
22

Toward Verifying Nonlinear Integer Arithmetic

PAUL BEAME and VINCENT LIEW, University of Washington

We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers,

by showing how to construct short resolution proofs for many properties of the most widely used multiplier

circuits. Such short proofs were conjectured not to exist. More precisely, we give nO (1) size regular resolution

proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and nO (log n) size proofs for

these identities on Wallace tree multipliers.

CCS Concepts: • Theory of computation → Proof complexity; • Hardware → Theorem proving and

SAT solving; Equivalence checking;

Additional Key Words and Phrases: Multiplier verification, SAT solvers, resolution proofs

ACM Reference format:

Paul Beame and Vincent Liew. 2019. Toward Verifying Nonlinear Integer Arithmetic. J. ACM 66, 3, Article 22

(June 2019), 30 pages.

https://doi.org/10.1145/3319396

1 INTRODUCTION

The last few decades have seen remarkable advances in our ability to verify hardware and soft-
ware. Methods for hardware verification based on Ordered Binary Decision Diagrams (OBDDs)
developed in the 1980s for hardware equivalence testing (Bryant 1986) were extended in the 1990s
to produce general methods for symbolic model checking (Burch et al. 1994) to verify complex
correctness properties of designs. More recently, several orders of magnitude of improvements in
the efficiency of SAT solvers have brought new vistas of verification of hardware and software
within reach.

Nonetheless, there is an important area of formal verification where roadblocks that were iden-
tified in the 1980s still remain: verification of data paths within designs for Arithmetic Logic Units
(ALUs), or indeed any verification problem in hardware or software that involves the detailed
properties of nonlinear arithmetic. Natural examples of such verification problems in software
include computations involving hashing or cryptographic constructions. At the highest level of
abstraction, nonlinear arithmetic over the integers is undecidable, but the focus of these verifica-
tion problems is on the decidable case of integers of bounded size, which is naturally described

A preliminary version of this work appeared in Proceedings of the 29th International Conference on Computer-Aided Verifi-

cation (CAV 2017), Part II, pp. 238–258, 2017.

This research was supported by NSF-AF grant CCF-1524246 and NSF-SHF grant CCF-1714593.

Authors’ addresses: P. Beame and V. Liew, Paul G. Allen School of Computer Science & Engineering, University of Wash-

ington, Box 352350, Seattle, Washington, 98195-2350; emails: {beame, vliew}@cs.washington.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2019/06-ART22 $15.00

https://doi.org/10.1145/3319396

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

https://doi.org/10.1145/3319396
mailto:permissions@acm.org
https://doi.org/10.1145/3319396

22:2 P. Beame and V. Liew

in the language of bit-vector arithmetic (see, e.g., Kroening and Strichman (2008) and Kovásznai
et al. (2016)).

In particular, a notorious open problem is that of verifying properties of integer multipliers in a
way that is both general enough to handle a wide variety of multiplier implementations, and avoids
exponential scaling in the bit-width. Bryant (1991) showed that this is impossible using OBDDs
since they require exponential size in the bit-width just to represent the middle bit of the output of
a multiplier. This lower bound has been improved (Bollig 2011) and extended to include very tight
exponential lower bounds for much more general diagrams than OBDDs, including FBDDs (Ponzio
1995; Bollig and Wooelfel 2001) and general bounded-length branching programs (Sauerhoff and
Woelfel 2003). On the other hand, CNF formulas can efficiently represent multipliers, but even with
the advent of greatly improved SAT solvers, there has been no advance in verifying multipliers
beyond exponential scaling.

One important technique for verifying software and hardware that includes multiplication has
been to use methods of uninterpreted functions to handle multipliers (see Bruttomesso et al. (2007)
and Kroening and Strichman (2008))—essentially converting them to black boxes and hoping that
there is no need to look inside to check the details. Another important technique has been to
observe that it is often the case that one input to a multiplier is a known constant and hence the
resulting computation involves linear, rather than nonlinear arithmetic. These approaches have
been combined with theories of arithmetic (e.g., Brinkmann and Drechsler (2002), Parthasarathy
et al. (2004), Bruttomesso et al. (2008), and Brummayer and Biere (2009)), including preprocessors
that do some form of rewriting to eliminate nonlinear arithmetic, but these methods are not able,
for example, to check the details of a multiplier implementation or handle nonlinearity.

Though the above approaches work in some contexts, they are very limited. The approach of
verifying code with multiplication using uninterpreted functions is particularly problematic for
hashing and cryptographic applications. For example, using uninterpreted functions in the actual
hash function computation inherently can never consider the case that there is a hash collision,
since it only can infer equality between terms with identical arguments. Concern about the cor-
rectness of the arithmetic in such applications is real: for example, longstanding errors in multi-
plication in OpenSSL have recently come to light (Openssl.org 2016).

Recent presentations at verification conferences and workshops have highlighted the problem of
verifying nonlinear arithmetic, and multipliers in particular, as one of the key gaps in our current
verification methods (Biere 2014a, 2014b; Kalla 2015; Biere 2016b).

Since bit-vector arithmetic is not itself a representation in Boolean variables, in order to ap-
ply SAT solvers to verify the designs, one must convert implementations and specifications to
CNF formulas based on specified bit-widths. The process by which one does this is called flatten-

ing (Kroening and Strichman 2008), or more commonly bit-blasting. The resulting CNF formulas
are then sent to the SAT solvers. While the resulting bit-blasted CNF formulas for a multiplier may
grow quadratically with the bit-width, this growth is not a significant problem. On the other hand,
a major stumbling block for handling even modest bit-widths is the fact that existing SAT solvers
run on these formulas seem to experience nearly exponential blow-up as the bit-width increases
(Figure 1). As a result, the best of recent bit-vector solvers, e.g., Boolector (Brummayer and Biere
2009), MathSAT (Bruttomesso et al. 2008), STP (Ganesh and Dill 2007), Z3 (de Moura and Bjørner
2008), and Yices (de Moura 2005) all rely on multiple rounds of preprocessing to reduce the expense
of bit-blasting as much as possible.

In verifying a multiplier circuit, one could try to compare it to a reference circuit that is known to
be correct. This introduces a chicken-and-egg problem: how do we know that the reference circuit
is correct? Another approach to verifying a multiplier circuit is to check that it satisfies the right
properties. A correct multiplier circuit must obey the multiplication identities for a commutative

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:3

Fig. 1. Time to verify multiplier commutativity versus the bit-width of the multiplier for SAT solvers Glucose

and Lingeling (Biere 2016b).

ring. If we check that each of these ring identities holds, then the multiplier cannot have an error.
This approach has the advantage that the specification of a multiplier circuit can be written a priori

in terms of its natural properties, rather than in terms of an external reference circuit.
Empirically, however, modern SAT-solvers perform badly using either approach to problems of

multiplier verification. Biere, in the text accompanying benchmarks on the ring identities submit-
ted to the 2016 SAT Competition (Biere 2016a) writes that when given as CNF formulas, no known
technique was capable of handling bit-width larger than 16 for commutativity or associativity of
multiplication or bit-width 12 for distributivity of multiplication over addition. These observa-
tions lead to the question: Is the difficulty inherent in these verification problems, or are modern
SAT-solvers just using the wrong tools for the job?

Modern SAT-solvers are based on a paradigm called conflict-directed clause-learning
(CDCL) (Marques-Silva and Sakallah 1996; Moskewicz et al. 2001), which can be seen as a way
of breaking out of the backtracking search of traditional DPLL solvers (Davis et al. 1962). When
these solvers confirm the validity of an identity (by not finding a counterexample), their traces
yield resolution proofs (Beame et al. 2004) of that identity. The size of such a proof is comparable
to the running time of the solver; hence, finding short resolution proofs of these identities is a nec-
essary prerequisite for efficient verification via CDCL solvers. Although it is not known whether
CDCL solvers are capable of efficiently simulating every resolution proof, all cases where short
(polynomial size) resolution proofs are known have also been shown to have short CDCL-style
traces (e.g., Buss et al. (2008), Buss and Bonet (2012), and Buss and Kolodziejczyk (2014)).

The extreme lack of success of general purpose solvers (in particular, CDCL solvers) for verify-
ing any non-trivial properties of bit-vector multiplication, recently led Biere to conjecture (Biere
2016b) that there is a fundamental proof-theoretic obstacle to succeeding on such problems;
namely, verifying ring identities for multiplication circuits, such as commutativity, requires reso-
lution proofs that are exponential in the bit-width n.

We show that such a roadblock to efficient verification of nonlinear arithmetic does not exist by
giving a general method for finding short resolution proofs for verifying any degree 2 identity for
Boolean circuits consisting of bit-vector adders and multipliers. This method is based on reducing
the multiplier verification to finding a resolution refutation of one of a number of narrow critical

strips. We apply this method to a number of the most widely used multiplier circuits, yielding

nO (1) size proofs for array, diagonal, and Booth multipliers, and nO (log n) size proofs for Wallace
tree multipliers.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:4 P. Beame and V. Liew

These resolution proofs are of a special simple form: they are regular resolution proofs.1 Regular
resolution proofs have been identified in theoretical models of CDCL solvers as one of the simplest
kinds of proof that CDCL solvers naturally express (Buss et al. 2008). Indeed, experience to date has
been that the addition of some heuristics to CDCL suffices to find short regular resolution proofs
that we know exist. The new regular resolution proofs that we produce are a key step toward
developing such heuristics for verifying general nonlinear arithmetic.

Related Work. SAT solver-based techniques used in conjunction with case splitting previously
were shown to achieve some success for multiplier verification in the work of Andrade et al.
(Andrade et al. 2007) improving on earlier work (Andersson et al. 2002; Reda and Salem 2001)
which combined SAT solver and OBDD-based ideas for multiplier verification among other
applications; however, there was no general understanding of when such methods will succeed.

Recently, two alternative approaches to multiplier verification have been considered: Hirsch
et al. (2005) designed a mixed Boolean-algebraic solver, BASolver, that takes input CNF formulas
in standard format. It uses algebraic rules on top of a DPLL solver. Though it can verify the equiv-
alence of multipliers up to 32 bits in a reasonable time, in each instance it requires human input
in order to find a suitable set of algebraic rules to help the solver. An alternative approach using
Groebner basis algorithms has been considered (Sayed-Ahmed et al. 2016). This is a purely alge-
braic approach based on polynomials. Since the language of polynomials allows one to explicitly
write down the algebraic specification for an n-bit multiplier, the verification problem is conve-
niently that of checking that the multiplier circuit computes a polynomial equivalent to the mul-
tiplier specification. Sayed-Ahmed et al. (2016) shows that Groebner basis algorithms can be used
to verify 64-bit multipliers in less than 10 minutes and 128-bit multipliers in less than 2 hours. One
drawback of algebraic methods is that they require that the multipliers be identified and treated en-
tirely separately from the rest of the circuit or software. Unfortunately, for the non-algebraic parts
of circuits, Groebner basis methods can only handle problems several orders of magnitude smaller
than can be handled by CDCL SAT-solvers and it remains to be seen whether it is possible to
combine these to obtain effective verification for a general purpose software with non-linear arith-
metic or circuits that contain a multiplier as just one component of their design. In contrast, CDCL
SAT solvers are already very effective for the non-algebraic aspects of circuits and are well-suited
to handling the combination of different components; our work shows that there is no inherent
limitation preventing them from being effective for verification of general purpose nonlinear
arithmetic.

