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ABSTRACT

The so-called weak form of Hilbert's Nullstellensatz says that a system of algebraic equations over a
field, Qj(x) = 0, does not have a solution in the algebraic closure if and only if 1 is in the ideal
generated by the polynomials (?,(*)• We shall prove a lower bound on the degrees of polynomials
P,(x) such that £, P,(x)Qt(x) = 1.

This result has the following application. The modular counting principle states that no finite set
whose cardinality is not divisible by q can be partitioned into ^-element classes. For each fixed
cardinality N, this principle can be expressed as a propositional formula Count^fo,...) with
underlying variables xe, where e ranges over <7-element subsets of N. Ajtai [4] proved recently that,
whenever p,q are two different primes, the propositional formulas Count$n+I do not have polynomial
size, constant-depth Frege proofs from substitution instances of Count/?, where m^O (modp). We
give a new proof of this theorem based on the lower bound for Hilbert's Nullstellensatz. Furthermore
our technique enables us to extend the independence results for counting principles to composite
numbers p and q. This improved lower bound together with new upper bounds yield an exact
characterization of when Count, can be proved efficiently from Countp, for all values of p and q.

Introduction

The problem of solvability of a system of algebraic equations

(1) <2,(*) = 0, f o r / e / ,

in a fixed finite field F is one of the most important jVP-complete problems. If we
look for solutions in the algebraic closure of F, or if we just know a priori that the
solutions must be in F, the solvability is characterized by the basic result in
algebraic geometry known as Hilbert's Nullstellensatz. Namely, the equations (1)
do not have a solution in the algebraic closure of F, if and only if there exist
polynomials Pt(x) from F[x] such that

(2) 2W)G/(*) = 1-

The solvability problem of (1) in F is known to be .A^-complete, even if the
degrees of the Qt are bounded by a constant. This is equivalent to the solvability
of {Qi{x) = 0} U {xf] - Xj = 0} in an algebraic closure of F. Now suppose there
existed polynomials Pt of constant degree satisfying (2) for the extended system
whenever (1) did not have a solution. Then, by solving linear equations which
determine the coefficients of the monomials in the Ph we could construct these
polynomials in polynomial time. Thus ty^Jfty implies that there are instances
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such that the degree of the Pt cannot be bounded by a constant. This raises a very
natural problem of proving such a lower bound. Furthermore, the assumption
fy^Xty does not point to any concrete system of equations which requires
polynomials P{ of non-constant degree.

The question of the degree of the polynomials P( in (2) has been studied in the
context of the 'effective Nullstellensatz' of Brownawell and others [8,13,9] and
upper bounds on the degrees of the Pt are shown that are exponential in the
number of variables. In the general case where the question of interest is the
solution of a family of polynomials in an algebraic closure of F there is a matching
lower bound example as well [8]. However, when using the Nullstellensatz to
determine if solutions exist in F by extending the system of polynomials as
described above, the degree of the Pt for this example becomes constant.

In this paper we prove a non-constant lower bound on the degree of
polynomials Pj in (2) for such an extended system with particular polynomials Qt.
We prove a non-constant lower bound for equations which represent the counting
principles mentioned in the abstract. For applications we need to consider
counting modulo a fixed number, which can be composite (thus we prove it also
for some rings which are not fields). There is a much simpler proof for the case of
the real field which gives a much larger, linear lower bound, while for counting
modulo a number, the bound is an extremely slowly growing function. This is due
to the fact that we use Ramsey's theorem repeatedly. Recently Jeff Edmonds
proved an Q(Vn) lower bound for a system of equations for a related principle
PHP (see below). However his result does not have an application in proposi-
tional calculus so far.

Our main motivation for the lower bound comes from propositional calculus
where we would like to prove lower bounds on the size of proofs in some natural
proof systems. We can think of the polynomials Pj in the equation (2) as a proof
of unsolvability of the system (1). Thus, if the underlying field is GF2, then we
actually have a propositional proof system based on Hilbert's Nullstellensatz and
our lower bound can be interpreted as a lower bound for this proof system.

The interest in lower bounds on the complexity of propositional proof systems
stems from two sources. First, any complete and sound proof system can be
thought of as a non-deterministic acceptor of the set of propositional tautologies.
In fact, Cook and Reckhow [10] define propositional proof systems to be just
non-deterministic acceptors of the set of propositional tautologies. Hence the
problem of whether there is a proof system in which all tautologies have proofs of
size polynomial in the size of the formula is equivalent to the well-known question
in computational complexity theory of whether the class of sets accepted by
non-deterministic Turing machines is closed under the complementation. A
research program of proving lower bounds for particular proof systems somehow
parallels the approach taken by boolean complexity of trying to prove lower
bounds on the circuit size for restricted classes of circuits.

The second source of interest in lower bounds on the size of propositional
proofs are relations between subsystems of first-order arithmetic called systems of
bounded arithmetic, and propositional proof systems. These theories formalize
effective reasoning about finite structures, meaning that predicates, relations,
functions and algorithms used in arguments have. bounded computational
complexity (most often si^0, Jf^, $P, JfSP,..., depending on the system). Each
first-order system is associated with a particular propositional proof system with
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the property that whenever a finite combinatorial principal is provable in the
theory then the sequence of tautologies formalizing the principle has polynomial
size proofs in the associated proof system. Moreover, these systems are typically
natural systems which have been considered prior to bounded arithmetic, like
Extended Resolution, Hilbert-style calculi (called Frege systems), or quantified
propositional calculus.

It follows that to demonstrate the unprovability of a principle in a theory (and
hence, in a sense, its computational difficulty) it is sufficient to prove that it has no
polynomial size proofs in the particular proof system.

The theories of interest here are the bounded arithmetic system /Ao(/?) and its
extensions by 11° axioms; cf. [17]. The corresponding propositional proof systems
are constant-depth Frege systems.

The first strong lower bound for a natural proof system was obtained by Haken
[11] who proved an exponential lower bound to the resolution proofs of the
pigeonhole principle (PHP). Then Ajtai [1] showed that constant-depth Frege
systems (which are stronger than resolution) do not admit polynomial size proofs
of PHP. The first exponential lower bound for such systems was obtained in [14]
(for different formulas), followed by an exponential lower bound for PHP
established in [6,16,18]. Constant-depth Frege systems are the strongest proof
systems for which a non-trivial lower bound is known. The problem of proving
superpolynomial lower bounds for a general Frege system appears to be
analogous to important open problems in complexity theory (for example,
whether Jsrg> = Nc€l).

In [2] Ajtai showed that there are no polynomial size constant-depth Frege
proofs of Count2 (the propositional mod 2 counting principle) from the pigeon-
hole principle. (We use the notation County for the generic version of County
where m & 0 (mod q).) This was subsequently improved to an exponential lower
bound in [7,19]. In [4] Ajtai studied the relation of principles County and County
which had been considered earlier in [17]. For example, assume that q \ p and that
R is a g-partition of N. We may expand each point of N into p/q copies creating
thus a /7-partition of N' = pN/q. Moreover, if q does not divide N then p does not
divide N'. This demonstrates that Count, follows from a simple instance of
Countp if q \p\ more precisely, there are polynomial size, constant-depth Frege
proofs of Count, from Countp.

Ajtai [3,4] showed that if p,q are different primes then Count, does not admit
polynomial size, constant-depth Frege proofs from instances of Countp. This
implies by the above that whenever p is a prime and q has a prime divisor
different from p then Count, cannot be reduced to Countp, that is, proved by
polynomial size, constant-depth Frege proofs from its instances. (In [4] he states
that his methods can be extended to mutually prime squarefree numbers; in fact,
using the relations between counting principles proved below one can reduce the
general problem to this special case.) The same problem was studied in [19] and
reduced there to a purely combinatorial question.!

t Ajtai's paper [4] became available in Summer 1993. In Spring 1993 Riis [20] announced a solution
of the problem of the independence of the counting principles which was based on a partial solution of
the combinatorial problem from [19]. However, the manuscript contained serious gaps as well as did
some later versions available in Summer and Fall of 1993. Only recently (Summer 1994) a substantial
revision occurred, while our manuscript was already available in Spring 1994.
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In this paper we give a new proof of this lower bound which also applies when
p and q are not primes. We need only that there is a prime that divides q but not
p. The proof consists of two parts. The first part is similar to the proof strategy of
[6,16,18] and it is a universal method allowing us to reduce the lower bound
problem to a combinatorial question about the existence of certain finite
structures. This part employs ideas from boolean complexity (partial truth
assignments, switching lemmas). The second part is an application of the lower
bound for Hilbert's Nullstellensatz.

