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Abstract 

The combinatorial parity principle states that there is no perfect matching on an odd number 
of vertices. This principle generalizes the pigeonhole principle, which states that for a fixed bi- 
partition of the vertices, there is no perfect matching between them. Therefore, it follows from 
recent lower bounds for the pigeonhole principle that the parity principle requires exponential- 
size bounded-depth Frege proofs. Ajtai (1990) previously showed that the parity principle does 
not have polynomial-size bounded-depth Frege proofs even with the pigeonhole principle as an 
axiom schema. His proof utilizes nonstandard model theory and is nonconstructive. We improve 
Ajtai’s lower bound from barely superpolynomial to exponential and eliminate the nonstandard 
model theory. 

Our lower bound is also related to the inherent complexity of particular search classes (see 
Papadimitriou, 1991). In particular, oracle separations between the complexity classes PPA and 
PPAD, and between PPA and PPP also follow from our techniques (Beame et al., 1995). 

1. Introduction 

A fundamental question in propositional proof theory is: how strong is a partic- 

ular proof system. In particular, how large does a proof of a particular tautology 

have to be, as a function of the size of the tautology? It is believed that for any 

conceivable proof system, there exist tautologies (of size n) with no proofs of size 

polynomial in n, for sufficiently large n. However, proving this for every conceiv- 

able proof system is equivalent to proving that NP # coNP, a fundamental question 
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in complexity theory. Within the last twenty years, much research has been aimed 
at proving the existence of tautologies with no polynomial-size proofs for specific, 
natural classes of proof systems. The first unrestricted lower bound was an exponen- 
tial lower bound for Resolution proofs of the propositional pigeonhole principle [lo]. 
More recently, it has been shown that the propositional pigeonhole principle requires 
exponential-size, bounded-depth Frege proofs [4, 12, 151. This is a major improvement 
over the Resolution lower bound, since Resolution can be viewed as a depth-l Frege 
system. 

The most outstanding open problem in this area is to extend these lower bounds to 
Frege systems and Extended Frege systems. Buss [S] has shown that the propositional 
pigeonhole principle has pol~omial-size Frege proofs, and thus it is even a challenge to 
find a combinatorial principle requiring large Frege proofs. In a polynomial-size Frege 
proof, one has the ability to reason algebraically using counting arguments. Thus, in- 
tuitively, in order to prove lower bounds for Frege systems, one must come up with 
a tautology that cannot be proven through a simple counting argument, and moreover, 
develop techniques to prove this. As a step in this direction, one can add limited count- 
ing abilities (in the form of axiom schemas) to a bounded-depth Frege system, and 
first try to prove lower bounds here. The propositional pigeonhole principle is perhaps 
the most basic counting axiom, as it asserts that the cardinal&y n is not equal to the 
cardinal@ n + 1. In this paper, we study what new theorems can and cannot be proven 
in pol~omial-size, and bounded-depth, when we allow the pigeonhole principle as an 
axiom schema. 

The propositional pigeonhole principle can be expressed by a family of propositional 
formulas, (PHP, : m 3 0}, where PHPm asserts that there is no l-l mapping from 
a set DO of size m + 1 to a set Di of size m. A related, but more general principle is 
the parity principle, PAR,,, which states that no graph on 2n + 1 nodes consists of a 
perfect matching. We encode PAR,, using (*“cl) matching variables, PI~,~~, i, j < 2ntl. 
Using these variables, PAR, can be written as the disjunction of the following matching 
clauses: 

A{‘P{Q) 1 j < 2?l+ 1, j # i}, i < 2?2 + 1; 

A{P{j,~},P{~,~~},i # j # k, i, j, k d 2n + 1. 

It is not too hard to see that if there are short, bounded-depth Frege proofs of 
PAR,,, then there are also short, bounded-depth Frege proofs of the onto version of the 
pigeonhole principle. Expressed propositionally, the onto version of PHP has additional 
terms which imply that the function is also surjective. The recent exponential size 
lower bound for bounded-depth Frege proofs of the onto version of PHP [4] thus also 
establishes an exponential size lower bound for bounded-depth Frege proofs of PAR,. 
(A proof of Urquhart [17] shows that PAR,, like PHP,, does have a polynomial size 
Frege proof of loga~~ic depth.) 