Finally, independently of and in parallel with our results, there has also been further work on
refining Groebner basis methods (Ritirc et al. 2017). We postpone discussing that refinement until
after we have presented our results.

Roadmap. Section 3 gives our polynomial size regular resolution proofs for array multipliers.
Section 4 describes how to extend these ideas to obtain short proofs for diagonal and Booth
multipliers. Section 5 gives our quasipolynomial size regular resolution proofs for Wallace tree
multipliers.

1Some of these proofs are even more restricted ordered resolution proofs, also known as DP proofs, which are associated

with the original Davis-Putnam procedure (Davis and Putnam 1960). In contrast to the Davis-Putnam procedure, which

eliminates variables one-by-one keeping all possible resolvents, ordered resolution (or DP) proofs only keep some minimal

subset of these resolvents needed to derive a contradiction.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:5

2 NOTATION AND PRELIMINARIES

We represent Boolean variables in lowercase and denote clauses by uppercase letters and think
of them as sets of literals, for example, C = {x , ȳ, z}. We will work with length n bit-vectors of
variables, denoted by z = zn−1 . . . z1z0.

Ring Identities

We consider identities from the commutative ring of integers Z. A variable assignment is denoted
by a set σ = σ (x0,x1 . . . xn) = {x0 = b0,x1 = b1 . . . xn = bn }, where each bi ∈ {0, 1}. x0,x1, . . . xn .

Definition 2.1. A commutative ring (R, ⊕, ⊗, 0, 1) consists of a nonempty set R with addition (⊕)
and multiplication (⊗) operators that satisfy the following properties:

(1) (R, ⊕) is associative and commutative and its identity element is 0.
(2) For each x ∈ R there exists an additive inverse.
(3) (R, ⊗) is associative and commutative and its identity element is 1 � 0.
(4) (distributivity) For all x, y, z ∈ R, x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z).

A ring identity L = R denotes a pair of expressions L,R that can be transformed into each other
using commutativity, distributivity, and associativity.

Note that both verifying integer ⊕ circuits and verifying that x ⊗ 1 = x are easy in practice, so
verifying the correctness of an integer multiplier circuit ⊗ can be easily reduced to verifying its
distributivity.

Proposition 2.2. Given a circuit ⊕ and another circuit ⊗, if ⊕ correctly implements integer ad-

dition, x ⊗ 1 = x, and ⊗ is distributive over ⊕, then ⊗ correctly implements integer multiplication.

Proof. x ⊗ y = x ⊗ (1 ⊕ 1 . . . ⊕ 1)
︸������������︷︷������������︸

y additions

= x ⊕ x . . . ⊕ x
︸����������︷︷����������︸

y additions

= (xy). �

Resolution Proofs and Branching Programs

Definition 2.3. A resolution proof consists of a sequence of clauses, each of which is either a clause
of the input formula ϕ, or follows from two prior clauses via the resolution rule which produces
clauseC ∨ D from clausesC ∨ x andD ∨ x . We say that this inference resolves the clauses on x . The
proof is a refutation of ϕ if it ends with the empty clause ⊥. (With resolution we will use the terms
“proof” and “refutation” interchangeably, since resolution provides proofs of unsatisfiability.)

We can naturally represent a resolution proof P as a directed acyclic graph (DAG) of fan-in 2,
with⊥ labeling the lone sink node. Tree resolution is the special subclass of resolution proofs where
the DAG is a directed tree. Another restricted form of resolution is regular resolution: A resolution
refutation is regular iff on any path in its DAG the inferences resolve on each variable at most
once. The shortest tree resolution proofs are always regular. An ordered resolution refutation is a
regular resolution refutation that has the further property that the order in which variables are
resolved on along each path is consistent with a single total order of all variables. This is a very
significant restriction and indeed the shortest tree resolution proofs do not necessarily have this
property.

We find it convenient to express our regular resolution proofs in the form of a branching program

that solves the conflict clause search problem.

Definition 2.4. Suppose that ϕ is an unsatisfiable formula. Then every assignment σ to its vari-
ables conflicts with some clause in ϕ. The conflict clause search problem is to map any assignment
to some corresponding conflicting clause.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:6 P. Beame and V. Liew

Fig. 2. A regular resolution refutation for ϕ and the corresponding branching program.

Definition 2.5. A branching program B on the Boolean variables X = {x0,x1, . . .} and output set
ϕ (typically a set of clauses in this article) is a finite directed acyclic graph with a unique source
node and sink nodes at its leaves, each leaf labeled by an element from ϕ. Each non-sink node is
labeled by a variable fromX and has two outgoing edges, one labeled 0 and the other labeled 1. An
assignment σ activates an edge labeled b ∈ {0, 1} outgoing from a node labeled by the variable xi

if σ contains the assignment xi = b. If σ activates a path from the source to a sink labeled C ∈ ϕ,
we say that the branching program B outputs C .

A read-once branching program (also known as a Free Binary Decision Diagram, or FBDD) is a
branching program where each variable is read at most once on any path from source to leaf. An
Ordered Binary Decision Diagram (OBDD) is a special case of an FBDD in which the variables read
along any path are consistent with a single total order.

The general case of the following proposition connecting regular resolution proofs and conflict
clause search is due to Krajíček (1996) (see Figure 2 for an example); the special case connecting
ordered resolution and OBDDs for the conflict clause search problem was first observed in Lovász
et al. (1995). We include its proof for completeness.

Proposition 2.6. Let ϕ be an unsatisfiable formula. A regular resolution refutation R for ϕ of size

s corresponds to a size s read-once branching program that solves the conflict clause search problem

for ϕ.

Suppose that B is a read-once branching program of size s solving the conflict clause search problem

for ϕ. Then there is a regular resolution refutation for ϕ of size s .
Furthermore, if R is an ordered resolution refutation, then the resulting branching program is an

OBDD and if B is an OBDD, then the resulting resolution refutation is an ordered resolution refutation.

Proof. Suppose that R is a regular resolution refutation of size s for ϕ. Each clauseC appearing
in R is a node of B. If two clauses C0 ∨ x ,C1 ∨ x̄ in R resolve on a variable x to produce the clause
C , then in the branching program B we branch from the node C on the variable x to reach C0 ∨ x
on the x = 0 branch, and C1 ∨ x̄ on the x = 1 branch. The resulting branching program B solves
the conflict clause search problem for ϕ and has the same size as the refutation R. The fact that no
variable is branched on more than once on any path is immediate from the definition; the fact that
this results in an OBDD in the case of ordered resolution is also immediate.

In the other direction, we obtain a regular refutation R from the specified read-once branching
program B. We will label each nodev with the maximal clauseCv that is falsified by every assign-
ment reaching v . These clauses form the regular resolution refutation. If v is a leaf, thenCv is the
conflicting clause from ϕ found by B. If B branches from node v on a variable x to nodes v0,v1,
then in R we resolve the clauses Cv0 ,Cv1 on x to obtain Cv . Again, the number of clauses in the
refutation R is the same as the number of nodes in the branching program B. The fact that the reso-
lution is regular follows immediately from the fact that the branching program is read-once; if the
branching program is an OBDD,then it is immediate that the resolution refutation is ordered. �

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:7

Fig. 3. Branching on c . Fig. 4. Propagating to c = 1.

Fig. 5. Merging on the common assignment {b = 0}.

In our proofs, we represent each clause with the partial assignment it forbids. For example, we
write the clause x ∨ ȳ as the partial assignment {x = 0,y = 1}. A branching program for conflict
clause search in ϕ consists of three types of actions, shown in Figures 3–5. At a node labeled by a
partial assignment σ that does not include variable z, we branch on z by connecting a child node
with assignment σ ∪ {z = 0} using a 0-labeled edge, and another child node σ ∪ {z = 1}, connected
by a 1-labeled edge. In the case that one of these children has an assignment conflicting with a
clause C ∈ ϕ, we say that we propagated the assignment σ to the other child’s assignment. Lastly,
for a set of leaf nodes with assignmentsσ0,σ1, . . . ,we can merge their branches based on a common
assignment σ ⊆ ∩iσi by replacing these nodes with a single node labeled by σ .

3 ARRAY MULTIPLIERS

3.1 Array Multiplier Construction

We describe our SAT instances as a set of constraints, where each constraint is a set of clauses.
Our circuits are built using adders that output, in binary, the sum of three input bits. An adder is
encoded as follows.

Definition 3.1. Let a0,a1,a2 be inputs to an adder A. The outputs c,d of the adder A are encoded
by the constraints:

d = a0 ⊕ a1 ⊕ a2, c = MAJ (a0,a1,a2).

We call c carry-bit and d the sum-bit. If an adder has two constant 0 inputs, it acts as a wire. If it
has precisely one constant input 0, we call it a half adder. If no inputs are constant, we call it a full

adder.

Each circuit variable has a weight of the form 2i . Each adder will take in three bits of the same
weight 2i and output a sum-bit of weight 2i and a carry-bit of weight 2i+1. The adder’s definition
ensures that the weighted sum of its input bits is the same as the weighted sum of its output bits.
In the constructions that follow, we divide the adders up into columns so that the i-th column
contains all the adders with inputs of weight 2i .

Ripple-Carry Adder. A ripple-carry adder, shown in Figure 6, takes in two bit-vectors x, y and
outputs their sum in binary. In the i-th column, for i ≤ n, we place an adder Ai that takes the
three variables ci−1,xi ,yi and outputs the adder’s carry variable and sum variable to ci and oi ,
respectively. In the (n + 1)-st column we place a wire An+1 taking cn as input and outputting to
on+1. While the implementation is simple, it has depth n.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:8 P. Beame and V. Liew

Fig. 6. 4-bit ripple-carry adder adding x, y. Each box represents a full adder with incoming arrows and out-

going arrows representing inputs and outputs.

Fig. 7. 3-bit array multiplier. Fig. 8. 3-bit diagonal multiplier.

All the multipliers we describe perform two phases of computation to compute xy. The first
phase is the same in each multiplier: the circuit computes a tableau of values xi ∧ yj for each pair
of input bits xi and yj . These multipliers differ in the second phase, where the circuit computes
the weighted sum of the bits in the tableau.

Array Multiplier. An n-bit array multiplier works by arranging n ripple-carry adders in order
to sum the n rows of the tableau. This multiplier has a simple grid-like architecture that is com-
pact and easy to lay out physically. It has depth linear in its bitwidth. In the first phase, an array
multiplier computes each tableau variable ti j = xi ∧ yj , with associated weight 2i+j .

For the second phase, arrange full addersAi, j , where i, j ∈ [0,n], into a grid as shown in Figure 7.
Adder Ai, j occupies the j-th row and the (i + j)-th column and outputs the carry and sum bits
ci, j and di, j . For i < 0, adder Ai, j takes inputs ti, j ,di+i, j−1, ci−1, j (replacing nonexistent variables
with the constant 0). Adders of the form An, j take input cn, j−1 instead of cn−1, j . Finally, we add
constraints equating the sum-bits d0,0,d0,1, . . . ,d0,n−1,d1,n−1, . . . ,dn−1,n−1 with the corresponding
output bits o0,o1, . . . ,o2n−1.

3.2 Overview: Efficient Proofs for Degree Two Array Multiplier Identities

We give polynomial-size resolution proofs that commutativity, distributivity, and the identity
x (x + 1) = x2 + x hold for a correctly implemented array multiplier. We go on to give polynomial-
size resolution proofs for general degree two identities.