We see the main contribution of the paper in the new method. In particular, by
proving a better lower bound for the Nullstellensatz our method would yield a
better lower bound on proofs while the method of [4] (its boolean complexity
part) inherently can give only the non-existence of polynomial upper bounds (see
the last section for more discussion on this topic). Furthermore, our technique
does not need a priori a reduction to the case of two primes.

The paper is organized as follows. In the first section we define the
constant-depth Frege systems and the propositional formulas County with which
we are concerned and we formulate the main theorem. In the second section we
give a number of upper bound constructions relating the provability of different
modular counting axioms.

The third section is devoted to the first part of the lower bound proof, reducing
the lower bound to a combinatorial problem. Relevant notions from [6,16,18] are
recalled there and the main theorem is proved from a combinatorial lemma.

In the fourth section we reduce the combinatorial lemma to the main lemma
stating a lower bound on the degrees of certain polynomials.

The bound on the degree of polynomials in the Nullstellensatz is proved in the
fifth section.

In the sixth section we define the extensions of constant-depth Frege systems by
modular counting gates and we conclude with several remarks on the relation of
our method to those of [4,19].

We refer the reader to [15] for information about bounded arithmetic,
propositional proof systems and their relations.

1. Proof systems and counting principles

We shall confine ourselves to the following propositional language: atoms
x, y,..., constants 0 (falsity) and 1 (truth), negation -i and disjunction v (binary).
We shall use A as an abbreviation. The depth of a formula is the maximal number
of alternations of ~i and v and its size is the number of occurrences of v. We
shall use symbol V/ $/ denoting the disjunction of unbounded arity as an
abbreviation for the disjunction formed from binary v with brackets distributed
arbitrarily.

A Frege system is a sound and implicationally complete proof system having a
finite number of axiom schemes and inference rules. A typical Frege system is
the usual calculus based on a finite number of axioms with modus ponens as the
only rule of inference. See [10] for details. The size of a proof in a Frege system is
the number of distinct subformulas appearing in the proof where we do not
distinguish F and ~iF. We will also need a notion of the size of the inference rules
and axiom schemes in a Frege system. For this we use the same notion of the
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number of distinct subformulas appearing in the axiom scheme or inference rule
and we again identify F and ~iF.

A depth d Frege system is a Frege system allowing only formulas of depth at
most d in proofs. It is not complete but there is a constant c such that any depth d
tautology has a depth c + d proof in the Frege system.

Now we shall formally define the counting principles discussed in the
introduction.

DEFINITION 1.1. Let N^r^2 and let V be a set of cardinality N. We use [V]r

to denote the set of r-element subsets of V.
Formula Count^ is formed from atoms xe, where e E [V]r, and it is the formula

V A -**VV (

where e 1/abbreviates the conjunction e n /
Denote by County the set of formulas Count^ for N = i (mod r). For R a set of

pairs (r, i) such that 0 < i < r, County denotes the union of the sets of formulas
Countr>, such that (r, i) e R. Finally, Countr denotes the set of all formulas Count^
for N # 0 (mod r); equivalently, Count, is County for R = {(r, i)\ 0 < / < r}.

We want to use the counting principles rather as axiom schemas. Thus we
define that an instance of Count^ is obtained by substituting some formulas if/e for
the variables xe\ we shall denote it by Count^W), where VP = {^e}ee[vY-

In the introduction we observed that if r divides 5 then there are polynomial
size, constant-depth Frege proofs of Countr from instances of County (Let us
note that it is implicit in the restriction that we use only instances that are of
bounded depth).

PROBLEM. Assume s, r ̂  2 and assume r does not divide s. Are there polyno-
mial size, constant-depth Frege proofs of Count, from instances of formulas in
County? If so, under what circumstances do they exist?

This was solved in the negative by Ajtai [3,4] for the case when r, s are two
different primes. We give a new proof of a strengthened version of his theorem
that gives a complete characterization of this problem.

Let the symbol (a, b) denote the greatest common divisor of a and b.

THEOREM 1.2 (main). Let q^2 and 0<i<q. Let R be a subset of the set of
pairs of integers (p,j) such that 0<j<p. Then there are constant-depth,
polynomial size Frege proofs of formulas of County, from instances of County if
and only if there is a (p,j) e R such that all prime divisors of pl{p,j) also divide

> 0-

COROLLARY 1.3. Let p,q ^ 2 and assume that there is a prime factor of q which
does not divide p. Then there are no constant-depth, polynomial Size Frege proofs
of CountJ', for N ̂  0 (mod q), from instances of County. In particular, this holds
for all N such that (p, ql(q, N)) = 1 and N&0(modq).

On the other hand, if all prime factors of q also divide p then there are
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constant-depth, polynomial size Frege proofs of Count^, for TV # 0 (mod q), from
instances of Countp.

Proof of Corollary 1.3 from Theorem 1.2. For the first part, if r is a prime
factor of q which does not divide p then for N = q/r (mod q) we have
(p,ql(q,N)) = (p,r) = \. It follows that for all j , with 0 </</?, (p/(p,j),
q/(q, N)) = 1. Thus for each ;, with 0<j<p, there is some prime factor of
pl{p,j) that is not a factor of ql{q,N). Applying Theorem 1.2 we obtain our
desired result.

For the second part, assume that all prime factors of q also divide p. For
jV^0(mod<7), let s be any prime factor of q/(q,N). By assumption s also
divides p. Thus for j = pls all prime factors of pl{p,j) also divide ql(q, N) and
applying Theorem 1.2 we have finished.

2. Upper bounds for proofs of counting principles

The bulk of our arguments are concerned with lower bounds but we deal with
the upper bounds first. We begin by observing some straightforward relationships
between the principles.

LEMMA 2.1. Assume that r5=2 and k is a positive integer. Then for all
i # 0 (mod r), with 0 < i < rk, there are polynomial size constant-depth Frege
proofs of Countrki from instances of County, modr.

Proof. Given an repartition (a partition into blocs of size rk) of a set of size
N, we can obtain an r-partition of N by splitting each class of size rk into k classes
each of size r. If N = / (mod rk), with 0 < / < rk, then there is no such partition;
however the construction is local, so we can transform any alleged definition of
such a partition into an alleged definition of an r-partition that violates
Countr/modr. The formalization of this argument as a constant-depth Frege proof
is easy. It is also possible first to formalize the proof in bounded arithmetic
I&0(R) and then to refer to a well-known translation onto bounded depth Frege
proofs [17,15].

The following lemma is a rephrasing and extension of the observation from the
introduction.

LEMMA 2.2. Assume that r 5= 2, 0 < / < r, and k is a positive integer. Then

(a) there are polynomial size constant-depth Frege proofs of Countr/ from
instances of County,*,

(b) if ik & 0 (mod r), there are polynomial size constant-depth Frege proofs of
Countr>l from instances of Countrikmodr.

Proof. Suppose that we have an r-partition of N, N = i (mod r). We can make
k copies of each point to create a new set of size N' = Nk. Part (a) follows by
creating an rk -partition of N' where each new class contains all k copies of the
elements of each class from the partition of N. Part (b) follows instead by creating
an r-partition of N' by making each class in the partition of N into k classes in the
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new partition. (Or alternatively, apply Lemma 2.1 after applying Part (a).) Again
the formalizations are easy.

The following lemma involves a more interesting construction. Some of the
ideas used are motivated by similar constructions in [19].

LEMMA 2.3. Let r s* 2 and k be a positive integer. Then there are polynomial size
constant-depth Frege proofs of Countrkk from instances o/Countrl.

Proof Suppose that there is an rk-partition of N = k (mod rk). Then by adding
a constant size (at most rk\) set of rk -classes we obtain an rk -partition E of some
N' > N such that N' = k (mod (r. k\)). We will define an r-partition of M = [N']k.

