of the rules for conversion, the switching 
lemma is not used in producing Fi(z,y) from the 

various q!if;i(z) and so.F’(z,y)rp,= 1 implies that 
for all i 5 Dog ml, c!,$(z) Ips= 1. By similar rea- 
soning, FA(x, y) tpv= 0 implies that there exists a 
j such that F’$j(y)tpv= 0. 

Now F’,$(z) = T(Ffyi(z))tTo and by definition 
T(  (z)) represents 

v maps(T(F(z ,  2) ) t z )  
z<m,z, =y, 

over DIT# where A’ = A ( $ $ ~ ~ ( Z ) )  and thus F$(x) 
represents 

Atvi = v maps(F‘(z,z))  
z<m,zi =yi 

over D’. Similarly, F’:, (y)  represents 

v maps(F‘(w Y)) 
w<m+l,wj=zj 

over D‘. 
Since Fj$j(y) tpy= o this implies in particu- 

lar that F ( z , y )  tpv= 0. Also, since for each 
i, 4!ti(z) tpt= 1 this representation implies th.at 
there must be zl, ..., zPogml 5 m such that for each 
i, Z! = Vi and F ’ ( z , z ~ )  r P r =  1. NOW, because p, 
and py are compatible, F’(z, y)fPy= 0 implies th,st 
F’(z,y) tp,# 1. Thus for each i, y # za, and so 
there must be at least two different values U # v 
among the zi such that 

F’(z, U)tp,= F’(2, 2))tp,= 1. 

We will now use this to show that 7 is not locally 
1-1. Since F’(z, v)tp,= F’(z, u)tpr= 1, we have for 
each i 5 pogm], 

maps(F‘(z, 2)) t p * =  1 b z<m,zi=u, 1 
1 

AtUi (2) t P t  = 

and 

maps(F’(z, 2)) tpt= 1 A:vi(z)rPz= (zsLi 
Since I, extends every F:$(s), pz fixes the value 
of every <’,f(z), in particular of every c,:,(;?) 
and K’,:, (z). Because F:,& (z) represents Atui(;;) 
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over D’, and 4 ! t i ( z )  represents Atvi(z) over D‘, 
for every i F$(z) I p s =  At’ ,(z)  tpI= 1 and 
4’;; (z) I p s  = Atvi (z) tp,= 1. Therefore, by con- 
struction, FL(z,u)fp,= 1 and FL(z,v)t,= 1 and 
thus z -, U and z --+ v both label the leaf followed 
by pz in 7,. Since U # v this shows that 7 is not 
locally 1-1. 0 

Lemma 11: Let {7= I 1 5 2 5 m+l} be match- 
ing decision trees, as described above. Then it is 
impossible for 7 to be at the same time a local 
function, locally 1-1, and consistent. 

Proof: Assume for sake of contradiction that 7 
is locally 1-1, consistent, and a local function. By 
definition of 7, we also know that no leaf label of 
7m+1 contajns(z,m+l),foranyz, 15 z 5 m + l .  
We will show that this leads to a contradiction. 

Let U, V be maps over D of size exactly k. Let 
I=, TY be complete matching decision trees over D. 
Then we have the following definitions. 

(1) .(U) = TL(U) - TR(U), where TL(U) = 
#{(z,y) I U labels a path in 7= mapping z 
to y}, and ~ R ( U )  = #{(z,y) I U labels a path 
in 5 mapping z to y}. 

(2) d(U,V) = #{(z,y) I U labels a branch in 7- 
mapping z to y and V labels a branch in TY 
mapping z to  y and U is compatible with V. 

(3) Let a ( N ,  k) be the number of leaves in a com- 
plete, matching decision tree of height k over 
D, [Dl = N .  

(4) Let b ( N ,  T, k) be the number of leaves in a com- 
plete matching decision tree of height k over 
D, [Dl = N, that lie below a given node of 
height T. 