Proof Overview. The first step in our proofs for each circuit family, including Wallace tree multi-
pliers, is to start by branching according to the lowest order disagreeing output bit between the two
circuits L and R. This output bit has no dependence on the circuitry in the higher order columns
to the left, so those columns can be removed while preserving the unsatisfiability of the remaining
subcircuit.

The key insight is that almost all of the columns to the right can also be removed while preserv-
ing unsatisfiability, reducing the problem to a narrow subcircuit that we call a critical strip. After
removing the low-order columns, the carry-bits feeding into the strip become unconstrained. If

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:9

the critical strip is too thin, then these unconstrained carry-bits could have enough total weight to
“cause” the disagreeing output bit, making the instance satisfiable. But for a large enough choice
of width, this cannot happen: each additional column on the right roughly halves the maximum
possible total weight of these carry-bits, so as the width of the strip increases, the weight of the
unconstrained carry-bits quickly becomes too small to cause the large disagreement in the leading
output bit. It then remains to refute each critical strip.

Our proofs inside each critical strip repeat three steps: (1) Branch on some of the input bits.
Typically these will correspond to a row of the tableau. (2) Propagate those values as far in the
circuit as possible. (3) Save the resulting assignment to the boundary of the propagation. We call
each of these boundaries a cut in the circuit. Because the critical strip is narrow, we will only need
to remember an assignment to a small number of variables as we move along these cuts in the
critical strip.

These cuts are sets of variables that, under any assignment, split the strip into a satisfiable and
an unsatisfiable region. If a cut assignment was propagated from an already-queried portion of
the circuit, then this cut assignment is consistent with the assignment given by those queries. But
since the critical strip as a whole is unsatisfiable, this cut assignment must be inconsistent with
any assignment to the unqueried portion of the circuit. Walking these cuts down the critical strip,
row-by-row, we reduce the unsatisfiable, unqueried region in the critical strip until it is trivially
refuted.

One can view our proof as showing that the constraints within each strip form a graph of path-

width O (logn) which, by Dechter (1996), implies that there is a polynomial-size ordered resolu-
tion refutation of the strip. In the case of commutativity, our argument implies that the constraint
graphs for the strips can be combined to yield a single constraint graph of pathwidthO (logn). For
the other identities, the orderings on the strips are different and the resulting constraint graphs
only have small branchwidth which, by Alekhnovich and Razborov (2002), still implies that there
are small regular resolution proofs of the other identities. Rather than simply invoke these general
arguments, we give the details of the resolution proofs, along with more precise size bounds.

3.3 Proofs of Array Multiplier Commutativity

Definition 3.2. We define a SAT instanceϕ
Array
Comm (n). The inputs are lengthn bit-vectors x, y. Using

the construction from Section 3.1, we define array multipliers Lxy and Ryx . The tableau variables
are defined by the constraints

t
xy
i, j = xi ∧ yj , t

yx
i, j = yi ∧ x j ,

and in particular we can infer, through resolution, that t
xy
i, j = t

yx
j,i .

After specifying the subcircuits Lxy and Ryx , we add a final subcircuit E, a set of inequality

constraints encoding that the two circuits disagree on some output bit:

ei =
[
o

xy
i � o

yx
i

]
∀i ∈ [0, 2n − 1],

e0 ∨ e1 ∨ . . . e2n−1.

We give a small resolution proof for ϕ
Array
Comm (n) in the form of a labeled OBDD B, as described

in Proposition 2.6. The variable order for B begins with e0, e1, . . . , followed by the output bits
o

yx
0 ,o

yx
1 , Then, B reads the variables associated with adders A

xy
i, j ,A

yx
j,i in order of increasing j,

reading each row right to left. Finally, B reads the output bits o
xy
0 ,o

xy
1 , . . . , then the input bits x, y

in an arbitrary order.
At the root of B, we search for the first output bit on which Lxy and Ryx disagree by branching

on the sequences of bits ek = 1, ek−1 = 0, . . . e0 = 0 for each k ∈ [0, 2n]. We will show that on each

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:10 P. Beame and V. Liew

branch we can prove that ϕ
Array
Comm (n) is unsatisfiable using only the constraints from Lxy and Ryx

on the variables inside columns [k − Δ,k].

Definition 3.3. Let Δ = logn. Let ϕStrip (k) hold the constraints from ϕ
Array
Comm (n) containing any

tableau variable t
xy
i, j or t

yx
i, j for i + j ∈ [k − Δ,k]. Then add unit clauses to ϕStrip (k) to encode the

assignment: e0 = 0, e1 = 0, . . . , ek−1 = 0, ek = 1. We callϕStrip (k) a critical strip ofϕ
Array
Comm (n). We call

the subset ϕStrip (k) ∩ L the critical strip of circuit L and likewise for circuit R.

Lemma 3.4. ϕStrip (k) is unsatisfiable for all k .

Proof. We interpret each critical strip as a circuit that outputs the weighted sum of the input
variables in circuits Lxy and Ryx . The assignment to e demands that the difference between the
critical strip outputs is precisely 2k . But by t

xy
i, j = t

yx
j,i , the weighted sum of the tableau variables

is the same in both critical strips. The difference in the critical strip outputs is then bounded by
the larger of the sums of the input carry bits to column k − Δ in the two strips. There are fewer
than n input carry bits for each critical strip, each of weight 2k−Δ = 2k/n, therefore the difference
in critical strip outputs is less than 2k , violating the assignment to e. �

Observe that this proof only relied on the relation t
xy
i j = t

yx
ji in the tableau variables. The addi-

tional requirement that the tableau variables came from an assignment to x, y is unnecessary to
refute ϕStrip (k).

Also observe that if one of the array multipliers has a bug, then at least one of the 2n critical
strips will be satisfiable.

Lemma 3.5. There is an O (n6 logn)-sized ordered resolution proof that ϕStrip (k) is unsatisfiable.

Proof. For simplicity, we assume that k ≤ n; the case where k > n is similar. We will also
preprocess ϕStrip (k) by resolving on the variables in x, y to obtain the tableau variable relations

t
yx
j,i = t

xy
i, j , then replacing all the variables t

yx
j,i by t

xy
i, j in the clauses ϕStrip (k). Viewing the proof as

a branching program, this amounts to querying x, y at the end. We will not resolve on x, y in the
remainder of this proof.

We give this resolution proof in the form of a labeled read-once branching program B. We define
the input variables σinput as the set of tableau variables of circuit Lxy , together with the carry
variables from column k − Δ − 1 of both Lxy and Ryx . We say σinput contains the input variables

to this critical strip, since their values determine an output assignment.
The idea behind the branching program B is to verify circuit Lxy by branching on its input

variables row-by-row, going from top-to-bottom, remembering an assignment to a row of sum-
variables. Since t

xy
i, j = t

yx
j,i , the tableau variables of circuit Ryx simultaneously are revealed from

bottom to top. In circuit Ryx , we maintain both a guess for its output values, and a row of
sum-variables. From the proof of Lemma 3.4, if we have found that the outputs of Lxy and Ryx

were computed correctly, then they must violate one of the constraints ek = 1, . . . , ek−Δ+1 = 0,
ek−Δ = 0. �

Definition 3.6. Define Cut(0) as the set of variables containing

d
yx
0,i ,o

yx
i−1 for i − 1 ∈ [k − Δ,k].

For j ∈ [1,k − Δ], we define Cut(j) to be the set containing the variables:

d
xy
i, j−1,d

yx
j,i−1 for i + j − 1 ∈ [k − Δ,k],

c
yx
j−1,i for i + j − 1 ∈ [k − Δ,k − 1],

o
yx
i for i ∈ [k − Δ,k].

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:11

Fig. 9. The critical strip ϕStrip (5) for checking commutativity. The enlarged variables belong to Cut(2) of

ϕStrip (5). This cut divides the critical strip into a shaded satisfiable region and an unshaded unsatisfiable

region.

Lastly, for j ∈ [k − Δ,k], we define Cut(j) to be the set containing the variables, when the indices
are in-range:

o
xy
i for i ∈ [k − Δ, j − 1],

d
xy
i+1, j−1,d

yx
j,i , c

yx
j−1,i for i + j ∈ [k − Δ,k],

c
yx
j−1,i for i + j − 1 ∈ [k − Δ,k − 1],

o
yx
i for i ∈ [k − Δ,k].

We will label each node of B by the pair (Cut(j),σ) where Cut(j) keeps track of the previously
seen cut. See Figure 9.

Initialization. Throughout, we work in terms of the tableau variables in circuit Lxy , implicitly
substituting t

xy
i j for t

yx
ji . We begin at the root node of the read-once branching program B, labeled

with an empty cut and an empty partial assignment (∅, ∅). For i ∈ [k − Δ,k], we branch on the
variable o

yx
i , then propagate to d

yx
0,i using a clause from the constraint o

yx
i = d

yx
0,i . The surviving

branches are those labeled by an assignment satisfying the constraints o
yx
i = d

yx
0,i . At this point,

we have reached nodes labeled Cut(0).
For each of the surviving branches, we branch on the tableau variables in the first row of xy:

t
xy
i,0 for i ∈ [k − Δ,k].

Then we propagate to the variables, in sequence,

d
yx
1,i , c

yx
0,i for i + 1 ∈ [k − Δ,k]

from Cut(1) (notice that this does not include the input carry-bit c
yx

0,k−Δ−1
). We then merge on

Cut(1).

Inductive Step. We now describe the transition from Cut(j) to Cut(j + 1) for 1 ≤ j ≤ k . Suppose
that the branching program B has reached an assignment to Cut(j). From these nodes we branch

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:12 P. Beame and V. Liew

on the next, j-th row’s tableau variables

t
xy
i, j for i + j ∈ [k − Δ,k]

and, when they exist, the pair of incoming input carry variables c
xy
i, j , c

yx
j−1,i from column k − Δ − 1.

We then propagate to the Cut(j + 1) and cxy variables in the sequence:

c
xy
i, j ,d

xy
i+1, j for i + j + 1 ∈ [k − Δ,k]

in circuit Lxy . If j ∈ [k − Δ,k], then we also propagate to oj−1.

c
yx
j,i ,d

yx
j+1,i for i + j + 1 ∈ [k − Δ,k]

in circuit Ryx . After branching on the last variable in Cut(j + 1), we start labeling nodes by
Cut(j + 1) and merge branches on their assignment to Cut(j + 1). This completes the step from
Cut(j) to Cut(j + 1).

We repeat this step until we have reached Cut(k + 1). At this point, we have an assignment to
the critical strip output bits oxy , oyx . Furthermore, both output assignments were the result of, and
therefore consistent with, propagating from a single assignment on the input variables σinputs . By
the proof of Lemma 3.4, this implies that our assignment to oxy , oyx conflicts with an inequality
constraint.

Size Bound. We show that there are O (n6 logn) nodes in B. Each Cut(j) section of B begins
with an assignment to at most 4Δ = 4 logn variables, so there are at most n4 nodes labeled by an
assignment to precisely Cut(j). We branch on up to Δ + 2 input variables, so each cut has a full
binary tree of 8n nodes. For each leaf of this tree, B has a path ofO (Δ) nodes for propagating before
the nodes get merged. Therefore, each cut labels at most O (n5Δ) nodes. There are k + 1 different
cuts, thus B has at most O ((k + 1)n5Δ) = O (n6 logn) nodes.

Since the tableau variables were actually partial products of x and y, we can make this proof
smaller by branching on the bits of x, y to determine the tableau variables in a row, maintaining a
sliding window of Δ bits of x, yielding the following.

Corollary 3.7. ϕStrip (k) has an O (n5 logn)-size regular resolution refutation.