/N'\
Since N' =k (mod (r. k\)), \M\ = I 1 = 1 (mod r) and thus this r-partition will
violate Count,,.

First we define an equivalence on M with larger blocks. For X, Y G M let
X ~ Y, if for every block Z of E, X n Z = Y n Z. We shall prove that the size of
each block is divisible by r. This follows from the following result.

/ kr\ Ikr\
For every a^,..., aj 2s 1, if a^ + ... + at = k, then r divides 1 ).

To prove this let p be a prime, let p' be the largest power of p which divides r.
Let s 5* 0 be maximal such that each a, is divisible by ps. Thus ps divides all aJt and
hence also their sum k. Let 1 =s / ^ / be such that a( is not divisible by ps+\ Let us
write

( kr\
) is divisible by p'. This

proves the required result. '

Since the size of blocks of ~ is divisible by r and is bounded by a constant, we
can define a refinement with blocks of size exactly r by a constant depth formula
and the whole argument can be presented as a polynomial size, constant-depth
Frege proof.

COROLLARY 2.4. Let p s* 2 and 0 < / <p. Then

(a) there are polynomial size constant-depth Frege proofs of County from
instances o/Countp/(P;) b and

(b) there are polynomial size constant-depth Frege proofs o/Countp/(p;)! from
instances of County.

Proof For Part (a), we start with instances of Countp/(Pii/).,. By Lemma 2.3 we
obtain Countp(py). By definition there are integers k, I such that (p, j) = kj + Ip.
Applying Lemma 2.2(b) with this value of k, r=p and / =/, we obtain Countp;.

For Part (b), starting with instances of Countp; and applying Lemma 2.2(a)
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with r=p/(p,j), i =j, and k = (p,j), we obtain Countp/(/,>;))y/(p;). Then, applying
Lemma 2.2(b) with r =pl{p,j), i = 1, and k = jl{p,j) we obtain Countp/(p;) ji.

LEMMA 2.5. Let p,q^2. If all prime factors of p also divide q then there are
polynomial size constant-depth Frege proofs of County from instances of
County.

Proof. If all prime factors of p also divide q then there is some integer k such
that p | qk. By Lemma 2.1, there are polynomial size constant-depth Frege proofs
of Countyj from instances of County,. We will show how to obtain County j
from instances of County;1.

Suppose that there is some ^-partition E of N = 1 (mod q). The Fermat-Euler
Theorem implies that

Nm s 1 (mod qk)

where m is any multiple of <f>(qk), the number of residues modulo qk relatively
prime to qk. Fix some such multiple m with m^k. Define a ^-part i t ion E' of
Nm by taking the mth Cartesian power of £, that is, the classes of E' have the
form

e,x...Xem

where et are classes of E. Now £ ' is a qm-partition of Nm =N X ... x N.
Decompose each class of E' into subclasses of size qk. This yields a partition
violating County h

The formalization of this argument as a polynomial size constant-depth Frege
proof is quite straightforward.

3. Reducing the lower bound to a combinatorial problem

In this section we reduce the lower bound that we are after to a purely
combinatorial problem concerning generic systems. This section is a modification
of very similar arguments that can be found in [7] and [19] (the name generic
systems was introduced in [19] for similar objects). For the rest of the paper we
shall fix two different numbers p,q ^ 2 and a set V of cardinality N such that
N ^ 0 (mod q). We will also sometimes find it convenient to identify an integer N
with a canonical set of size N. We will first state some important definitions.

DEFINITION 3.1. A q-decision tree T over V is a finite directed tree whose
vertices other than leaves are labelled by elements v e V, whose edges are
labelled by classes e e [V]q, whose leaves are labelled from a fixed set L of
values, and which satisfies the condition inductively defined by the following:

(1) if the label of the root of T is v then for any e G [V]*, u s e , there is exactly
one edge outgoing from the root and labelled by e, and there are no other
edges at the root;

(2) if Te is defined to be the proper subtree of T whose root is the end-point of
an edge outgoing from the root and labelled by e, then Te is a ^-decision
tree over V \ {e}.

To get an intuition about g-decision trees, think of them as describing possible
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plays in a two player game. One player pretends that there is a partition of V into
blocks of size q and the other asks questions 'in which block e is the vertex u?'.
Thus, in particular, the edge labels on a branch form a partial partition.

The height of tree T is the maximum number of edges on a path from the root
to a leaf.

To each branch of T we assign the partial partition consisting of its edge labels
and denote by br(r), and br,(T), the sets of the partial partitions assigned to the
branches of T, and to the branches with the leaf label i, respectively.

We would like to prove the main theorem by finding an assignment making all
formulas from Count* true but Count^ false, demonstrating thus that County
cannot be proved from Count*. This is, of course, impossible as all formulas in
County are tautologies. So we must find another way of 'evaluating' formulas
which would permit such an argument. A possible evaluation is to assign to each
formula <f> a usual decision tree deciding the value of the formula and consider the
set of all branches of the tree for <f> with leaf label 1. Thus <f> is a tautology if and
only if all branches in this decision tree have leaf label 1 (br(7^) = brj(7^) in
future terminology).

We shall approximate this idea by the following definition. Here to each
formula <j> we assign a g-decision tree 7^. Intuitively, a formula (f> is approxi-
mately true if and only if all branches in 7^ have leaf label 1. Furthermore,
Condition (1) of Definition 3.1 corresponds to the first conjunct in -iCount^ (that
is, every v e V is in some class e of the partition violating Count^) while
Condition (2) corresponds to the second one (that any two classes in the partition
are disjoint). Hence we expect that all leaves of 7^ have leaf label 1 for
<f) = -iCount^ and thus get a notion of evaluation in which Count^ is false. The
following is a modification of a similar definition in [6,16].

DEFINITION 3.2. Let F be a set of formulas formed from atoms of Count^ (we
shall not repeat this condition as we do not consider formulas formed from other
atoms) and closed under subformulas.

A k-evaluation of F is a mapping which assigns a tree 7^ to every formula
<f> G F such that

(1) the set of leaf labels L of T+ is {0,1};

(2) 7^ is a q-decision tree over V of height at most /c;

(3) To and 7J are ^-decision trees of height 0, br1(70) = 0 and br^Tj) = br(Ti);

(4) TXe is a g-decision tree having the property that every non-leaf vertex of TXt

is labelled by some v e e, for each branch of TXt, the edge labels cover e,
and br^r^) is the unique branch of length 1 consisting of the edge labelled
bye;

(5) br(7%) = br(7;) and b r , ( r^ ) = br(7^) \ br,(7;);

(6) if (f> = V/</>< t n e n TQ refines and represents \J H with / / : = U/bri(7^.),
where
(a) 7^ refines \J H means:

V£ebr(7;), (3F e H, F^E)v(VF eH, E 1 F)

where E 1 F if and only if e 1 f for some e e E and / e F,



10 PAUL BEAME ET AL.

(b) and 7^ represents \/H means:

b r , ^ ) = {Ee bi(T+) \3FeH,F^ E).

The following easy lemma is completely analogous to lemmas F3 and F4 from
[6,16] treating the case of PHP,, in place of Count^ and we shall not re-prove it
here.

LEMMA 3.3. Assume T is a set of formulas closed under subformulas. Let T be its
k-evaluation and assume kqs < N. Then

(1) if cf) e F is an axiom scheme of size at most s then b r , ^ ) = br(7^,);
(2) equality br^T^,) = br(7^) is preserved by any sound inference rule of size at

most s; for example, if3kq<N, then br,(ra) = br(To) and bri(r_,ov/5) =
br(r_,aW,) implies br,(7},) = br(7^);

(3) if<f> = Count J' e T then br,(r*) = 0 ( ̂  br(7^) in particular).

Assume now that II is a short constant-depth Frege proof of Count^ from some
instances of Count*; that is from some formulas

where M = j (modp), 0<j<p and (p,j) e R, g e [M]P and tpg are formulas in
atoms xe of Count^. There is a constant s such that all axiom schemes and
inference rules used in II other than the Count/? axioms are of size at most s.
Suppose that there is a A:-evaluation T of the set of all subformulas in II such that

(1) kqs < N and

(2) for all instances <f> of a Count* axiom in II, br^r^) = br(7^).