We will write TL( U) as QZlv) TL( U, z, y), where 
r~(U,z,y) = 1 if U labels a path in & with 
leaf value (z,y),  and otherwise r~(U,z,y) = 0. 
Analogously, w(U) = TR(U, z, Y), where 
r~(U,z,y) = 1 if U labels a path in 5 with leaf 
value (2, y). Similarly, we will write d( U, V) as 
Cz,yd(U,V,z,y), where d(U,V,z,y) is 1 if: U is 
compatible with V; U labels a path in 7, with leaf 
value (z,y);  and V labels a path in ‘TY with leaf 
value (z, y). 

Lemma 12: Given the quantities defined 
above, 

Proof: We give the proof of part (a). The 
proof of part (b) is analogous. Re-writing the left 
and right hand sides, we want to show: 

U(U, 2, Y) * a(N - 2k,  
=a 

= d( U, v, Z, y) . b( N - 2k,  I U n v I, k). 
-,Y v 

Fix U,z,y. Then we will show that .~(U,z,y) - 
If rL(U,z,y) = 0, then d(U,V,z,y) = 0 for all V, 
and therefore the above equality holds for these 
choices of U, z, y. 

The other case is when r ~ ( U , z , y )  = 1. Recall 
that U labels a path of 7= with leaf label z + y 
if and only if r~(U,z,y) = 1. Let 7‘ = ly tu. 
We claim that the number of paths in T’ equals 
Cv d(U,V,z,y). To see that each path of 7‘ con- 
tributes 1 to the quantity Cvd(U,V,z,y),  notice 
that if p is a path of 7’ labelled by V’, then V’ is 
compatible with U, and can be extended to a map, 
V, which labels a path of 7y. Because the decision 
trees are consistent, since there is a path in 7, con- 
sistent with V and with leaf label z -, y, it must be 
the case that z -+ y is also a leaf label of the path 
labelled by V in 5,  and therefore d( U, V, 2, y) = 1. 
In the other direction, if d(U,  V, z, y) = 1, then V is 
consistent with U ,  and V labels a path of 7y with 
leaf value 2 -+ y, and therefore the restricted path, 
labelled by Vru,  will be a path of 7’. 

Let 7’’ be the extension of 7’ to a complete, 
depth-k decision tree over D‘, 10’1 = N - 2k. Then 
the number of branches in the new, extended tree 
is exactly CV d( U, V, z, y ) .b( N - 2k,  I Un VI, k). Al- 
ternatively, the number of branches in 7“ is a(N - 
2E, k), which is equal to a ( N  - 2k, k) TL(U, z, y), 
and thus the lemma holds. 

We are now ready to complete the proof of 
Lemma 11. Recall that the decision trees 7 are 

a ( ~ - 2 k , ~ )  = cv d(u,V,~,y).b(~-2~,~~nv~,k). 

0 
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over the universe, D’ of size 2n’ + 1. Let N = 
2n’+l. By the definition of 7, we know that for ev- 
ery U that labels a path in 77+l, there is no t such 
that the leaf label of U contains z --., m+ 1. There- 
fore, .(U) > 0 for those U’s that label paths in 

Secondly, because we are assuming that 7 is 
both locally 1-1 and a local function, we have that 
.(U) 2 0 for every U. Therefore, t ( U )  > 0, 
and thus CU a(N - 2k ,  k ) r ( U )  > 0 as well. 
By Lemma 12, we have &Cvb(N - 2k,lU n 
V l , k ) [ d ( U , V )  - d(V,U)]  > 0 .  However, 

b(N - 2k, IU n VI,  k)d(U, V )  
u v  
= c x b ( N  - 2k, IV n VI, k)d(U,V) 

v u  
= b ( ~  - 2k, lU n VI, k)d( U ,  V )  

u v  
The first equality follows by swapping the summa- 
tions and using the commutativity of intersection, 
and the second equality follows by switching no- 
tations for U and V .  But this contradicts the in- 
equality above, and therefore the lemma holds. U 

Proof of Theorem 7. By Lemmas 10 and 11, if 
7 is locally 1-1 then it cannot also be a local func- 
tion. Thus 7 is either not locally 1-1 or not a local 
function and so, by Lemmas 9 and 8, PHPb(F)‘ is 
not identically 0. 0 

Theorem 6 now follows as an immediate corol- 
lary. 
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