We note that the alternative strategy of directly branching on the cuts to perform binary search
on the critical strip yields the same size bound as Corollary 3.7.

Theorem 3.8. Let N = |ϕArray
Comm | = O (n2). There is an O (N 3 logN) size regular resolution proof

that ϕ
Array
Comm is unsatisfiable. There is an O (N 7/2 logN) size ordered resolution proof that ϕ

Array
Comm is

unsatisfiable.

Proof. We can now describe the overall branching program B for ϕ
Array
Comm (n). The branching

program branches on the inequality-constraint assignments σe (k) = {ek = 1, ek−1 = 0, . . . e0 = 0}
for k ∈ [0, 2n − 1]. The k-th branch contains the clauses ϕStrip (k) so we can use the read-once
branching program from either Corollary 3.7 or Lemma 3.5 (with each node augmented with the
assignment σe (k)) to show that the branch is unsatisfiable. Corollary 3.7 yields the regular resolu-
tion proof and Lemma 3.5 yields the ordered resolution proof. �

3.4 Proofs of Array Multiplier Distributivity

Definition 3.9. We define a SAT instanceϕ
Array
Dist (n) to verify the distributivity property x (y + z) =

xy + xz for an array multiplier in the natural way. For the left-hand expression, we construct a

ripple-carry adder Ly+z , outputting o(y+z) , and array multiplier Lx (y+z) outputting ox (y+z) . For the
right-hand expression, we similarly define circuits Rxz , Rxy , and Rxy+xz .

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:13

We define L = Ly+z ∪ Lx (y+z) and R = Rxz ∪ Rxy ∪ Rxy+xz . We let E contain the usual inequality

constraints. The full distributivity instance is then ϕ
Array
Dist (n) = L ∪ R ∪ E.

We again divide the instance into critical strips, following the strategy previously used to refute

ϕ
Array
Comm.

Definition 3.10. Define the constant Δ = log(2n). Let ϕStrip (k) contain the following constraints

from ϕ
Array
Dist (n): first, the full ripple-carry adder circuit Ly+z . Second, include the constraints con-

taining one of the tableau variables t
x (y+z)
i, j , t

xy
i, j , t

xz
i, j for i + j ∈ [k − Δ,k]. Third, include the ripple-

carry adder constraints on the carry-bits and sum-bits c
xy+xz
i ,o

xy+xz
i for i ∈ [k − Δ,k]. Lastly, add

constraints to ϕStrip (k) that assign ek = 1, ek−1 = 0, . . . , e0 = 0.

Lemma 3.11. ϕStrip (k) is unsatisfiable for all k .

Proof. Like the proof of Lemma 3.4, the critical strip for Lx (y+z) holds tableau bits with the

same weighted sum (modulo 2k+1) as those in Rxz and Rxy combined. The critical strip for Lx (y+z)

has at most n input carry-bits of weight 2k−Δ. The critical strips of the n-bit multipliers Rxz and
Rxy each have at most n − 1 input carry variables of weight 2k−Δ. The critical strip of the adder
Rxy+xz has one input carry variable, so the critical strip for R has 2n − 1 input carry-bits. Since we
set the width of the strip at Δ = log(2n), it is unsatisfiable. �

Lemma 3.12. For each k there is anO (n5 logn) size regular resolution proof that ϕStrip (k) is unsat-

isfiable.

Proof. We construct a labeled branching program B that solves the conflict clause search prob-
lem for ϕStrip (k). We branch row-by-row in the critical strips, maintaining an assignment to cuts
of variables in each multiplier. For each strip we will select a (different) variable ordering for x, y, z
that reveals the tableau variables row-by-row. Assume that k < n for simplicity; the case where
k ≥ n is similar.

For an array multiplier computing an expression C ∈ {x (y + z),xz,xy} and j ∈ [1,k − Δ], we
define CutC (j) to be the set of variables

dC
i, j−1 for i + j − 1 ∈ [k − Δ,k],

and for j ∈ [k − Δ + 1,k] we define CutC (j) as the set of variables

dC
i, j−1 for i + j − 1 ∈ [k − Δ,k],

oC
i for i ∈ [k − Δ, j − 2].

We define Cuty+z (j) as the singleton set {cy+z
j−1 } and define Cutx (j) as the set

xi : i ∈ [k − j − Δ,k − j].

We also refer to a global cut, across the whole circuit: Cut(j) = ∪C CutC (j). See Figure 10.

Initialization: Getting to Cut(1). At the root node (∅, ∅) of B, we branch on the circuit input
variables y0, z0 and

xi for i ∈ [k − Δ,k].

We propagate these assignments to variables c
y+z
0 and o

y+z
0 , giving us an assignment to Cuty+z (0).

The assignment to o
y+z
0 , in turn, propagates to an assignment to the first row of tableau and sum

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:14 P. Beame and V. Liew

Fig. 10. The critical strip ϕStrip (4) for distributivity. Cut(2) consists of the enlarged variables.

variables from the critical strip for Lx (y+z) :

t
x (y+z)
i,0 ,d

x (y+z)
i,0 for i ∈ [k − Δ,k].

At this point, we have an assignment to Cutx (y+z) (0).
We then propagate the input variable assignments through the multipliers Rxy and Rxz :

t
xy
i,0 ,d

xy
i,0 : i ∈ [k − Δ,k],

txz
i,0 ,d

xz
i,0 : i ∈ [k − Δ,k],

obtaining assignments to Cutxy (0) and Cutxz (0), thus completing an assignment to Cut(0). At this
point we merge nodes on assignment to Cut(0).

Inductive Step: Cut(j) to Cut(j + 1). Suppose we have merged branches and are at a node la-
beled with an assignment to Cut(j). If this assignment contains a variable dC

0,i we propagate to oC
i .

We branch on input variables xk−Δ−j ,yj , zj . We then propagate these assignments to c
y+z
j+1 ,o

y+z
j+1 ,

followed by the next row of tableau, carry, and sum variables in each multiplier:

cC
i−j−2, j+1, t

C
i−j−1, j+1,d

C
i−j−1, j+1 : i ∈ [k − Δ,k].

At this point, we have reached an assignment to all of the variables in Cut(j + 1) so we merge
nodes based on Cut(j + 1). We repeat this step until reaching an assignment to Cut(k + 1), which
consists of each multiplier’s output bit-vector oC .

End: Beyond Cut(k + 1). Suppose that we have reached Cut(k + 1) and merged nodes. We branch

on the input carry variable c
xy+xz

k−Δ−1
, that goes into the critical strip of ripple-carry adder Rxy+xz . We

can then propagate to the outputs oxy+xz . We now have an assignment to both ox (y+z), oxy+xz that
was propagated from one assignment to the input variables to the critical strip. By Lemma 3.11,
this assignment conflicts with an inequality constraint from E.

Size Bound. There are k + 1 different global cuts Cut(j). Each Cut(j) section of B begins with
an assignment to at most 4Δ + 1 variables, and then branches on three input variables. So each
section Cut(j) is initialized with at most 8 ∗ 24Δ+1 = O (n4) branches. Each of these branches then
propagates in a path with at most O (Δ) nodes. So there are at most O (n4 logn) nodes per cut and
therefore at most O ((k + 1)n4 logn) = O (n5 logn) nodes in B. �

Theorem 3.13. There is an O (n6 logn) size resolution proof that ϕ
Array
Dist (k) is unsatisfiable.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:15

Fig. 11. The critical strip ϕStrip (5) for checking x (x + 1) = x2 + x . The shaded region is satisfiable. The en-

larged variables belong to Cut(1).

Proof. At the root of this proof there are 2n branches each holding an assignment to
ek , . . . , e1, e0. We refute each branch using the O (n5 logn) size proof from Lemma 3.12. �

3.5 Proofs of x (x + 1) = x2 + x for Array Multipliers

Definition 3.14. We define a SAT instance ϕ
Array

x (x+1)
(n). Circuit L is composed of circuits Lx+1, con-

sisting of a ripple-carry adder taking inputs x and 1 and outputting their sum (x + 1), and Lx (x+1) ,

an array multiplier outputting the product x(x + 1). Similarly, circuit R is composed of circuits Rx 2

and Rx 2+x .
We let E contain the usual inequality constraints. The instance is then

ϕ
Array

x (x+1)
(n) = L ∪ R ∪ E.

While this identity looks like a special case of distributivity, its resolution proof is more com-
plicated. This is because for distributivity, x (y + z) = xy + xz, the inputs to each multiplier were
separate variables. This allowed us to scan the critical strip from one end to the other in a read-
once fashion. If we try a similar strategy to scan the critical strip for the multiplier Rx 2 from top
to bottom, we will read each xi twice. To avoid reading the same variable twice, we instead scan
the critical strip from both ends, meeting in the middle.

Definition 3.15. Define the constant Δ = log(2n − 1). Let ϕStrip (k) contain the full ripple-carry

adder circuit Lx+1 from ϕ
Array

x (x+1)
(n). Also include the constraints containing one of the multi-

plier tableau variables tx (x+1)
i, j , tx 2

i, j for i + j ∈ [k − Δ,k]. Further include the constraints on the

ripple-carry adder carry-bits and sum-bits cx 2+x
i ,dx 2+x

i for i ∈ [k − Δ,k]. Lastly, add constraints
to ϕStrip (k) that encode the values of the bits: ek = 1, ek−1 = 0, . . . , e0 = 0.

We refer to the subcircuit ϕStrip (k) ∩C as the critical strip forC . Figure 11 shows an example of
a critical strip.

Lemma 3.16. ϕStrip (k) is unsatisfiable for all k .

Proof. The proof is the same as the proof for Lemma 3.11. �

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:16 P. Beame and V. Liew

Definition 3.17. For an array multiplier computing the expression C ∈ {x (x + 1),x2} and j ∈
[1, (k − Δ)/2], we define CutC (j) to be the set of variables

dC
i, j−1 : i + j − 1 ∈ [k − Δ,k] (upper cut),

cC
j−1,i ,d

C
j,i : i + j ∈ [k − Δ,k] (lower cut).

We define Cutx+1 (j) to contain x j−1 and the set of variables

xi : i ∈ [k − j − Δ,k − j].

Theorem 3.18. There is a size n7 logn regular resolution proof that ϕStrip (k) is unsatisfiable.

Proof.

Initialization. We give our proof in the form of a labeled read-once branching program B. We

begin by branching on a guess for the critical strip outputs ox (x+1), ox 2+x . For the branches that do
not conflict with an inequality constraint, we branch on the values

ox 2

i ,xi : i ∈ [k − Δ,k],

then merge to erase the assignment to ox 2+x .
We observe that the carry variables in Lx+1 must be a sequence of 1’s followed by 0’s. If, on

the contrary, we observe the assignments ci = 0 and c j = 1 for i < j, then we can efficiently find a
conflict by propagating ci = 0 through columns [i, j]. So we can begin this proof by branching on
the at most n valid carry-bit assignments

cx+1
0 = 1, . . . , cx+1

i = 1, cx+1
i+1 = 0, . . . , cx+1

k = 0.

Our branch order begins on the input variables x0 and xk ,xk−1, . . . ,xk−Δ. We propagate the
resulting assignment to the upper and lower cuts in each circuit, then merge on the assignment to
Cut(1).

Inductive Step. To get from Cut(j) to Cut(j + 1), we branch on input variables x j ,xk−j−Δ+1, then
propagate to and merge on Cut(j + 1).