That would give a contradiction with Lemma 3.3 as br,(7^) = br(7^) would hold
for all axioms and all inferences in n but not for the final formula.

This motivates the structure of our argument. More precisely, we first show that
if II is a short proof of Count^ then there is a A:-evaluation of all subformulas of II
satisfying (1) but not (2), and thus derive in Theorem 3.5 that a particular
combinatorial object (a generic system) must exist. We then derive a contradic-
tion in Lemma 3.10 by showing that this combinatorial object cannot exist.

Theorem 3.5 is proved by a more-or-less straightforward combination of the
arguments in [16,7,19,5]. For the benefit of the reader we outline its proof. The
proof of the combinatorial statement (Lemma 3.10) occupies the rest of the body
of the paper.

DEFINITION 3.4. A (p, q, I, M)-generic system over V is a collection of q-
decision trees over V, Th for i «£ M, with leaf labels from [M]p such that:

(1) each Tj has height at most /;

(2) each leaf label g of % contains /;

(3) for all g e [M)p, for all i, j e g, br,(7I) = br,(7J).

Informally, a (p, q, I, M)-generic system over V specifies locally consistent
pieces of a perfect p-partition of M as partial functions of {xe}, where e e [V]q.
(Say that E and F are compatible if E X F. By locally consistent, we mean that any
mutually compatible set of branches in the trees of the generic system have leaf
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labels that are themselves mutually compatible.) When M is congruent to
0 mod/?, (p, q, 1, M)-generic systems exist (take any system of height 1 ^-decision
trees {7̂ } and a p -partition n of M and label all leaves of T( by the p-class e G n
such that / e e). Even when M is not congruent to 0 mod p, the existence of a
(p, q, /, M)-generic system is not inconceivable since there need not be any
mutually compatible set of branches that contains a branch from each Tt.

THEOREM 3.5. Let 0<i<q and R be a subset of the set of pairs of integers (p, j)
such that 0 <;'</?. Let d be a constant and k(N) a function of N with
k(N) = /Vo(1), and assume that for infinitely many N, with N = i (mod q), there are
depth d size Nk{N) Frege proofs of Count" from instances of County.

Then there is (p,j)sR such that there are infinitely many N', with
N'=i(modq), an I = O(k(N'O(}))) and a number M = (N')°U), with
M =j (mod/?), such that there exists a (p, q, I, M)-generic system over a set V of
size N'.

In the application of Theorem 3.5 we shall use it only for k(N) a constant
because we are able to prove Lemma 3.10 only for / a constant independent of N.

Now we shall sketch the proof of Theorem 3.5 following closely [16,7,19,5].
In the proof we shall need to apply partial restrictions to simplify formulas. The

restrictions that are needed are the following.

DEFINITION 3.6. Define the set of restrictions JdC^ to be the set of all partial
^-partitions p of V which cover all but qm +j nodes of V where ; = |K| modq.
Every p in M^ determines a unique assignment to the variables in the formulas:

{1 if e E p,

0 if e g p but e C\f ̂  0 for some / e p,

xe otherwise.

We shall denote by Vp the set of nodes of V not covered by p.

Assume that II is a depth of d, size Nk{N) Frege proof of Count^ from instances
of some Count^1 (and thus M, = 7VO(*(/V)) automatically.) We begin by applying a
restriction p to each formula in II to get a new proof, II' over a smaller universe
N' <N with the property that II' has a k-evaluation—this is the content of the
following lemma.

LEMMA 3.7. Let U be a depth d, size Nk{N) Frege proof of Count" from instances
of County. For some cd «£ 5(2q2)d, if k(N) *£ NVc", then there exists a restriction p
such that:

(1) N' = |Kp|^N3/Cd,

(2) N'=N(modq),

(3) II restricted by p is a proof (over N') of Count^ from instances of County,
and

(4) there exists a k'-evaluation, T, of the subformulas in W for k' ^ cdk(N).

The above lemma is proved by inductively generating /^-evaluations (for some
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appropriate sequence of values /c/) for the set of subformulas appearing at the /
bottom levels of every formula in IT. Is is trivial to do this for the literals and
constants on the leaves of the formulas. This /crevaluation is extended to a
/c/+1-evaluation of the set of subformulas in II one level higher by applying a
H&stad-style switching lemma [12] on an appropriate class of restrictions. The
corresponding switching lemma is stated below. A complete proof of this
switching lemma will appear in [5] and [15] where it is also explained in detail
how to apply it to obtain the above lemma.

We can apply a restriction p to a ^-decision tree T over V in the obvious way to
obtain a ^-decision tree Tp over Vp.

LEMMA 3.8. Fix some set V of vertices and integers m, r, and s s* 0. Let 7] be any
set of q-decision trees over V of height at most r, let n = [|V|/^J and let u = m/n. If
p is a restriction chosen uniformly at random from Mv

m, then with probability at
least 1 - (4egrUquqnq~Vqy, there is a q-decision tree over Vp of depth at most s
refining and representing \Jt br^Tf).

If 5 is a set of Boolean formulas closed under subformulas and T is a
k-evaluation of 5 over V then it is easy to check that the map T' that sends <f>p to
T%, with the exception when <f> is an atom such that <£p = 0 in which case $ p is
mapped to the height 0 decision tree, is a k-evaluation of Sp over Vp. The
exceptional case is needed as for some atoms pe it might be that pp = 0 while Tp

Pt

need not be the height 0 decision tree, contradicting clause (3) of Definition 3.2.
With this observation and the appropriate choice of parameters we obtain Lemma
3.7 from repeated applications of Lemma 3.8.

After applying Lemma 3.7, we are left with a new proof of Count^ from
instances of County Count^'(^) such that M,=; , (modp,) where {pi,},) E R,
together with a k'-evaluation, T, for all subformulas in the proof, where N' = N£,
e>0, and M, ^ (N')k'le for k' = O(k(N)).

Lemma 3.3 implies (as br^T^,) # br(Tv) holds for the final formula rj of IT) that
b r o ( 7 * ) ^ 0 f° r at least one Count* axiom <f> in II'. Take one such 4>, and any
G G bro(7'<i)) and restrict IT further by G. In particular, <f> is reduced to some
instance (f)G = Count£*(i//) for which br(7^c) = bro(7V<). To simplify further
notation we shall assume that already G <=p; hence M, N', k', T,... remain the
same after applying G and br(7^) = bro(7^) for the axiom <p = Count^W), where
W =z{if'g}ge[M]p- Note that the evaluation T is, in particular, defined on the
subformulas if/g of Count^(^).

LEMMA 3.9. For all incompatible g,h e [M]p, if E is the set of edge labels of a
branch of T^ with the leaf label 1, and F is the set of edge labels of a branch of T#h

with the leaf label 1, then E 1 F.

Proof. Suppose the claim fails, and let g,h £ [M]p be incompatible, and E, F be
branches labelled 1 in 7^ and T^, respectively, where E is compatible with F.
Then it follows from the definition of evaluation that T# ^h has a leaf with label
1. But this implies that 7^ also has such a leaf, which is a contradiction.

Let i G [A/]. Consider the subformula f\iBg^g of <f> (=CountJf(^)). Since
br(r^) = bro(7^), the same is true for 7/\,S(t^</y N o t e t n a t A /eg" 1 ^ is just an
abbreviation for ^\Jieg «Ag. Thus we get that 7"Ve ^ has all leaf labels 1. Thus
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(again by definition of evaluation) for each branch of this tree, the partial
partition extends the partial partition of some branch of 7^ for some / e g.
Furthermore, by the above lemma, this is for exactly one such g. Thus we
construct a tree 7] by putting the corresponding labels g instead of labels 1 on the
leaves.