This suggests the foIlowing question: is the parity p~nciple strictly stronger than the 
pigeonhole principle? Ajtai [2] was the first to show that, in a precise sense, the parity 
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principle is stronger than the pigeonhole principle. One can generalize the pigeon- 

hole principle by allowing each variable in the PHP formula to represent an arbitrary 

formula over some underlying set of propositional variables. Now consider a bounded- 

depth Frege proof system, with underlying matching variables P{i,j), where the system 

is strengthened by allowing all bounded-depth instances of the PHP as axioms. In [2], 

Ajtai showed that PAR, does not have polynomial-sized, bounded-depth Frege proofs, 

even in this stronger system. 

The structure of Ajtai’s argument extends the proof technique in his superpoly- 

nomial lower bound for the PHP [l]. He first sketches a restriction lemma giving 

small ‘covering sets’ for formulas over the matching variables. Then, in the novel part 

of the paper, he shows how the restrictions cannot have falsified the PHP axioms. 

This is done by first showing that all the information about a given pigeon or hole 

in a PHP axiom can be determined by the values of the matching variables touching 

a small covering set and then showing that it is not possible to have the information 

about pigeons or holes locally appear to describe a l-l function and yet be globally 

consistent. This last piece forms the bulk of the paper and uses a somewhat involved 

counting argument. 

In this paper, we present a new proof and we improve the lower bound from su- 

perpolynomial to exponential. This result uses the proof-theoretic methods from [4, 6, 

121 and a modification of the switching lemma from [4, 151. The most difficult new 

part of this proof is showing that each restricted PHP axiom is converted to an ap- 

proximation of a true formula after the various conversions are made. The structure 

of this argument is similar to Ajtai’s: As in [2] we use a bit-wise encoding of the 

PHP formulas to obtain small descriptions of what happens to each pigeon or hole. 

In our case, rather than small covering sets we use small height matching decision 

trees along the lines of [4, 151. This difference is fortuitous because it turns out that 

this permits a much simpler counting argument to show that it is impossible for the 

converted subformulas of the PHP axiom to locally describe a l-l function and be 

globally consistent. 

The lemma which shows this latter result, is of independent interest. In particular, 

in [2a], we use it to demonstrate oracle separations between certain complexity classes 

of search problems: between classes PPA and PPAD and between classes PPA and 

PPP. These complexity classes, which characterize the complexity of many interesting 

problems, were defined by Papadimitriou [13] and lie between the function versions of 

P and NP. 

Lastly, our result is related to questions about the ability to count in various sys- 

tems of bounded arithmetic. &(R) is the relativized system of bounded arithmetic, as 

defined by Buss [7], and PHP(R) is the pigeonhole principle for the relation R. It 

follows from our result that &(R) + PHP(R) cannot prove the parity principle. For 

connections between bounded-depth Frege systems and bounded arithmetic, see [16, 

141. 

We note that, independent of this work, Soren Riis (private communication) has 

shown similar results using methods of nonstandard model theory. 
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Excluded Middle Axiom: A V -A 

A 
Weakening Rule: (A v B) 

Cut Rule: 
(A v B), (‘A v C) 

(BVC) 

Merging Rule: V({V r) ” A) V(r u A) 

Unmerging Rule: 
V<r ” A> 

V({V v ” A) 

Fig. 1. Rules of the system H. 

2. The proof system H + PHP#) 

The proof system we use is based on the Frege proof system H from [6, 15, 41 

augmented with an axiom schema PHPt,(F) which we describe below. H is a Frege 

system with NOT gates and unbounded fan-in OR gates (see Fig. 1). Excluded middle 

is the only axiom of H, and the cut rule is the main rule of inference, with extra 

merging and unmerging rules to manipulate the unbounded fan-in OR’s. (By methods 

of Cook and Reckhow [9] the exact choice of the constant depth Frege system over 

unbounded fan-in A, V, and 7 we use is not crucial.) 