We have two cases: the upper and lower cuts of Cut(j + 1) either intersect or they do not. In
either case, we branch on input variables x j−1,xk−Δ−j+1 and the input carry variables to rows j
and (k − j − Δ + 1). If the cuts do not intersect, we propagate to, then merge on, all the Cut(j + 1)
variables. Otherwise, suppose that the upper and lower cuts of Cut(j + 1) intersect on di, j . The
upper and lower cuts of Cut(j) either propagate to conflicting values of di, j , in which case we have
found a conflict, or they agree on the value of di, j , in which case we delete column i + j from our
cuts.

Size Bound. Each cut belongs to one of up to n branches for the carry variables in Lx+1 and holds
an assignment to at most 7 logn variables so there are at most n8 initial nodes for each cut. Each
of these nodes propagates for O (logn) steps to get to the next cut, so our branching program has
size O (n9 logn). �

We can now obtain a refutation for ϕ
Array

x (x+1)
(n) by branching on sequences of variables in e and

using the refutation for ϕStrip (k) on each branch.

Theorem 3.19. There is a size n10 logn regular resolution proof that the SAT instance ϕ
Array

x (x+1)
(n)

is unsatisfiable.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:17

3.6 Degree Two Identity Proofs for Array Multipliers

Let ϕ
Array
L=R

(n) denote a SAT instance checking that the array multiplier obeys the ring identity
L = R. With the insight from the earlier proofs in this section, we can prove the general theorem
as follows.

Theorem 3.20. For any degree two ring identity L = R, there are polynomial size regular refuta-

tions for ϕ
Array
L=R

(n).

Proof (Sketch). We divide ϕ
Array
L=R

(n) into unsatisfiable critical strips of width Δ = logmn,
where m is the number of terms in the identity L = R. The ripple-carry adders that input to a
multiplier remain intact, and for the rest we remove the columns outside the critical strip.

We begin by branching on guesses for the Δ output bits from each multiplier and each truncated
ripple-carry adder. In each multiplier, we use a “meet-in-the-middle” strategy, similar to the proof
for x (x + 1) = x2 + x . We read all the input bit-vectors in parallel, each in the same order. This
branch order for each input bit-vector x is x0,xn ,x1,xn−1,We branch on the input carry-bits
as needed to propagate the cuts. We can propagate the resulting input variable assignments to
diagonal cuts in each multiplier that scan from the top and bottom edges toward the middle, and
likewise for the intact ripple-carry adders. In each input bit-vector, we remember the assignment
to just the most recently queried 2Δ variables. Because of the symmetry of this variable order, it
is compatible with swapping the order of inputs to any multiplier, as well as multipliers squaring
an input. �

4 DIAGONAL MULTIPLIERS AND BOOTH MULTIPLIERS

A diagonal multiplier uses a similar idea to the array multiplier. The difference is that the diagonal
multiplier routes its carry bits to the next row instead of the same row as depicted in Figure 8.

A Booth multiplier uses a similar idea to the array multiplier, but uses two’s complement no-
tation and a telescoping sum identity to skip consecutive digits in one multiplicand. To add the
terms of this sum, the Booth multiplier uses a grid of full adders similarly to the array multiplier,
but with some small modifications to accommodate signed integers.

Like with the array multiplier, we can divide the diagonal and Booth multipliers into O (logn)-
width unsatisfiable critical strips. Using the same input variable orderings from Section 3, we can
verify each of these critical strips with a polynomial-size regular resolution proof.

Definition 4.1. Let ϕ
Diag
L=R

(n) denote the SAT instance checking that an n-bit diagonal multiplier

obeys the ring identity L = R. Likewise, let ϕBooth
L=R

(n) denote the SAT instance checking that an
n-bit Booth multiplier obeys the ring identity L = R.

Theorem 4.2. For any degree two ring identity L = R, there are polynomial size regular resolution

proofs for ϕ
Diag
L=R

(n) and ϕBooth
L=R

(n).

Proof (Sketch). We divide ϕ
Diag
L=R

(n) or ϕBooth
L=R

(n) into unsatisfiable critical strips of width Δ =
logmn, wherem is the number of terms in the identity L = R. This is the same width as in the array
multiplier since the number of input carry-bits in each multiplier’s critical strip is at most n. The
ripple-carry adders that input to a multiplier remain intact, and for the rest we remove the columns
outside the critical strip. We note that although the Booth multiplier uses two’s complement signed
integers, this does not materially affect our critical strip proofs.

We begin by branching on guesses for the Δ output bits from each multiplier and each truncated
ripple-carry adder. We use the same branch order as in the array multiplier proof: each input bit-
vector x is read in parallel, in the order x0,xn ,x1,xn−1, We branch on the input carry-bits as

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:18 P. Beame and V. Liew

Fig. 12. 8-bit, two-layer CLA adding x, y.

needed to propagate the cuts. We can propagate the input variable assignments to diagonal cuts in
each multiplier that scan from the top and bottom edges toward the middle, and likewise for the
intact ripple-carry adders. In each input bit-vector, we remember the assignment to just the most
recently queried 2Δ variables. �

5 WALLACE TREE MULTIPLIERS

5.1 Wallace Tree Multiplier Construction

A Wallace tree multiplier takes a different approach to summing the tableau. Using carry-save
adders (parallel 1-bit adders), it iteratively finds a new tableau with the same weighted sum as the
previous tableau, but with 1/3 fewer rows. Upon reducing the original tableau to just two rows, it
uses a carry-lookahead adder to obtain the final result. In contrast to the array multiplier, a Wallace
tree multiplier is complicated to lay out physically, but has only logarithmic depth.

Carry-Lookahead Adder. A carry-lookahead adder (CLA) uses a tree structure to add two bit-
vectors x, y with only logarithmic depth. The 4-bit CLA computes, for each pair xi ,yi , the values

дi = xiyi pi = xi ⊕ yi .

Then, writing ci for the carry bit in the i-th column, we have

ci+1 = дi ⊕ (pici).

We can use this to derive the following equations, which we can use to compute each carry digit
in parallel from the values дi , pi , and c0:

c1 = д0 ⊕ p0c0,

c2 = д1 ⊕ д0p1 ⊕ c0p0,0p1,

c3 = д2 ⊕ д1p2 ⊕ д0p1p2 ⊕ c0p0p1p2,

c4 = д3 ⊕ д2p3 ⊕ д1p2p3 ⊕ д0p1p2p3 ⊕ c0p0p1p2p3.

These values are used to compute the outputs: oi = ci ⊕ xi ⊕ yi . It additionally computes the group

propagate and group generate:

p1,4 = p3p2p1p0,

д1,4 = д3 ⊕ д2p3 ⊕ д1p3p2 ⊕ д0p3p2p1,

where the first index indicates the layer.
We construct a 16-bit CLA with two layers, whose first half of is shown in Figure 12. At the

zero-th layer we arrange four 4-bit CLAs, the k-th CLA taking inputs xi ,yi , i ∈ [4k, 4k + 3] and
outputting to p0,i ,д0,i , i ∈ [4k, 4k + 3], where the superscript indicates the layer. We denote the k-
th CLA group propagate and generate byp1,4kд1,4k . Then the carries c4, c8, c12, . . . can be computed

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:19

by the equations

c4 = д1,0 ⊕ p1,0c0,

c8 = д1,4 ⊕ д1,0p1,4 ⊕ c0p1,0p1,4,

c12 = д1,8 ⊕ д1,4p1,8 ⊕ д1,0p1,4p1,8 ⊕ c0p1,0p1.4p1,8,

c16 = д1,12 ⊕ д1,8p1,12 ⊕ д1,4p1,8p1,12 ⊕ p1,0p1,4p1,8p1,12 ⊕ c0p1,0p1,4p1,8p1,12.

Notice that these equations are isomorphic to the previous equations for computing carries within
each 4-bit CLA. We can reuse the same circuitry from the 4-bit CLA to compute these carries, as
well as the group propagate and generate for the next layer. We can repeat this process to construct
larger CLAs, with each iteration able to handle four times the bitwidth.

Wallace Tree Multiplier. We construct a Wallace tree multiplier taking input (x, y). We compute
a tableau of partial products like in the array multiplier. We then go through h ≈ logn steps to
reduce the n-row starting tableau to an equivalent two-row tableau.

We define tableau variables t�,i, j where � is the layer of the tableau, i is the index of the column
containing the adder, and j is the row. We will denote the set of tableau variables in a column by

Col(i) = {t�,i, j for all �, j},
and call the subset of a column within a layer l a subcolumn, denoted by

Col(�, i) = {t�,i, j for all j}.
In the zero-th layer, the tableau variables represent the partial products:

t0,i, j = xi−j ∧ yj for i < n,

t0,i, j = xn−1−j ∧ yi−n+j+1 for i ≥ n.

We now specify how to construct layer � + 1 from layer �. We partition the rows of layer � into
sets of three, from top to bottom. AdderA�,i, j will take input from the i-th column of the j-th set of
three rows. For each row of adders j = 0, 1, . . . , for each i ∈ [0, 2n], we append adder A�,i, j ’s sum-
bit to subcolumn Col(� + 1, i). Then for each i , we append adder A�,i, j ’s carry-bit to subcolumn
Col(� + 1, i + 1).

Each layer reduces the number of rows in the tableau from N to �2N /3�. The tableau for the
last layer h < log3/2 (n) < 2 logn, will only have two rows. We use a 2n-bit2 CLA to sum the two
rows in logarithmic depth, outputting the final sum in the output bits oi .

Like the proofs for array multipliers, our proofs for Wallace tree multipliers divide the instance
into critical strips. In fact, our proofs branch on the input tableau in the same row-by-row order
in both array and Wallace tree multipliers. However, the size of the resulting cuts is O (log2 n) for
Wallace tree multipliers rather than theO (logn) size cuts for array multipliers. This cut size results
in quasipolynomial size regular resolution proofs.

When analyzing the cuts in a Wallace tree multiplier, we will find the following property useful.

Definition 5.1. For layer � of a Wallace tree multiplier, if for each j ≤ k , the outputs of the j-th
row of adders, {A�,i, j }i , map to and cover the rows 2j, 2j + 1 of the next layer � + 1’s tableau, we
say that layer � is row-friendly up to its k-th row of adders. If layer � is row-friendly up to its last
row of adders, we say that layer � is row-friendly.

Lemma 5.2. In a Wallace tree multiplier, each layer � ∈ [0,h − 2] is row-friendly.

In terms of the dot diagram in Figure 13, this lemma simply states that no two bits are connected
with a line of slope greater than one.

2This is not a (2n − 1)-bit adder because the top summand may have 2n bits.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:20 P. Beame and V. Liew

Fig. 13. Dot diagram for a 9 × 9 Wallace tree multiplier. Hollow dots represent carry-bits and solid dots

represent sum-bits. Dots connected by an edge are output by the same adder.

5.2 Proofs of Wallace Tree Multiplier Commutativity

Definition 5.3. We define a SAT instanceϕWall
Comm (n). The inputs to the multipliers aren-bit integers

x, y. Using the construction from Section 5, we define Wallace tree multipliers L, computing xy,
and R, computing yx (reversing the order of multiplier inputs).

After specifying the circuits L and R, we add a circuit E, of inequality constraints encoding that
the two circuits disagree on some output bit.