For all / E [M], we can extend the trees 7̂  to obtain new trees T\, such that for
all (,; E g, the branches of T\ with label g are equal to the branches of Tj with
label g. The height of the new trees will be equal to / = pk, where k was the
height of the original trees Tt. This can be done, for example, as follows. Take
some i, j E g. Take a leaf L in 7] labelled by g and attach Tj to it. Then prune all
incompatible or repeated parts of the attached copy of Tj. There will remain at
least one branch of Tj with the leaf label g where only edges with repeated labels
were cut off. This is because there is a branch in Tg whose set of edge labels E is
contained in the partial partition of the branch going to L and also in the partial
partition of some branch in Tj. Furthermore, all paths from the root of Tj with
labels consistent with E can be extended to branches consistent with E. Thus the
leaves of 7} after pruning are a subset of the leaves of the original Tj with labels g.
If we do it for all leaves of Tt with the label g, in the new tree we get all possible
partial partitions £ U F where E belongs to a leaf labelled by q in Tt and F
belongs to a leaf labelled by g in Tj. By applying the same procedure with 7]
replaced by 7}, we unify the two trees with respect to g. Repeating it for all such
pairs (and extending the leaves arbitrarily up to the length /) we get the desired
system of trees.

We are now ready to complete the proof of Theorem 3.5. We will show that the
set of g-partition decision trees T\, for / E [A/], form a (/?, q, I, M)-generic system
for / = O(k(N)). By construction, the trees T\ have height O(pk'/e) = O(k(N))
and the T\ are defined over a set of size N' = Ne = 7Vn(1). Also by construction,
each branch in T\ with leaf label g has i e g. Finally, by the above argument, we
have shown that for every g, and every i,j e g, the set of branches in br(7j) with
leaf label g, is equal to the set of branches in br(7}) with leaf label g. Thus, the
decision trees T'h with i e [M], form a (p, q, I, A/)-generic system as required by
Theorem 3.5.

This completes the proof of Theorem 3.5.

LEMMA 3.10. Let l>0. For all sufficiently large N such that (p(/~1)2+\ q) \ N,
there does not exist a (p, q, I, M)-generic system over N, with M # 0 (mod/?).

Proof of main Theorem 1.2. Let

q'=-T-, and R' = {-?—
(q,i) U P , y)

By Corollary 2.4 it suffices to show that there are polynomial size constant-depth
Frege proofs of CountyA from instances of Countp-A, where /?' E R', if and only if
there is some p' e R' such that all prime factors of p' also divide q'.

In the case that some such p' exists, the statement follows immediately from
Lemma 2.5.

Now suppose instead that for every p' E R' there is some prime factor of p'
that does not divide q'. Suppose that there are polynomial size constant depth
proofs of Count9>1 from instances of Countp-fl for p' e R'. Let

R" = {p'/(p',q)\p'eR'}.
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By our assumption p'l{p', q)^2 for p' e /?'; thus, using Lemma 2.1, we get that
County i has constant depth polynomial size proofs from instances of County for
r e R". By Theorem 3.5, for some r e R" there is a (r, q', I, M)-generic system
over A7' = 1 (mod q') for constant /, M = 1 (mod r), and A7' arbitrarily large. Since
(r, <?') = 1, this is a contradiction to Lemma 3.10.

4. Counting principles and systems of polynomial equations

It is possible to express the propositional formula Count^ by a system of
polynomial equations, <2,(x) = 0, over the ring Zp. We will first describe these
polynomial equations and then show that Lemma 3.10 follows from a non-
constant lower bound on the degree of any linear combination of the Qt that
equals 1 modulo p.

DEFINITION 4.1. Assume that iV^0(mod<7). An (N, q)-polynomial system
expressing the modulo q counting principle is the following system of polynomial
equations in variables xe, e e [V]q, \V\ = N:

(v)

one for each v e V, and

(e,f) xe.xf=0

one for each e, f e [V]8, elf.

Denote by Qv the left-hand side of equation (v) and by Qef the left-hand side
of equation (e, / ) .

Assume that ue, e e [V]q, is a solution of the polynomial system in some field.
The equations (e, f) imply that for each v at most one ue is non-zero for v e e and
the equation (u) then implies that the unique non-zero ue for v e e is equal to 1.
Hence the set

is a g-partition of V which cannot exist when N is not congruent to 0 modulo q.
Thus the above polynomial system has no solution in any field. Hubert's
Nullstellensatz then implies the following lemma. We shall not use it, but we state
it here for completeness.

LEMMA 4.2. Let F be any field. There are polynomials Pv, with v e V, and Pej,
with e,fe [V]q and elf from the ring F[xe] such that equality

, f , J
v e±f

holds in the ring F[xe].

We note that, although xfl - xe is not present explicitly in the system of
polynomials, Qv, Qef, it is easily derived since x2

e - xe is obtainable as a linear
combination xe. Qv - ^VEe\e^eQe,e' for any v e e. Thus a non-constant degree
lower bound on the Pv and the Pej in the above linear combination also implies
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such a non-constant lower bound for an extended system of the type considered
in the introduction.

We shall study linear combinations of polynomials Qv, Qef also for the ring Zp

of counting modulo p, where we do not assume that p is prime. Henceforth a
linear combination L means a polynomial of the form

5>v • <2, + 2 / V Qe,/
v e±f

and the degree of L is the maximum degree of the polynomials Pv> Pef.
For a non-empty g-partition E = {ex,..., e,} of V denote by xE the monomial

xe, x6i and put x0:=l.

LEMMA 4.3. Let T be a q-decision tree of height I and assume Iq < N. Then the
polynomial

uT'=( 2 xE)-l

can be expressed as a linear combination of degree at most / - 1.

This means that uT is equal to 1 modulo the ideal generated by polynomials Qv,
Qej, but the bound on the degrees is also important for us.

Proof Proceed by induction on /. For each / we show that the lemma is true for
all N. For / = 1,

UT =
U E (

for some v e V which is just the polynomial Qv itself. Hence uT is a linear
combination of degree 0.

Assume / > 1 and let v be the label of the root of T. Then

2
Eebr(T) vee Vebr(jT')

All Te are g-decision trees over the universe V \ e of size N — q. By the induction
hypothesis there are linear combinations Le of degree at most / - 2 formed from
unknowns xf for / c (V \ e) such that

Le = 2 xF-l,
Febr(T')

and so

uT = 2 xe(Le + 1) - 1 = 2 xe. Le + 2 xe - 1.

The quantity Svee^e • Le is not yet a linear combination over V as Le are not over
the whole V\ that is, the polynomials Q* in Le in place of Q, are only of the form

2 xf-l,
fsi,fne=0

rather than of the form

I Xf - 1.

However, note that

r ne = v n _ ^
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and hence each term xeLe is equivalent to a linear combination of degree at most
/ - 1. The remaining quantity in the expression for uT is just the polynomial Qv\
hence uT is also a linear combination of degree at most / - 1.

The next lemma is an important property of generic systems.

LEMMA 4.4. Let Th i e [M] be a (p, q, I, M)-generic system. Then

2 2 xE = o
ie[A/] £ebr(7;)

in the ring Zp.

Proof. Let g e [M]p and Ss = {Jie[M] brg(7]). By the definition of a generic
system, for each / e g, brg(7]) = Sg and for each / $ g, brg(7]) = 0 . Thus for each
g, each branch in Sg occurs p times in U/e[A/] br(7J), once for each of the elements
/ G g, and hence

2 2 *£ = 0 (mod/?).
/e=[M] £ebr(7;)

The lemma below follows from the previous two lemmas.

LEMMA 4.5. / / there is a (p, q, I, M)-generic system Tit i G [A/], such that
1. q <N, then there is a linear combination L of degree at most I - 1 such that
L + M = 0 in the ring Zp[fe].

Proof By Lemma 4.3, we can write the sum

;e[M] £ebr(7;)

as

2 (£,• + ! )= 2 Li + M,
ie=[M] ie[M]

where the L, are linear combinations of degree at most / — 1. But by Lemma 3.4,

ie[M]

and thus we have S,-e[A/] L( + M = 0.

The following is the main technical lemma of this paper.

LEMMA 4.6 (main). Let d be a constant, let N be sufficiently large and suppose
that N satisfies (pd +1, q)\ N and M # 0 (mod p). Then every linear combination L
such that L = M in Tjp[xe] must have degeee larger than d.

Put otherwise, linear combinations expressing a constant other than 0 cannot
have a constant degree.