A proof of a formula f in H is a sequence of formulas such that the final formula 

is f, and all intermediate formulas are either instances of the axiom, or follow from 

previous formulas by an inference rule. The size of a formula is the number of occur- 

rences of V and 1 in the formula; the size of a Frege proof is the sum of the sizes 

of the formulas occurring as lines in the proof. Each formula as described above can 

be written as an unbounded fan-in boolean tree. The depth of a formula is the depth 

of the boolean tree which represents the formula. The depth of a Frege proof is the 

maximum depth of the formulas in the proof. 

We now describe the axiom schema PHPb(F). Let F = {F(i,j) 1 i<m + l,j<m} 

be a set of bounded-depth formulas over the propositional variables P{i,j), i,j <2n + 1. 

The natural form of the pigeonhole principle using V and 7 based on F, PHP(F), is 

an OR of the following subformulas: Cl(F,x) = -(F(x, 1) V F(x, 2) V . - . V F(x, m)) 

for each x <m + 1, which expresses the fact that x is not mapped to any hole; 

C2(F,xr,x~,y) = -(~F(xl,y) V ~F(xz,y)) for each y E m and x1,x2&m + 1 with 

x1 # x2, which expresses the fact that hole y has pigeons x1 and x2 mapped to it; and 
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finally C3(F,x,yl,yz) = ~(+‘(x,yl) V +‘(x,y2)) for each x<m + 1 and yl,yz<m 

with yl # y2 which expresses the fact that pigeon x is mapped to holes yl and ~2: 

Unfortunately PIP(F) is not a convenient form of the pigeonhole principle for our 

purposes. For x <m + 1 let xi denote the ith bit of x in binary notation. For each 

F(x, y), we can express F in “left bitwise” notation by the formula FL(x, y): 

w%(m+l,l 
FL(~,Y) = 1 V 

i=l 

OF;, = “ogf~;l”F~Y,(x), 

where 

F&(x) = .<,v, /(xJ). 
. , I 

Similarly, we can also express F in the “right bitwise” notation by the formula FR(x, y): 

rhs ml 
FR(% Y) = 7 iyt +&,(Y) = rl;~‘F;R,(~), 

where 

F$(Y) = V F(GY). 
z<m+l, z,=b 

Let PHPb(F) denote the pigeonhole principle expressed as an OR of the following 

subformulas: 

{ Clb(F,x) 1 x<m + l} 

U{C~(FR,XI,XZ,Y) 1 xl,xz<m+ 1, x1 #x2, y<m} 

W3(F~jx,~l,~2) I yl,y2<m, yl # y2, xdm + l}}, 

where 

Clb(F,x) = -V{Ftb(x) 11 <id [logm],b = 0, l}, 

The proof of the following lemma is straightforward. 

Lemma 1. Let F = {F(x, y) 1 x Q m+ 1, y < m}, where each F(x, y) is a bounded-depth 

formula over the matching variables. Then there exists a bounded-depth, polynomial- 

size Frege proof of PHP(F) from PHpb(F). 

Let Fb(x, *) denote the set of formulas {FL(x, y) 1 y dm}. Similarly, let Fb(*,x) 

denote the set of formulas {FR(Y, X) 1 y <rn + 1). Note that for each x, all formulas 
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in Fb(x,*) u Fb(*,x) are boolean formula over the O(logm) subformulas, {F&(x)] 

ib [logml, b E (0, l)}, and {F&(x) 1 id [log(m + 1>1, b E (O,l)}. 