Definition 5.4. Define δ = log(n + 2). Let ϕStrip (k) contain the constraints from ϕWall
Comm (n) that

contain a tableau variable t
xy

�,i, j
or t

yx

�,i, j
for i ∈ [k − δ ,k], and also the constraints for the full CLAs

at the end of the Wallace tree multipliers. Also add unit clauses to ϕStrip (k) for the assignment:
e0 = 0, e1 = 0, . . . , ek−1 = 0, ek = 1.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:21

We call the newly unconstrained tableau bits in column k − δ , that were carry-bits output by
adders from the removed column k − δ − 1, the input carry-bits to ϕStrip (k).

Lemma 5.5. ϕStrip (k) is unsatisfiable for all k .

Proof. We reason similarly to the proof of Lemma 3.4. Again, we interpret the critical strip
as a circuit that computes the weighted sum, in both L and R, of the tableau variables within the
strip. The assignment to e asserts that the outputs of L and R differ by precisely 2k . We bound
the admissible difference in outputs by counting the number of input carry-bits in either L or R.
Since each layer of a Wallace tree multiplier has �2/3� fewer rows than the previous layer, the
total number of tableau rows past the initial layer is at most 2n. At most half of these rows are
composed of carry-bits, so circuits L and R each have at most n input carry-bits coming from the
removed column k − δ − 1. Additionally, the newly unconstrained inputs to the final CLA from
the removed columns can contribute a total weight of at most 2k−δ to the final output. Since we
set δ = log(n + 2), the total difference between the final outputs is at most 2k−δ (n + 2) < 2k . �

Lemma 5.6. There is a regular resolution proof of size 28 log2 n+O (log n) that ϕStrip (k) is unsatisfiable.

Proof. The idea of this proof is to read the initial layer of the critical strip row-by-row. If we
have assigned all of the inputs to a row of adders, we propagate to their output bits. In this way,
an input assignment to x and y will propagate through the layers of the Wallace tree multiplier in
parallel, then finally reach an assignment to the output bits of both circuits. From the proof of 5.5,
the result will contradict one of the inequality constraints from ϕWall

Comm (n).
Each node of the branching program will only keep track of a constant number of variables

in each subcolumn. This will ensure that the cuts have O (log2 n) variables, so that the branching

program has at most 2O (log2 n) nodes.
We first preprocess the constraints to obtain the equalities t

xy
0,i, j = t

yx
0,i,i−j . Like in the array multi-

plier case, as we branch from the top tableau row downward in circuit L, we will reveal the bottom
row upward in circuit R. We will first describe how the branching program B propagates an as-
signment from the initial tableau to an assignment to the last layer in circuit L. The propagation
in circuit R works symmetrically, going from the bottom row of adders to the top in each layer.
Then we will describe how to propagate an assignment to the last layer through the CLA to finally
reach an assignment to the output bits. �

ALGORITHM 1: Propagates from the initial layer � = 0 to the final layer � = h of the critical strip L

while assigning at most a constant number of bits per subcolumn.

1 for j = 0, 1, . . . , �n/3� do

2 Branch on the inputs to the j-th row of adders {Axy
0,i, j }i

3 for each layer � = 0, 1, . . . ,h − 1 before the last layer do

4 if layer � has a fully assigned row of adders {Axy

�,i, j′
}i then

5 Propagate to tableau rows 2j ′, 2j ′ + 1 of layer � + 1.

6 Merge to forget the assignment to the row of adders {Axy

�,i, j′
}i

7 Branch on any input carry-bits in tableau rows 2j ′, 2j ′ + 1 of layer � + 1

8 end

9 end

10 end

The branching program B begins by following the Algorithm 1 on circuit L. We use the propaga-
tion loop in lines 3–9 for circuit R, leaving the branching steps to circuit L. We claim that at the end,

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:22 P. Beame and V. Liew

Fig. 14. An intermediate state in the CLA after scanning up to the sixth column. The box contains the

columns of the critical strip. The blue variables are assigned while the blank variables were previously as-

signed, but then erased. Notice that we remember the assignment to the output variables in the strip and

forgot the assignment outside.

B will reach an assignment to just the last layer of circuits L and R. This will follow immediately
from Lemma 5.7.

Lemma 5.7. During the execution of Algorithm 1, the tableau variables within each layer of circuit

L get assigned in row order from top to bottom. Furthermore, each tableau variable eventually receives

an assignment.

Likewise, the tableau variables in each layer � > 0 of circuitR get assigned in row order from bottom

to top, and each tableau variable eventually receives an assignment.

Proof. We prove both properties in circuit L by induction, making use of the row-friendliness
of Wallace tree multipliers from Lemma 5.2. It is clear that the initial layer satisfies both properties.
Suppose that layer � − 1 satisfies both properties. Then its rows of adders {Axy

�−1,i, j′ }i get assigned

to in ascending order with j ′ = 0, 1, For each increment of j ′, by row friendliness the steps 5
and 7 yield an assignment to all the variables in tableau rows 2j ′, 2j ′ + 1 of layer �. So layer � gets
assigned in row order from top to bottom, and each tableau variable in � eventually receives an
assignment.

The proof for circuit R is symmetric, except the initial tableau is not assigned in horizontal rows,
but rather diagonal rows. Nevertheless, the subsequent layer � = 1 will still satisfy both desired
properties and the induction argument may be used from there. �

Corollary 5.8. At the end of Algorithm 1, the branching program B reaches an assignment to

precisely both rows in the last layer of circuits L and R.

To propagate an assignment to the last layer of L or R through the CLA, we will follow Algo-
rithm 2. This algorithm will essentially perform a post-order traversal of the full CLA tree. While
it is not technically necessary to include the components of the CLA to the right of the critical
strip, we have retained them for clarity.

After running Algorithm 2 in both circuits L and R, we have an assignment to the outputs of
both critical strips. By Lemma 5.5, this assignment violates an inequality constraint in E.

Size Bound. We claim that in the first phase, where the branching program B is executing
Algorithm 1, each node in B is labeled by an assignment to at most four rows of tableau vari-
ables within each layer � of L, and likewise for each layer � > 1 for R. By Lemma 5.7, the tableau
variables within each layer are assigned in row order from top to bottom in L. So if four rows are
assigned in a layer �, they form a fully assigned row of adders {Axy

0,i, j }i . Algorithm 1 will propagate

that assignment to the next layer, erasing the assignment to the row of adders {Axy
0,i, j }i . The same

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:23

ALGORITHM 2: Propagates from the inputs to the critical strip outputs of the CLA while assigning at

most a constant number of bits per CLA layer.

1 for i = 0, 1, . . . , 2n do

2 Branch on any unassigned inputs to the i-th column: th,i,0, th,i,1
3 while there is a pair of propagate and generate variables p�,i′ ,д�,i′ with all their input variables

assigned do

4 Propagate to p�,i′ ,д�,i′ while merging to forget their input propagate and generate bits.

5 Merge to forget the carry-bits computed by the CLA that output p�,i′ ,д�,i′ .

6 Propagate to each carry-bit with all its input variables assigned.

7 Propagate to each critical strip output bit with all its inputs assigned.

8 end

9 end

proof works to show that at most four rows of tableau variables are assigned within each layer
� > 1 of R.

Each node in the first phase of B then holds an assignment to at most 8δh variables of the critical
strip. Both L and R have at most 2n rows of tableau variables, so the number of tableau variables
in the critical strip is upper bounded by 4nh. Therefore, the execution of Algorithm 1 will take at
most 4nh steps. As this algorithm is also oblivious, each node gets labeled by an assignment to one
of 4nh sets of at most 8δh tableau variables. So the total number of nodes in the first phase of B is

at most 4nh2δh = 216 log2 n+O (log n) .
We can obtain a more efficient version of Algorithm 1 by immediately propagating when an

individual adder becomes fully assigned. This modified algorithm will only store at most two vari-
ables per subcolumn, except for a single “working” subcolumn in each layer that may hold three

variables. This modification results in a size bound of 28 log2 n+O (log n) .
We give a polynomial bound for the second phase, where the branching program B is executing

Algorithm 2. Observe that this algorithm only keeps an assignment to variables within the sub-
CLAs intersecting the i-th column. At most one sub-CLA in each of the log4 n layers will intersect
the i-th column, so there are O (logn) assigned variables in any step of Algorithm 2. The whole
CLA has O (n) variables, therefore B uses a polynomial number of nodes to execute Algorithm 2.

The total size of the branching program B is then 28 log2 n+O (log n) .

Theorem 5.9. There is a regular resolution proof of size 28 log2 n+O (log n) that ϕWall
Comm (n) is unsatis-

fiable.

Proof. As usual, we initially branch on the assignments σe (k) = {e0 = 0, e1 = 0, . . . ek = 1} for
k ∈ [0, 2n − 1]. The k-th branch contains the clauses ϕStrip (k) so we can use the Read-Once branch-
ing program from Lemma 5.6 (with each node augmented with the assignment σe (k)) to show that
the branch is unsatisfiable. �

5.3 Proofs of Wallace Tree Multiplier Distributivity

Our proof of commutativity for Wallace tree multipliers used Algorithms 1 and 2 to efficiently
propagate an assignment from the initial layer of L’s critical strip to the outputs. We will modify
the branching step in these algorithms to verify the distributivity of Wallace tree multipliers.

Definition 5.10. Define a SAT instance ϕWall
Dist (n) encoding the identity x (y + z) = xy + xz in the

usual way, with subcircuits Ly+z ,Lx (y+z) forming circuit L, Rxy ,Rxz ,Rxy+xz forming circuit R, and
inequality constraints E.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:24 P. Beame and V. Liew

Theorem 5.11. There is a regular resolution proof of size 2O (log2 n) that ϕWall
Dist (n) is unsatisfiable

Proof (Sketch). We sketch the proofs for distributivity as they are simpler than the proofs for
commutativity. The main difference is that we branch on the input variables x, y, z rather than the
tableau variables in the initial layer.

We define critical strips in the usual way for each multiplier. There are at most n + 2 uncon-

strained carry bits in the n + 1-bit multiplier Lx (y+z) and one unconstrained carry bit from the
adder Ly+z for n + 3 total in L’s critical strip. Together, the two n-bit multipliers Rxy ,Rxz have
2n + 2 unconstrained carry bits. The adder Rxy+xz contributes one more for a total of 2n + 3 un-
constrained carry bits in R’s critical strip. So if our critical strip has width δ = log(2n + 4), it will
be unsatisfiable.

We now describe a branching program B that proves a given critical strip ϕStrip (k) is unsat-
isfiable. We begin the branching program B by running Algorithm 1 with the following mod-
ification: instead of branching on a row of initial tableau variables in some multiplier {t0,i, j }i ,
branching program B will instead branch on the input variables x, y, z and propagate to that row
of tableau variables {t0,i, j }i . To reveal the rows from top to bottom in the initial layer of each
multiplier’s critical strip, we only need to assign a sliding window of δ bits in each input bit-
vector x, y, z. The resulting branch order on x, y, z is the same as in our proof of array multiplier
distributivity.

At the end of Algorithm 1, the branching program B reaches an assignment to the last layer of

each multiplier Rxy ,Rxz ,Lx (y+z) . By using Algorithm 2, we propagate this assignment to the multi-
plier outputs xy, xz and x(y + z). Lastly, we propagate from xy, xz, through the CLA circuit Lxy+xz ,
to the final output xy + xz. Since the critical strip was unsatisfiable, the resulting assignment to
x(y + z) and xy + xz must violate some equality constraint from E. �

5.4 Degree Two Identity Proofs for Wallace Tree Multipliers

Using the same ordering on the input variables and ideas from the proof of Theorem 3.20, we can
prove the analogous result for Wallace tree multipliers.