We shall prove the main lemma in the next section; now we infer Lemma 3.10
from it.
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Proof of Lemma 3.10 from Lemma 4.6. Assume that for some constant / there
exists a (/?, q, I, M)-generic system Th i e [M], M^O(mod/?), over some TV such

\
If N = 0(modq) t n e n there is some perfect g-partition n of N. For each

<7-decision tree 7], there is some branch £, in Tt such that £, <= n. By the definition
of generic systems, the leaf labels of these branches form a perfect p-partition of
M which is impossible since M # 0 (mod/?).

Suppose now that N&Q(modq). By Lemma 4.5 the existence of this
(/?, q, I, M)-generic system over N implies the existence of a linear combination,
L, of degree at most / - 1 such that L = -M in the ring of polynomials Zp[xe],
But this contradicts Lemma 4.6 because -M is not congruent to 0 mod p.

5. Proof of the lower bound on the degree of the polynomials

In this section we prove the main Lemma 4.6. It is an immediate corollary of
the following lemma.

LEMMA 5.1. Let d be a constant, let N be sufficiently large and suppose that N
satisfies (pd2+\ q) | N. If Pv, for v e V and \V\ = N, are of degree at most d, then
there exists a 0-1 assignment a such that for every elf,

Q e » - 0 (mod/7) (3)
and

2 PMQM^O (mod/?). (4)
u e V

The rest of the section is devoted to the proof of this lemma. Before we prove
it, we have to do some preliminary work.

A 0-1 assignment corresponds to a set of g-element sets (those for which
xe(a) = 1). Thus (3) means that we consider a set of disjoint ^-element sets.

CONVENTION. From now on we consider only such assignments.

Since we shall evaluate polynomials on 0-1 inputs, we can replace any xd
e with

d > 1 by xe. Thus we shall assume that all polynomials are multilinear. (This
assumption could also easily have been justified by the fact that for any e, x\ - xe

is obtainable as a linear combination of degree 1.) Let 5 = xey... xed be a
monomial of Pv. If v e e}, for some /, then E(a)Qv(a) is always 0, since if
^ ( 0 ) 7 ^ 0 , then v is not covered by a ^-element set from a; thus xe(a) = 0 and
E(fl) = 0. Furthermore, if e, fl ek ¥^ 0, for some ; ¥= k, then E(a) is always 0, since
the q-element sets in a are disjoint.

CONVENTION. From now on we consider only systems ^> = {/>v}ue\/, where v is
not contained in any of the ex,..., ed and e\,..., ed are disjoint for any monomial
E = jtC)... xed of Pv occurring with non-zero coefficient.

Fix d. All systems ^ we consider have degree d (that is, all polynomials Pv have
degree at most d.) For a monomial E = xei... xec, we denote by

supp(E) = e] U... Uec

the support of E.



18 PAUL BEAME ET AL.

The system of polynomials 9> = {PV}VEV is determined by a sequence of
coefficients of the form ay e Zp for y = (v, E), where v E V, E = xe^... xec for
c^d, eu ..., ec <= [V]q, and {v}, eu...,ec are disjoint. We shall assume that the
g-element sets are ordered by their least elements, that is, min ex <... <min ec.
Thus we get a 1-1 correspondence between (u, E) with E of degree c and
qc + 1-tuples (v, ehi,..., ehq>..., eci)..., ecq) of distinct elements from V such that

DEFINITION 5.2. (1) We define type(v, E) to denote the isomorphism type of the
structure

({v} U supp(E); u, eu... ,ec, =s).

(2) We define /c-type(v, E) over V to denote the isomorphism type of the
structure

(M U supp(E); v, eu ..., ec, ^, R0)..., /?*_,),

where /?0,..., Rk-^ are unary predicates defined by

Rj(x) Od{ x = Vj and i=j mod k,

w h e r e V = {vu ..., vN}, v} < ••• <vN.

DEFINITION 5.3. (1) We say that 9* is symmetric, if for every type T the ay are
the same for all y = (v, E) of type T.

(2) We say that 0> is k-symmetric over V, if for every fc-type 7 over V the ar

are the same for all y = (v, E) of fc-type T over V.

LEMMA 5.4. If & is pk-symmetric over V, \V\ = N, (pk+\ q)\ N and N ^ pk+'q,
then there exists an assignment a such that

S Pv(a)Qv(a) = 0 (modp).
Del/

Proo/ Take / ̂  0 such that

N-qt^O and N - qt = 0 (mod pk^).

Let 0 consist of a ^-partition of the last qt elements of V, the rest being
uncovered. Then for v>N-qt, Pv(a)Qv(a) = 0, since Qv(a) = 0 already. For
1 =s v *£ N - qtf we have Qw(fl) = - 1 and all monomials E in /*„ that are non-zero
under a have support contained in the last qt elements of V. Thus, the choice of
v ^N - qt does not affect the type(u, E) for any monomials E that are non-zero
under a. By p*-symmetry, for any two v,v'^N-qt that agree modulo pk, the
coefficients of all monomials with support among the last qt elements of V are the
same in Pv and Pv-. Since pk+] divides N - qt, the number of v^N-qt
congruent to i modulo pk is divisible by p for each fixed 0^i<pk. Thus
pk-symmetry implies that for every i,

2 Jl(fl)Qu(fl)-0 (mod/?),
v =SJV - qt, v=/(mod pk)

whence the lemma follows.
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We note that for the argument above we actually used relatively few of the
properties of pk-symmetry. However, the notion of pk-symmetry is more natural
for the application of Ramsey's theorem and it facilitates the inductive nature of
the argument.

To apply Ramsey's theorem we shall employ restrictions from Definition 3.6.
For a restriction p, we shall denote by Vp the set of vertices that are not covered
by g-element sets of p; SPP denotes the restricted system of polynomials. Note
that after applying such a restriction, we get the same counting principle on Vp

which has the same number of vertices as V modulo q. Also an assignment on Vp

combined with the restriction is an assignment on the whole set V (with the
properties that we need).

Now we want to apply Ramsey's theorem to get a /^-symmetric system of
polynomials after applying some restriction p. There are two problems. First, a
single application of Ramsey's theorem will only allow us to symmetrize with
respect to monomials of some particular degree (since the signatures of
monomials of different degrees are different). When we symmetrize with respect
to the monomials of some degree c, we apply a restriction and this restriction may
also create new monomials of degree c from monomials of larger degree. Thus it
makes sense to symmetrize starting with monomials of large degree first in the
hope that the newly created monomials will occur symmetrically. However, the
second problem is that if the monomials of degree d are /^-symmetric then it
turns out (an example can be given) that it is not possible to achieve /^-symmetry
for monomials of smaller degree. This is resolved by starting with //-symmetry
for r<k (a stricter notion) for the larger degrees and then relaxing it as the
smaller degrees are handled and being careful about the exact details of
constructing the restriction.

Suppose that |V| = N, V = Vp = {vu ..., vm), vx <... < vm for some restriction p
and that 2P has been made pr-symmetric over V with respect to monomials of
degree greater than d'. To argue that the contribution to monomials of degree d'
from monomials in 9> of larger degree is //-symmetric over V for some s> r, we
will argue that for any //-type T' over V of degree d', the contribution (modulo
p) to the coefficient of any (u, 5]) of //-type T' over V from the restriction of
monomials of //-type T over V is the same. By the //-symmetry of the larger
degree terms over V we need only count the number of (v, EjE2) of //-type T
over V that contribute to the coefficient of a given (v, Ej) of //-type T' over V.

Before going into the actual construction, we note that for a given (v, Ej), the
number of E2 such that (v, E]E2) is of a given //-type over V and E£ = 1 is
affected by the relative order of {i>}Usupp(E]) among the elements of the q-sets
in p. Thus, after we choose the set V using Ramsey's theorem, we have to be
careful when we choose p such that V = V to be very careful how the g-element
sets in p cover the nodes in V\V that are between elements of V. For
convenience we say any such q-element set interleaves the set V . The following
lemma shows that we can construct a V and a restriction p with <?-element sets
that interleave V in a nice way. Afterwards we will argue that these are sufficient
to give our desired result.