3. Restrictions, decision trees and the switching lemma 

The overall idea of the proof is to apply a restriction (or partial O-l setting) to the 

underlying variables in the proof in such a way that: (1) after applying the restriction 

we are left with a (sub)proof of the same principle, over the subdomain of unset 

variables; and (2) the proof that remains is greatly simplified. In order for ( 1) to 

hold, we must choose a restriction that defines a partial matching between some of 

the vertices. The definitions for partial matching restrictions that we use are entirely 

analogous to those in [4, 151 but we include them for definiteness. The variables over 

D are {Pfcj) : i # j E D}. The i and j will be called the endpoints of P{i,j). For 

convenience we will write both Pij and P/i to represent variable P{i,j). A map over 
D is defined to be a conjunction of the form A r, where r is a set of variables 

over D such that distinct variables in r have distinct endpoints. Maps describe partial 

matchings on the set D. The size of a map A r is Irl. An OR of maps is called a map 
disjunction. The mapsize of a map disjunction is the size of the largest map in the 

disjunction; if all the maps are of size at most t, then it will be called a t-disjunction. 
A map 0’ extends map CJ if c = A r and o’ = A r’ such that r & r’. We say that 

two maps 0 and r are compatible if there is some map rc that extends both cr and 

r and we denote the smallest such map 7c by (TZ. A truth assignment cp over D is 

any total assignment of (0, l} to the variables over D. Let D’ CD. A truth assignment 

cp over D is a matching on D’ if for all i E D’ there is a unique j E D such that 

Pij = 1. 

If Y is a map or a set of variables, then v(Y) denotes the set of endpoints of variables 

in Y. 

We will now define a probability space of partial matchings on D, where IDI = 

2n + 1 The probability space JH~ is the set of all pairs p = (rc,rc,) where n is a 

random matching of n edges in D and rr, is a random subset of the edges of rr where 

each edge of rc* is chosen independently at random with probability p. 

Every p = (rr,rc,) in JZ~ determines a unique restriction, r, of the variables over 

D as follows. 

1 if {i,j} E 7r \ 7cr, 

r(Pij) = 
0 if there is a k such that {i, k} 

or { j,k} E TC \ IL, 

I * otherwise. 

In this way, the distribution J%!‘: defines a probability distribution of restrictions. If r is 

a random restriction obtained by choosing a random p according to k$, we will refer 
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to both the restriction and the random partial matching by p. For a Boolean formula 

F and an element p E A:, F restricted by p will be denoted by F rP. 

3.1. Mutching decision trees 

In this subsection, we define a combinatorial structure called a matching decision 

tree. A matching-decision tree can be thought of as a simple method for describ- 

ing a function on truth assignments that are almost total matchings. Our eventual 

goal is to approximate each formula in the original proof by a small-depth decision 

tree. 

A matching decision tree over domain D is defined as follows. It is a rooted tree 

where each interior node v is labelled by a query i E D and each edge is labelled 

by some pair {i,j} where j # i E D. Leaves are labelled with either “0” or “1”. For 

each interior node v labelled by i E D, there is exactly one out-edge labelled {i,j} 

for each j E D \ {i} that does not appear in any edge label on the path from the 

root to v. The label of an interior node v may not appear in any edge label on the 

path from the root to v. Thus the set of edge labels on any path defines a map. A 

matching decision tree where all of the leaves are labelled “1” will be called a l-tree. 

A matching decision tree T’ extends a matching decision tree T if, for any root to 

leaf path p’ in T’, there is a unique path p in T such that the map Q’ defined by 

p’ extends the map c defined by p. (Note that the leaf labels are not required to be 

related in this definition.) 

A matching decision tree T over D represents a function f over domain D if 

for all leaf nodes v E T, if we let o be the map defined by the path in T from 

the root to v then for all truth assignments tl over D that are matchings on v(o) 

and satisfy U, f(a) is equal to the label of v. For a boolean function f over do- 

main D, we define dD( f) to be the minimum height of all matching decision trees 

computing f. (Note that the empty matching decision tree has only one node, la- 

belled by either “1” or “Cl”, and represents the function “true” or “false”, respec- 

tively.) 