Theorem 5.12. For any degree two ring identity L = R, there are quasipolynomial size regular

refutations for ϕWall
L=R

(n).

6 PROVING EQUIVALENCE BETWEEN MULTIPLIERS

Given any twon-bit multiplier circuits ⊗1 and ⊗2, we can define a Boolean formulaϕ⊗1=⊗2 encoding
the negation of the identity x ⊗1 y = x ⊗2 y between length n bit-vectors x and y.

If both ⊗1 and ⊗2 are correct and compute using the typical tableau for multipliers then, as
before, we can split ϕ⊗1=⊗2 into unsatisfiable critical strips. We can scan down both strips row-by-
row, as in the proofs for commutativity and distributivity. If we have reached the outputs of both
multipliers without finding an error, these outputs will disagree with the inequality constraints
for the critical strip. For our examples, this method yields polynomial-size proofs if neither is a
Wallace tree multiplier, and quasipolynomial size proofs otherwise.

On the other hand, if one multiplier is incorrect and the other is not, then the proof search will
yield a satisfying assignment in the appropriate critical strip.

In the more general case where a multiplier does not use the typical tableau, one can label
each internal gate by the index of the smallest output bit to which it is connected and focus on
comparing subcircuits labeled by O (logn) consecutive output bits, as we do with critical strips.
The complexity of this equivalence checking will depend somewhat on the similarity of the circuits
involved.

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:25

7 DISCUSSION

Despite significant advances in SAT solvers, one of their key persisting weaknesses has been in
verifying arithmetic circuits containing multipliers. This pointed toward the conjecture that that
the corresponding resolution proofs are exponentially large; if true, this would have been a fun-
damental obstacle putting nonlinear arithmetic out of reach for any CDCL SAT solver.

Thus, much of the recent research on multiplier verification has focused on using algebraic rea-
soning, in particular Groebner basis methods. The recent work of Ritirc et al. (2017) has improved
the Groebner basis approach by dividing a multiplier into columns, and then incrementally check-
ing that each column receives and transmits its carry-bits correctly. They find that this incremental
method allows off-the-shelf computer algebra software to verify “simple” multiplier designs of up
to 64 bits, though “optimized” multipliers still pose some difficulty.

We have shown that the conjectured resolution proof size barrier does not hold by giving the
first small resolution proofs for verifying any degree two ring identity for the most common multi-
plier designs. We introduced a method of dividing each instance into narrow, but still unsatisfiable,
critical strips that is sufficiently general to yield short proofs for a wide variety of popular multi-
plier designs. In light of our results and Ritirc et al. (2017), it seems that for verifying multipliers at
the bit-level, the column-wise view is most natural. This is in contrast to the row-wise view taken,
for example, in verifying multipliers at the word level. We remark that the critical strip decompo-
sition is not only useful in the domain of resolution proofs. Other verification methods may find
critical strips a useful testing ground, or could even benefit from checking each strip instead of the
full multiplier all at once.

Given the historical success of CDCL SAT solvers for finding specific proofs, our results suggest
a new path toward verifying nonlinear arithmetic. The proof size upper bounds we derived were
conservative; we did not try to optimize the parameters. Nevertheless, the observed scaling of SAT
solver performance on these problems suggests that they do not currently find proofs matching
even these upper bounds. An important direction for improving SAT solvers is to find the right
guiding information to add, either to the formulas derived from the circuits or to CDCL SAT solver
heuristics, to help them find shorter proofs.

It also remains open to find a small resolution proof verifying the last ring property, associativity
(xy)z = x (yz). Our critical strip idea alone does not seem to work: while we can divide the outer
multipliers into narrow critical strips, the yz or xy multipliers remain intact. These critical strips
do not seem to have small cuts. Finding efficient proofs of associativity, combined with our results
for degree two identities, could yield small proofs of any general ring identity.

APPENDIX

A PROOF OF LEMMA 5.2

In order to prove Lemma 5.2, we will first prove the following smooth and singly peaked proper-
ties of each layer of a Wallace tree multiplier. Define # Col(�, i) to be the number of variables in
subcolumn Col(�, i).

Definition A.1. We say that a layer l is smooth if for all pairs of adjacent subcolumns Col(�, i)
and Col(�, i − 1), we have

|# Col(�, i) − # Col(�, i − 1) | ≤ 2.

We say that a function f : [0,N]→ Z is singly peaked if there exists an integer k such that the
following inequalities hold:

f (0) ≤ f (1) ≤ · · · ≤ f (k),

f (k) ≥ f (k + 1) ≥ · · · ≥ f (N).

For any k satisfying these inequalities, we say that f attains its peak at k .

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:26 P. Beame and V. Liew

We say a layer � of a Wallace tree Multiplier is singly peaked if the function # Col(�, i) of the
variable i is singly peaked. If # Col(�, i) attains its peak at k , we also say that layer � attains its peak
at k .

Proposition A.2. All layers of a Wallace tree multiplier are smooth.

Proof. It is clear that the initial layer is smooth. Assume, for induction, that layer � − 1 is
smooth. From our construction, for layers � > 0 we have the recurrence

Col(�, i) =
⌈
1

3
Col(� − 1, i)

⌉
+

⌈
1

3
Col(� − 1, i − 1)

⌉
, (1)

where the left term counts the number of sum-variables in Col(l , i) and the right term counts the
number of carry-variables. Therefore, we can write

|# Col(�, i) − # Col(�, i − 1) | =
����
⌈
1

3
Col(� − 1, i)

⌉
−

⌈
1

3
Col(� − 1, i − 2)

⌉���� .
To bound this expression, we use that by the smoothness of layer � − 1:

|# Col(� − 1, i) − # Col(� − 1, i − 2) | ≤ 4.

This implies the bound

����
⌈
1

3
Col(� − 1, i)

⌉
−

⌈
1

3
Col(� − 1, i − 2)

⌉���� ≤ 2. �

Proposition A.3. All layers of a Wallace tree multiplier are singly peaked.

Proof. The initial layer is singly peaked. Assume, for induction, that layer � − 1 is singly peaked
and attains a maximum at k . We show that layer � is singly peaked and attains its peak at k or
k + 1. Roughly, this follows because, from Equations (1), # Col(�, i) is a sum of two singly peaked
functions, one attaining its peak at k and the other attaining its peak at k + 1.

Consider the case where i < i ′ ≤ k . We will show that # Col(�, i) ≤ # Col(�, i ′). We have, from
Equations (1), that

Col(�, i) =
⌈
1

3
Col(� − 1, i)

⌉
+

⌈
1

3
Col(� − 1, i − 1)

⌉
, (2)

Col(�, i ′) =
⌈
1

3
Col(� − 1, i ′)

⌉
+

⌈
1

3
Col(� − 1, i ′ − 1)

⌉
.

Since # Col(� − 1,x) was singly peaked in x , attained its peak at k , and i − 1 < i ≤ i ′ − 1 < i ′ ≤ k ,
we have

Col(� − 1, i)� ≤ # Col(� − 1, i ′),

Col(� − 1, i − 1)� ≤ # Col(� − 1, i ′ − 1),

implying, through Equations (2), that # Col(�, i) ≤ # Col(�, i ′).
Consider the other case where k + 1 ≤ i < i ′. We will show that # Col(�, i) ≥ # Col(�, i ′). Since

Col(� − 1,x) is singly peaked in x , attained its peak at k , and k ≤ i − 1 < i ≤ i ′ − 1 < i ′ ≤ k , we
have

Col(� − 1, i)� ≥ # Col(� − 1, i ′),

Col(� − 1, i − 1)� ≥ # Col(� − 1, i ′ − 1),

implying, through Equations (2), that # Col(�, i) ≥ # Col(�, i ′).
Lastly, either # Col(� − 1,k) ≥ # Col(� − 1,k + 1) in which case # Col(�, i) is singly peaked, at-

taining its peak at k , or # Col(� − 1,k) < # Col(� − 1,k + 1) and # Col(�, i) attains its peak at
k + 1. �

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

Toward Verifying Nonlinear Integer Arithmetic 22:27

Together, these two properties imply that the rows of adders in each layer are arranged in a
shallow pyramid.

Proposition A.4. In each layer l of a Wallace tree multiplier

(1) each row j of adders occupies a contiguous interval of columns between minCol(j) to

maxCol(j);
(2) each row j of adders is arranged from the middle-out with full adders in the middle, then half

adders, then wires at the ends;

(3) for row j + 1 > 0, we have the strict inequalities

minCol(j) < minCol(j + 1), (3)

maxCol(j) > maxCol(j + 1). (4)

Proof. Properties (1) and (2) follow from Proposition A.3: layer j is singly peaked
(Proof of 3). The (non-strict) inequalities

minCol(j) ≤ minCol(j + 1), (5)

maxCol(j) ≥ maxCol(j + 1) (6)

follow from layer j being singly peaked. The strictness of these inequalities follows from Proposi-
tion A.2 which states that layer j is smooth. For contradiction, suppose that

minCol(j) = minCol(j + 1).

Then we have at least two more adders in # Col(minCol(j)) compared to the previous column.
These are either full adders or half adders; therefore,

Col(minCol(j)) − # Col(minCol(j) − 1) ≥ 4

contradicting the smoothness of layer j. �

Having established this structure on the arrangement of adders in each layer, we prove
Lemma 5.2. Recall the definition and statement of lemma as follows.

Definition A.5. For layer l , if for all j ≤ k the j-th row of adders

Pl,i, j for all i

outputs only to rows 2j, 2j + 1 of the next layer � + 1’s tableau, we say that layer � is row-friendly

up to its k-th row of adders. If layer � is row-friendly up to its last hl − 1-th row of adders, we say
that layer � is row-friendly.

Lemma A.6. In a Wallace tree multiplier, each layer � ∈ [0,h − 2] is row-friendly.

Proof of Lemma 5.2. Fix a layer �. We show that if � satisfies the properties in Proposition A.4,
then it is row-friendly. We will use induction on the rows of adders in �. �

Definition A.7. An interval of columns from [i, i ′] is flat if they all contain the same number of
variables.

It is clear from the Wallace tree multiplier construction 5 that the zero-th row of adders

P�,i,0 for all i ∈ [minCol(0),maxCol(0)]

outputs only to rows 0 and 1, so it is row-friendly. Furthermore, from our construction and Propo-
sition A.4, after placing this row of adder outputs in layer � + 1, the resulting columns are flat from
i ∈ [minCol(0) + 1,maxCol(0)].

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

22:28 P. Beame and V. Liew

Assume, as an induction hypothesis, that � was row-friendly up to row j and furthermore, that
after the outputs for the j-th row of adders have been placed, layer � + 1 is flat from columns

i ∈ [minCol(j) + 1,maxCol(j)].

By the third property of Proposition A.4, we can restate this, saying that layer � + 1 is flat from
columns

i ∈ [minCol(j + 1),maxCol(j + 1) + 1].

Since we added j rows of adders to these columns, each column contains 2j variables. These are
precisely the columns in which we place the outputs for the j + 1-th row of adders. They occupy
rows 2j and 2j + 1 so that � is row-friendly up to row j + 1. Additionally, we observe that if we
append the j + 1-th row of adder outputs to the flat interval of columns

[minCol(j + 1),maxCol(j + 1) + 1],

the resulting columns are flat from

[minCol(j + 1) + 1,maxCol(j + 1)].