LEMMA 5.5. For every m, d', k'>0 there exists an No such that, for every
N 5= No with N = m (mod q) and every <3> over any V, with \V\ = N, there exists a
restriction p such that
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(1) the monomials of degree d' in 9> in variables over the set V form a
symmetric system;

(2) \Vp\ = m;

(3) for every v, v' e Vp, v = v' (mod k');

(4) // we let U = {uu ..., uz}^ V \VP be the set of elements that are between
elements of Vp then p contains the sets {uh u\X), ..., up~^}, where for
i = 1,..., z we take disjoint sets {w,-1*, ..., u^q~l)} consecutively, either starting
from the largest element of Vp and working downwards, or starting from the
smallest element of Vp working upwards.

Proof. For any set V and any system of polynomials 9> define a colouring of
y \

j by assigning to 5 e [y]*rf>+1 the value of the coefficients whose index is

supported by S. More precisely, let us order arbitrarily the set of types T
applicable to monomials of degree d'. The colour of 5 e [V] '̂"1"1 is defined to be
the sequence of aT for all such types where aT = ay is the coefficient in 9* of the
unique y = (v, E) of type T with {v} U supp(E) = S. By Ramsey's theorem there is
an No such that if | V| 2* No and 9> is any system of polynomials over V, there exists
V c V, with \V'\ = 2k'(q - l)m, such that [V']*d>+1 is monochromatic. Thus, by
definition, for any V" c V', the terms of degree d' in 9> with variables over the set
V" form a symmetric system. By a trivial-averaging argument, there is a subset V"
of V of size 2{q -\)m such that all elements of V" agree modulo k'.

We will assume that |V| = m (mod 9) from now on. Suppose that the elements
of V" are partitioned into 2(q — 1) consecutive segments

J V ] , . . . , Vm}, {Vm + i , . . . , Vim), •••, \V(2(tj-\)-l)m + l> •••> V2(q-\)m)>

where the v( are listed in increasing order. Let V" be one of these segments with
minimal distance between its first and last elements. If V"" = {u(/_1)w+1,..., vim) is
in the first half of the segments, then there are at least (q -1) times as many
elements in V (in fact in V") larger than all elements in V" as there are elements
in [u(l-_i)WI+i, vim), that is, at least (q - 1 ) ^ - vu-i)m+1 + 1) of them. In this case
choose p arbitrarily so that Vp = V" and the elements

are matched under p so that the other elements in the same set as u; are
vim + (j - l)(q - 1) + 1, ..^vun+jiq-l). If V" is in the second half of the
segments then the other elements in the same set as u; under p are u(,_1)m-
(/ - l)(g - 1) - 1, ..., V(j-i)m ~j{q - 1)- Arbitrarily choose the g-sets of p for the
remaining elements of V \ V. This is possible since N = m (mod q).

It is well known that

/-/(modp') => O - Q (modp)

(in fact a weaker assumption suffices). We need the following generalization.

LEMMA 5.6. Let O^iu..., it<k be fixed and consider all n^O. Let C be the
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number of possible choices of (bu ..., bt) with 0=s£i< . . . <b,<n satisfying the
condition

b} = *! (mod k),
(5) ;

bi=it (mod A:).

Then the residue class modulo p of C is determined by n modulo kp1.

Proof. This is by induction on /. For / = 1 it is trivial, even for n = 0 (mod kp1).
Suppose it holds for /. Let O^S/i, <n2 and n^ = n2 (mod kpl+l). Then for every /,
with 0^i<kp', the number of elements fr/+1, with «1=sb/+]<rt2 and
bl+x =i (mod kp1), is divisible by p. For each such bt+u we have the same
number, modulo p, of sequences (bu...,bi) such that 0 «s £>!<...< b, <bt+-[

satisfying (5) by the inductive assumption. Thus the number of the sequences
(bu ..., bh 6/+1) with «!*£/?/+! </i2 and fr/+1 = i (mod kp') is congruent to 0
modulo p.

Now we state a lemma which essentially formalizes the induction step of the
proof of Lemma 5.1.

LEMMA 5.7. For every m>0 and d'^d, there exists No such that for every
N^N0 with N = m (mod q) and every & of degree d over V, with \V\ = N, if the
monomials of 9> of degrees d' + 1,..., d form a k-symmetric system of polynomials,
then there is a restriction p such that \Vp\ = m and the monomials of degree d',
d' +1,..., d of' <3>p form a kpd-symmetric system over Vp.

Proof. By Lemma 5.5, there is an No such that for any V, with \V\^No and
\V\ = N = m (modq), and any 9> over V, there is a restriction p satisfying
conclusions (l)-(4) of Lemma 5.5 with k' = kpd. Choose this No and p. By
conclusion (1) of Lemma 5.5, the monomials of degree d' in 0> over Vp appear
symmetrically. Thus, since the monomials of degree greater than d' in 0> form a
/c-symmetric system, it is sufficient to show that if T is any ^-symmetric system of
monomials of degree at most d over V then P'p is /cpd-symmetric over Vp.

Let V = Vp = {vx,..., vm} and write p = p^p2 where p] is the portion of p that
interleaves V.

Consider first ^'P2 over VP2. Note that VP2 is a consecutive sequence of
elements of V. Thus, for any two (v, Ej) and (v', E[) of /c-type T over Vp2, if
(v, E,E2) is of &-type T' over V of degree greater d' then so is (v1, E[E2). Thus
^'p2 is ^-symmetric over Vp\

It remains to see what happens with monomials after applying px. That is, we
consider ^ ; p = 0>'p2Pl. Since p'p2 is ^-symmetric over Vp2 and the elements of VP2

are consecutive, we can ignore the differences between <3>'p2 and &' and between
VP2 and V. Thus we want to show that for an arbitrary A:-symmetric system 9*'
over V of degree at most d such that VPl = V, 2P'pl is /cpd-symmetric over V.

LEMMA. Suppose that T is a k-type of degree at most d over V and T' is a
kpd-type over V of degree c<d. For any {v,Ex) of kpd-type T' over V, the
number (modulo p) ofZ2 such that (v, 5]52) has k-type T over V and EP = 1 is the
same.
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We will prove the lemma by considering some fixed (v, E,) and see that the
number of monomials E2 such that (u, EjE2) has some fixed /c-type T over V and
52 = 1 depends only on the kpd-type of (v, 5j) over V.

Let {v} U suppiZx) = {vio, ...,VjJ in increasing order (c is the degree of E,).
Consider possible monomials E2 of degree b such that b + c ̂ d and Ef1 = 1. Each
q-set fixed by pj is determined by a single representative u s[vu vm] \V. Thus
consider the representatives uh<...<ujb in [i»i,uw]\V which determine the
monomial E2. Since Ex is fixed, by construction of px the /c-type of (v, EjE2) over
V depends on only two properties:

(a) the position of w;i,..., ujb with respect to vio, v^,..., v, c (which fixes the type
of (v, E,E2) since the order of the least elements in the q-sets containing the
ujt is either always the order of the ujt or always the reverse);

(b) the residue classes modulo k of elements

i M 7 i ' u h ' u l \ > • • > u } \ / > • • • » \ u j b > u j b > u j b > • • > u ) h !•

The key observation for (b) is that the residue classes of u)]\ uj_2),..., u)yl) are
precisely determined by the residue class modulo k of ujt and the residue class
modulo k of the number of vertices in V less than ujr This is because the residue
classes of u^\ uf\..., u)f~x) are determined just by /, modulo k and the
difference between the residue classes of ujt and /, depends on the number of
vertices in V less than ujt. (The difference is either positive or negative
depending upon whether px matches the elements [i^, vm] \ V above or below
[vi, vm].)

Since we only consider E1 such that (v, E^) has some fixed /c-type T over V,
for each a, with O^a^qc, we have fixed the indices /3,..., y such that
via<uje<... <Ujy<via+l where /3 and y depend only on a. We shall handle each
such interval via, u,-a+1 separately and show that (modulo p) the number of choices
of such uje,..., ujy between via and i»,-a+1 such that

\u u(i) uW M ^ " 1 ^ \u uW u{2) uSq~l))
lUJp> U ] 0 > UJf> > ••' U ) p » •••' * " V h > h > • " ' Jy '

belong to particular residue classes modulo k depends only on the residue classes
of ia and ia+i modulo kpd. This will be sufficient since the total number of choices
of E2 is the product of the number of choices in each of these intervals and the
kpa'-type(v, E]) over V determines these residue classes.