Let T be a matching decision tree. In the remainder of this paper, the function 

represented by T is defined to be the map-disjunction, maps(T), consisting of the 

labels of all of the paths in T that end in leaves labelled 1. Note that if T has height 

t, then the function computed by T is a t-disjunction. Furthermore note that for any 

partial matching restriction p over D, mups(T rP) = maps(T) I,,. 
Extending this definition, if f is a tree with intermediate nodes labelled by OR 

and NOT gates, and leaf nodes labelled by matching decision trees, then the function 

computed by f is obtained by iteratively computing the functions evaluated by the 

subtrees of f. 
If p is a partial matching restriction over D and T is a matching decision tree over 

D, then define T rP to be the decision tree obtained from T by removing all paths 

which have a label that has been set to “0” by p, and contracting all edges whose 

labels are set to “1” by p. 
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Lemma 2. Let f be a boolean function over D and let T be a matching decision tree 

representing f over D. Zf p is a partial matching restriction over D, then T rp is a 

matching decision tree for f rp over DIP. 

Note that if T represents f over D then the tree TC obtained by switching the 
l’s and O’s labelling the leaves of T represents -f. The lemma in the next section 
actually is a switching lemma in the spirit of [l l] because it will allow us to obtain a 
map disjunction that approximates the negation of f by representing f by a matching 
decision tree T and then taking maps(TC). 

Where it is convenient, we shall assume that an ordering is given on D. Whenever 
we write a real number where an integer is required, we mean the integer part of 
the real number (floor). If f is a map disjunction defined over a set D and p is a 
restriction on D then we will use the notation S(f IQ) for dDr,(f lp). We now state 
the main combinatorial lemma. 

Lemma 3 (Switching Lemma). Let f be an r-disjunction over D CD”, where D” is a 

set of size 2n+l. Choose p at random from k$. Zf SBO and pn~(r+s)(2r+2s+l) 
then 

Pr[&ftp)Zsl < o$, 

where 01 > 0 satis~es (1 + 225p4n3~a2~ 62. 

The inequality (1 + 225p4n3/a2)’ G2 holds when a = 19p%~~&+~~~. This can be 
seen by taking the natural logarithm of both sides and the applying the inequality 
ln(1 +X)&X. 

The proof of the Switching Lemma is given in Section 6. 

4. Exponential lower bounds 

The overall stmc~re of the exponential lower bound ardent is very similar to 
the argument in 1121 and in [4]. Given an alleged proof, P, of depth d and size S, a 
series of d restrictions are applied and after each one the proof is converted using a 
switching lemma to reduce the depth, until we end up with a sequence of formulas, 
each of which can be represented by matching decision trees. We will show that if P 
had size no greater than S, then after the d conversions, each matching decision tree 
is a l-tree. But on the other hand, the final formula in the proof is the converted PAR 
formula, which becomes a matching decision tree which is not a l-tree, and hence we 
have reached the contradiction. 

The new part of the argument is showing that each instance of a PHP axiom schema 
gets converted into a l-tree. This is the subject of Section 5. 

There are some formal and technical differences from (4, 151 in how we apply 
the depth reduction in our argument. First of all, for convenience, we maintain a 
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proof with small height matching decision trees at the leaves rather than formulas and 
finish reduction when each formula is a small height matching decision tree. More 
importantly, in order to preserve the formulas in the bitwise version of the PH&,(F) 
axiom schema we do not always apply the switching lemma to V’s of decision trees. 
If the V has fan-in at most logs then we simply “stack” the decision trees one on top 
of the other in the natural way creating a new deeper decision tree that evaluates all 
of the logs trees along each branch. 

Using the switching lemma one can easily maintain via induction that after i levels 
of conversions have been applied the height of the decision trees at the leaves of the 
formulas in the proof is at most 2 1og’S. The domain, D, of the matching variables 
declines by a fixed fractional power at each step. 

In this section we will prove the following theorem. 

Theorem 4. Any proof of PAR,, in H +PHFb(F) of depth d must have size S at least 
exp[n”(‘id4d)]; more precisely, S >e~p[n~/(~*~~)/3]. 

Corollary 5. Any proof of PAR, in H +PHPb(F) of polynomial size must have depth 
sZ( log log n). 

4.1. The conversion process 

The conversion proceeds in rounds where each round reduces the depth of the for- 
mulas by 1. In each round, s~bfo~ulas lying just above the leaves are converted into 
decision trees. A certain set of these are converted using the switching lemma, oth- 
ers are converted by simpler means. Based on the set of subformulas for which the 
switching lemma is to be applied, a restriction 0 is chosen to keep the heights of 
all the resulting decision trees small. Then the conversions themselves are done using 
the method previously decided upon for each subfo~~a. A given subfo~ula will, 
in general, appear several times throughout the proof. Each time it appears, the same 
conversion is applied. 