REFERENCES

Michael Alekhnovich and Alexander A. Razborov. 2002. Satisfiability, branch-width and tseitin tautologies. In Proceedings

of the 43rd Symposium on Foundations of Computer Science (FOCS’02). IEEE Computer Society, 593–603. DOI:https://

doi.org/10.1109/SFCS.2002.1181983

Gunnar Andersson, Per Bjesse, Byron Cook, and Ziyad Hanna. 2002. A proof engine approach to solving combina-

tional design automation problems. In Proceedings of the 39th Design Automation Conference (DAC’02). ACM, 725–730.

DOI:https://doi.org/10.1145/513918.514101

Fabrício Vivas Andrade, Márcia C. M. Oliveira, Antônio Otávio Fernandes, and Claudionor José Nunes Coelho, Jr. 2007.

SAT-based equivalence checking based on circuit partitioning and special approaches for conflict clause reuse. In Pro-

ceedings of the 10th IEEE Workshop on Design & Diagnostics of Electronic Circuits & Systems (DDECS’07), Patrick Girard,

Andrzej Krasniewski, Elena Gramatová, Adam Pawlak, and Tomasz Garbolino (Eds.). IEEE Computer Society, 397–402.

DOI:https://doi.org/10.1109/DDECS.2007.4295319

Paul Beame, Henry A. Kautz, and Ashish Sabharwal. 2004. Towards understanding and harnessing the potential of clause

learning. J. Artif. Intell. Res. (JAIR) 22 (2004), 319–351.

Armin Biere. 2014a. Challenges in bit-precise reasoning. In Formal Methods in Computer-Aided Design (FMCAD’14), 3.

http://dx.doi.org/10.1109/FMCAD.2014.6987584

Armin Biere. 2014b. Where does SAT not work? In BIRS Workshop on Theory and Applications of Applied SAT Solving.

http://www.birs.ca/events/2014/5-day-workshops/14w5101/videos/watch/201401201634-Biere.html.

Armin Biere. 2016a. Collection of combinational arithmetic miters submitted to the SAT competition 2016. In Proceedings

of SAT Competition 2016 – Solver and Benchmark Descriptions (Department of Computer Science Series of Publications B),

Tomáš Balyo, Marijn Heule, and Matti Järvisalo (Eds.), Vol. B-2016-1. University of Helsinki, 65–66.

Armin Biere. 2016b. Weaknesses of CDCL solvers. In Fields Institute Workshop on Theoretical Foundations of SAT Solving.

http://www.fields.utoronto.ca/talks/weaknesses-cdcl-solvers.

Beate Bollig. 2011. Larger lower bounds on the OBDD complexity of integer multiplication. Inf. Comput. 209, 3 (2011),

333–343. http://dx.doi.org/10.1016/j.ic.2010.11.007

Beate Bollig and Philipp Wooelfel. 2001. A read-once branching program lower bound of Ω(2n/4) for integer multiplication

using universal hashing. In Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing. Hersonissos,

419–424.

Raik Brinkmann and Rolf Drechsler. 2002. RTL-datapath verification using integer linear programming. In Proceedings of

the ASPDAC 2002/VLSI Design 2002, 741–746. http://dx.doi.org/10.1109/ASPDAC.2002.995022

Robert Brummayer and Armin Biere. 2009. Boolector: An efficient SMT solver for bit-vectors and arrays. In Proceedings

of the 15th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’09).

174–177. http://dx.doi.org/10.1007/978-3-642-00768-2_16

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, Ziyad Hanna, Alexander Nadel, Amit Palti,

and Roberto Sebastiani. 2007. A lazy and layered SMT({BV }) solver for hard industrial verification problems. In Pro-

ceedings of the 19th International Conference on Computer Aided Verification (CAV’07), 547–560. http://dx.doi.org/10.1007/

978-3-540-73368-3_54

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

https://doi.org/10.1109/SFCS.2002.1181983
https://doi.org/10.1109/SFCS.2002.1181983
https://doi.org/10.1145/513918.514101
https://doi.org/10.1109/DDECS.2007.4295319
http://dx.doi.org/10.1109/FMCAD.2014.6987584
http://www.birs.ca/events/2014/5-day-workshops/14w5101/videos/watch/201401201634-Biere.html
http://www.fields.utoronto.ca/talks/weaknesses-cdcl-solvers
http://dx.doi.org/10.1016/j.ic.2010.11.007
http://dx.doi.org/10.1109/ASPDAC.2002.995022
http://dx.doi.org/10.1007/978-3-642-00768-2_16
http://dx.doi.org/10.1007/978-3-540-73368-3_54
http://dx.doi.org/10.1007/978-3-540-73368-3_54

Toward Verifying Nonlinear Integer Arithmetic 22:29

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto Sebastiani. 2008. The MathSAT

4SMT solver. In Proceedings of the 20th International Conference on Computer Aided Verification (CAV’08). 299–303. http://

dx.doi.org/10.1007/978-3-540-70545-1_28

Randal E. Bryant. 1986. Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35, 8 (1986), 677–

691.

Randal E. Bryant. 1991. On the complexity of VLSI implementations and graph representations of Boolean functions with

application to integer multiplication. IEEE Trans. Comput. 40, 2 (1991), 205–213. DOI:https://doi.org/10.1109/12.73590

Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan, and David L. Dill. 1994. Symbolic model checking

for sequential circuit verification. IEEE Trans. Comput.-Aided Des. Integr Circuits Syst. 13, 4 (1994), 401–424.

Samuel R. Buss and Maria Luisa Bonet. 2012. An improved separation of regular resolution from pool resolution and clause

learning. In Proceedings of the 15th International Conference on Theory and Applications of Satisfiability Testing (SAT’12),

Lecture Notes in Computer Science, Vol. 7313, 244–57.

Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. 2008. Resolution trees with lemmas: Resolution refinements that char-

acterize DLL algorithms with clause learning. Log. Meth. Comput. Sci. 4, 4 (2008). http://dx.doi.org/10.2168/LMCS-4(4:

13)2008

Samuel R. Buss and Leszek Kolodziejczyk. 2014. Small stone in pool. Log. Meth. Comput. Sci. 10, 2 (2014). http://dx.doi.org/

10.2168/LMCS-10(2:16)2014

Martin Davis, George Logemann, and Donald Loveland. 1962. A machine program for theorem-proving. Commun. ACM 5,

7 (1962), 394–397.

Martin Davis and Hilary Putnam. 1960. A computing procedure for quantification theory. Commun. ACM 7 (1960), 201–215.

Leonardo Mendonça de Moura. 2005. System Description: Yices 0.1. Technical Report. Computer Science Laboratory, SRI

International.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the 14th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08). 337–340. http://dx.doi.org/

10.1007/978-3-540-78800-3_24

Rina Dechter. 1996. Bucket elimination: A unifying framework for probabilistic inference. In Proceedings of the 12th An-

nual Conference on Uncertainty in Artificial Intelligence (UAI’96), Eric Horvitz and Finn Verner Jensen (Eds.). Morgan

Kaufmann, 211–219. https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=370&proceeding_

id=12.

Vijay Ganesh and David L. Dill. 2007. A decision procedure for bit-vectors and arrays. In Proceedings of the 19th International

Conference on Computer Aided Verification (CAV’07), 519–531. http://dx.doi.org/10.1007/978-3-540-73368-3_52

Edward Hirsch, Dmitry Itsykson, Arist Kojevnikov, Alexander Kulikov, and Sergey Nikolenko. 2005. Report on the Mixed

Boolean-Algebraic Solver. Technical Report, Laboratory of Mathematical Logic of St. Petersburg Department of Steklov

Institute of Mathematics. http://logic.pdmi.ras.ru/∼basolver/basolver-firstreport.pdf.

Priyank Kalla. 2015. Formal verification of arithmetic datapaths using algebraic geometry and symbolic computation. In

Proceedings on Formal Methods in Computer-Aided Design (FMCAD’15), 2.

Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. 2016. Complexity of fixed-size bit-vector logics. Theory Comput.

Syst. 59, 2 (2016), 323–376. http://dx.doi.org/10.1007/s00224-015-9653-1

Jan Krajíček. 1996. Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University Press.

Daniel Kroening and Ofer Strichman. 2008. Decision Procedures: An Algorithmic Point of View. Springer.

László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. 1995. Search problems in the decision tree model. In SIAM J.

Discrete Math. 107 (1995), 119–132.

J. P. Marques-Silva and K. A. Sakallah. 1996. GRASP—A new search algorithm for satisfiability. In Proceedings of the Inter-

national Conference on Computer Aided Design. 220–227. DOI:https://doi.org/10.1109/ICCAD.1996.569607

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. 2001. Chaff: Engineering an efficient SAT solver. In

Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232). 530–535. DOI:https://doi.org/10.1145/

378239.379017

Openssl.org. 2016. OpenSSL Bug CVE-2016-7055. Retrieved from https://www.openssl.org/news/secadv/20161110.txt.

Ganapathy Parthasarathy, Madhu K. Iyer, Kwang-Ting Cheng, and Li-C. Wang. 2004. An efficient finite-domain constraint

solver for circuits. In Proceedings of the 41st Design Automation Conference (DAC’04). 212–217. http://doi.acm.org/10.

1145/996566.996628

Stephen Ponzio. 1995. A lower bound for integer multiplication with read-once branching programs. In Proceedings of the

27th Annual ACM Symposium on the Theory of Computing, 130–139.

Sherief Reda and A. Salem. 2001. Combinational equivalence checking using Boolean satisfiability and binary decision

diagrams. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE’01), Wolfgang Nebel and

Ahmed Jerraya (Eds.). IEEE Computer Society, 122–126. DOI:https://doi.org/10.1109/DATE.2001.915011

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

http://dx.doi.org/10.1007/978-3-540-70545-1_28
http://dx.doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1109/12.73590
http://dx.doi.org/10.2168/LMCS-4(4:13)2008
http://dx.doi.org/10.2168/LMCS-4(4:13)2008
http://dx.doi.org/10.2168/LMCS-10(2:16)2014
http://dx.doi.org/10.2168/LMCS-10(2:16)2014
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=370&proceeding_id=12
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=370&proceeding_id=12
http://dx.doi.org/10.1007/978-3-540-73368-3_52
http://logic.pdmi.ras.ru/~basolver/basolver-firstreport.pdf
http://dx.doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://www.openssl.org/news/secadv/20161110.txt
http://doi.acm.org/10.1145/996566.996628
http://doi.acm.org/10.1145/996566.996628
https://doi.org/10.1109/DATE.2001.915011

22:30 P. Beame and V. Liew

Daniela Ritirc, Armin Biere, and Manuel Kauers. 2017. Column-wise verification of multipliers using computer algebra. In

Proceedings of the 17th Conference on Formal Methods in Computer-Aided Design (FMCAD’17). 23–30.

Martin Sauerhoff and Philipp Woelfel. 2003. Time-space tradeoff lower bounds for integer multiplication and graphs of

arithmetic functions. In Proceedings of the 35th Annual ACM Symposium on the Theory of Computing, 186–195.

Amr A. R. Sayed-Ahmed, Daniel Große, Ulrich Kühne, Mathias Soeken, and Rolf Drechsler. 2016. Formal verification of

integer multipliers by combining Gröbner basis with logic reduction. In Proceedings of the 2016 Design, Automation

& Test in Europe Conference & Exhibition (DATE 2016), Luca Fanucci and Jürgen Teich (Eds.). IEEE, 1048–1053. http://

ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459464.

Received April 2018; revised March 2019; accepted March 2019

Journal of the ACM, Vol. 66, No. 3, Article 22. Publication date: June 2019.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459464
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459464