By the key observation, the only further condition that the /c-type T places on
Ujfi,...,Ujy is given by a sequence of pairs (kp, k'p),..., (ky, k'y) such that, for
p^t^y,0^kt, k't < k and

Ujt = k, (mod/:);
and

lt = k't (mod/:),

where /, is the index such that vlt< ujt< u/|+1.
We would like to apply Lemma 5.6 to the equations for uJt and /, above and

argue that the number of solutions only depends on ia and ia+x modulo kpd. We
cannot do so immediately since it is possible, if k[ = k'l+u that /, = /,+1 and Lemma
5.6 does not apply in this case. Instead we will break up the cases into the possible
partitions n of the interval [j3, y] into intervals [/x,, Vj],..., [/uf, vf] so that for t, t'
in the same interval /, = /,' and for t, t' in different intervals 1,^1,: It is now
sufficient to argue two things for each fixed partition K:
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(1) the number of choices (modulo p) of the sequence /, consistent with the
/c-type T and the partition n depends only on ia and /o+1 modulo kpd\

(2) the number of choices (modulo p) of uJf},..., ujy, consistent with &-type T
and a fixed sequence of /, that is consistent with T, is independent of the
choice of (v, E]).

Given the fixed partition n, the sequence of /, for t G [/3, y] is precisely
determined by /Ml,..., /Mf where ia =s /Mi <. . . < /Mf < /a + 1 and /Mi = k'^. (mod /c) for
/ = 1,..., £. By Lemma 5.6, the number of such solutions depends only on /Q+1 - ia

modulo kp* which is determined by / a + ] - ia modulo kpd since £ *£ d.
Now consider the fixed sequence /, and its associated partition n. For each

interval [/xh v,] = [r, s] in n we count the number of choices of ujr,...,uj%

consistent with the A:-type T. The solutions uir,..., uJs precisely satisfy

Vir + l^uJr<... <uji<vtr+i

and ujt = k, (mod/:) for t e [r, s). By Lemma 5.6, the number of such choices
modulo p depends only v/r+, - (v,r + 1) modulo kps~r+\ Since all elements of V
are equivalent modulo kpd and d^s - r + 1, i»/+1 - (vtr + 1) is always congruent
to - 1 modulo kps~r+^ and thus the number of choices modulo p in each interval
of n is independent of the choice of (v, E^). Therefore the number of choices
modulo p of uje,..., ujy consistent with the sequence of /, and the /c-type T is
independent of the choice of (v, Ex), as required.

Thus we have proved the lemma, and hence the system ^'p is fcprf-symmetric,
which finishes the proof of Lemma 5.7.

Proof of Lemma 5.1. Let m^pd2+]q and (p"2+\ q)\m. (Choose V, with

\V\ = N = m (mod q), large enough to apply Lemma 5.7 for d' =d, d - 1,..., 1, in
order, to a system & = {Pv}vev of degree d and still have the combined restriction
so constructed have \VP\ = m. Choose any such system $P and note that Lemma
5.7 implies that there is a restriction p with |Vp\ = m and that £P is /^-symmetric
over V. By Lemma 5.4 there is an assignment a on which 8PP vanishes.
Combining p with a, we get an assignment on which the ^ vanishes. Finally,
recall that all Qef vanish too, due to the fact that p and a are partial partitions.

6. Frege systems with modular counting

As remarked in the introduction, the development of lower bounds for
propositional proof systems has followed the development of lower bounds in
circuit complexity. Thus it might at first seem surprising that we are able to prove
lower bounds that separate Count5 from Count6 when it is not known whether
counting modulo 5 can be computed by boolean circuits of bounded depth and
polynomial size with mod 6 gates.

However, the kind of question we resolve is not the appropriate statement
analogous to this circuit complexity question. This circuit complexity question
motivates the following extension of a Frege system by modular counting gates.

DEFINITION 6.1. Let r 5= 2.

1. The MODr-connectives are countably many connectives

MODr>/(*i, •••,*„)
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where 0 «£ / < r, n = 1, 2,.... The formula MODr ,(*i, •••, xn) is true if and only if

|{; «s n \XJ true}| = i (mod r).

We shall write JCJ + ... + xn = / in place of MODr-,(*i,..., xn).
2. The MODr-rules are the following inference rules:
(a)

JC —IJC x = 1 x = 0
x = 1' JC = 0 ' JC ' —IJC

(b)
Xj+...+xn = i y\+.-+ym=j

JCJ + ... +xn+yi+...+ym = k

where i +j = k (mod r);
(c)

*i + ... +xn+y1+...+ym = k x^ + ... + xn =i

where k - i=j (mod r);
(d)

xi+... +xn =

where /^ ...,;„ is any permutation of 1,..., n.
3. A MODr-Frege system is a Frege system whose language is extended by all

the MODr-connectives and with all the MODr-rules.
4. The depth of a formula in the extended language is the maximum number of

alternations of ->, v and MODr/. A depth d MODr-Frege system is a
MODr-Frege system in which only formulas of depth at most d are allowed.

We leave it to the reader to verify that a MODr-Frege system is complete, that
is, it proves all tautologically valid formulas in the extended language.

The following lemma is not hard.

LEMMA 6.2. Let s^r^2 and assume that r divides s. Then formulas from
Countr have polynomial size, constant-depth MOD S-Frege proofs.

However we cannot resolve the more general question of whether or not
CountJ' has polynomial size, constant-depth Frege proofs in a MOD^-Frege
system, where p and q are relatively prime. It seems that such proofs should not
exist but stronger proof techniques than ours seem necessary, since the County
axioms are proved in a MODp-Frege system using the MODP connective only in a
very trivial way.

7. Concluding remarks

We have introduced a natural approach to proving lower bounds for proposi-
tional proof systems that is based on studying the complexity of the Nullstellen-
satz polynomials witnessing the unsolvability of a system of equations.

One important open question is whether or not the lower bound in our main
theorem can be improved. We conjecture that the degree lower bound is nearly
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linear, although the techniques of this paper only succeed in proving a
non-constant lower bound. Note that an exponential lower bound on the size of
constant-depth Frege proofs of Count" from Countp instances would follow from
an improvement of the degree lower bound to ne, for some e > 0.

It is interesting to compare the methods used in this paper and those of Ajtai
[4,3]. In [4], using switching lemma techniques, the author reduces the existence
of constant-depth polynomial size proofs of Count, from County to a question
about uniform sequences of symmetric linear equations over Zp. Then the results
of [3] are used to derive the conclusion that this system has no solution. The
proofs in [3] use a detailed analysis of the structure theory of representations of
the symmetric group to argue that as the objects in this theory are built up, the
constructions made are appropriately uniform.

Assuming that constant-degree polynomials suffice, we conclude that the
equations for the coefficients of the Nullstellensatz polynomials for the systems
we generate are uniform sequences of symmetric linear equations in the sense
considered in [3]. However, the proof that we obtained by looking at the
polynomials themselves is considerably simpler than would be obtained by
applying an argument of the form of [3]. Also, because the reduction in [4]
critically uses the property of 'covering sets', there is no natural way to extend the
methods of [4] to obtain stronger lower bounds for the size of constant-depth
proofs of Count, from Countp as seems possible with our methods.

A (p, q, I, M)-generic system over V formed by ^-decision trees Tu ..., TM has
the property that every possible branch appears 0 mod p-times in the trees. Riis
[19] conjectured (for p,q different primes) that if 7),..., TM is any collection of
<7-decision trees over V, where |V| # 0 (modq), having the property

(a) every branch F e U/=sMbr(7]) appears 0 modp-times,
then it must hold that

(b) M = 0 (mod/?).
The conjecture implies the non-existence of (p, q,l\V\/qj, M)-genenc systems
and thus would yield (by the remarks above) an exponential lower bound in the
main theorem. On the other hand, the proof of Lemma 3.10 from Lemma 4.6 can
be modified to prove the conjecture for collections of trees of a constant height.
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