More formally, after o is applied, if f is 7T for some decision tree T then the 
conversion of f, V[f] = TC and if f is Vy=, I; then 

(a) if q > logs, then U[f] is the result of applying the switching lemma ardent 
to VT=, maps( Ti ) as described below, and 

(b) if qG logs, then W[S] is obtained by stacking the decision trees F such that a 
leaf at the end of path p is labelled “1” if p forces some Ti to 1. (One stacks decision 
trees Tr and T2 by replacing each leaf of Tr by a copy of T2, deleting incompatible 
paths, contracting red~~nt queries, and labelling the leaves of this copy of TZ by 
the OR of the original leaf value and the value of the leaf of TI that this copy of TZ 
replaced.) 

Note that if f is -T or f is Vy=, Ti for q < logs, i.e. the stacking method (b) 
is used to produce W[f], then the application of any restriction p commutes with the 
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conversion process on f, i.e. %?[f] rP= V[f tP], although this is not true in general if 
the switching lemma is used. 

4.2. Proof of Theorem 4 

Let P be an alleged proof of PAR,, over D, (III = 2n + 1, of size at most A’, and 
depth d (in H + PHPb(F)). We will first show that there exists a sequence of good 
restrictions which allows us to convert the formulas in P into small-depth decision 
trees. Recall that each formula in P consists of d levels of ORs and NOTs, followed 
by the bottom level, which are depth-l decision trees. 

Let to = 2, and ti = to log’s for i > 0. Define A(n) = ~1’4/(8 logd’4 S), and pi = 
&ni)/ni. If A@) is the i-fold composition of A with itself, then it can be shown that 
A(‘)(n) 3 n4-I/‘( 16 logdi3 S). 

We will show that in the conversion process each formula is converted into a de- 
cision tree of height td which will be much smaller than the size of the universe 
which is 2Acd)(n) + 1. We will argue that this is impossible and thus we must have 
logSB(n4-d/144)2/(5d)~~2/5d4*/3 since d 22, i.e. S > exp(n”(4-d/d)) as required. 

Lemma 6. rf logs < (n4-“j144) 2/(5d) then after d applications of the conversion 

process above to depth d proof P of size S, ali the j~rmu~as in the proof are converted 
to matching decision trees over a domain of size 2A(d)(n) + 1, where each tree has 

depth at most td = 2 logd 5’ < ACd)(n). 

Proof. We will let Do = D, P” = P and define p’ , . . . , pd as a sequence of restrictions 
such that for all 1 <k <d, pk leaves all variables over Dk unset, lDkl = 2nk + 1. We 
will use P’ , . . . , Pd to denote the sequence of proofs generated, where Pk will be Pk-’ 
converted by pk. We will show that for all i c d, if each formula in Pi has depth 
d - i, with decision trees of height ti at its leaves, and total size S, then P’ converted 
by pi+’ yields a new sequence of formulas, Pi+l, of depth d - (i + I), decision trees 
of height ti+l at its leaves and total size 5’. 

Since logs < ~~4-d/144)2/(~d), it follows that rz4-* > l~log5d’2~. Therefore, 

lcdt(n) >, n4-d/( 16 logdi3 S) 

> 9 log5d12 s 

logd13 s 

zz 9 log’3d16 s 

>> 9 log2d s 

’ @d-l + td)(2&-1 +2&j + 1) > td 

for it sufficiently large. 
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Let D’ be the domain of the formulas in Pi and let i < d. We will argue by induction 

that the leaves of Pi are decision trees of height at most ti and that Pi is defined on 

variables over 2ni + 1 vertices where ni 2 A(‘)(n). When i = 0 the claim is clearly true. 

Suppose it is true for some i < d. We can apply the Matching Switching Lemma 

for pi+’ drawn at random from ~8%‘;: to each distinct map disjunction representing a 

formula at one level above the leaves in Pi since the maps in each leaf decision tree 

are of size at most ti and 

Pini 

For each 

2 (td-1 + td)(ztd-1 + 2td + 1) 

3 (ti + ti+l)(Zti + 2ti+l + 1). 

map disjunction, f, corresponding to one of these formulas in pi, for a ran- -. 
domly chosen p E A::, the probability that f rp cannot be represented by a matching 

2 312 112 decision tree over D’+’ of depth at most ti+l is most &+I, where 0 < 01 < 19pini t, . 
Since pi = A(tii)/ni and ti = 2 log’s < 2 logd S, 

a< 
19p;n;t,‘f2 

n? = 
19A(ni)2tt’2 < 1 9n;J2 Jz logdi2 s 19Jz 1 

* n!/2 I 
(6410gdi2 ,y)n;/2 = 64 < !i’ 

Because the size of Pi is at most S, there are at most S map disjunctions in Pi, and 

therefore, for a randomly chosen p, the probability that every formula of Pi at a level 

one above the leaves cannot be represented by a depth-ti+i matching decision tree over 

D’+’ is at most SC&+~ <Sa2“‘ss < l/S < l/6 for n sufficiently large. 

The expected number of edges in the random matching defining p that are starred is 

nipi = A(ni). Since the number of stars is binomially distributed, for sufficiently large 

no, a random p leaves at least the expected number of stars with probability greater 

than l/3. (See, for example, Lemma 4.1 of [3]). In this case the number of vertices 

in the resulting domain D is at least 2A(ni) + 1. Thus, there exists a restriction, pi+‘, 

leaving 2ni+i + 1 domain vertices, ni+l > A(ni) > A(‘)(n), such that each decision tree in 

Dif’ has depth at most ti+l . 

By induction the claim is true for d and we obtain a sequence 9 of decision trees 

over a smaller domain of size 2Acd)(n) + 1, where each tree has depth at most td = 

2 logd s < P’(n). 0 

From now on we assume that S satisfies the conditions of Lemma 6. Let F be 

a subformula in proof P of PAR,. Define T,c to be the decision tree %[F] rp where 

p = PlP2” . Pd as defined in the proof of Lemma 6. Note that 9 consists of the 

sequence { T,v‘} where {Fi} is the sequence of formulas in proof P. 

Lemma 7. Let F be a subformula of one of the formulas in proof P. Then 

(a) if F is -G then TF is T& 

(b) if F is vy=, Gi for q < log S then TF may be obtained by stacking TG, , . . . , TG,, 

and 
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(c) ifF is VT=, Gi f or q > logs then TF represents Vy=, mapS(TG,) over od. 

Proof. Suppose that F is converted in round k of the conversion process. By the rules 

of the conversion, each of these hold for the decision trees corresponding to F and 

the G’s at the time subformula F is converted. Let 0 = ~k+l . . . Pd. The first two 

cases follow since in these cases conversion commutes with application of restriction 

(T. Since maps(T TV) = maps(T) the third case follows as well. 0 

To prove Theorem 4 we will need the following theorem, which will be proven in 

the subsequent section. 

Theorem 8 (PHP Axiom Soundness). Let PHPb(F) be an instance of the PHPb ax- 

iom schema in proof P. Then TPHP~(F) is a l-tree. 

The remainder of the proof follows by first showing that under our assumption about 

S, each decision tree in 9 is a l-tree. Then we will derive a contradiction by showing 

that the PAR,, formula cannot be converted into a l-tree by the conversion process. 

Lemma 9. Let 9 be the result of applying the conversion process to proof P. Every 
decision tree in 9 is a I-tree. 

Proof. The proof proceeds by induction on the sequence of trees in 9, or equivalently 

on the sequence of formulas in P. Now every formula in P is either an instantiation 

of an axiom or follows from previous formulas via some inference rule. 

The only axioms are instances of the PHP axiom schema or the excluded middle 

axiom. By Theorem 8, any instance of the PHP axiom schema is converted into a l- 

tree. Suppose it is an instance of the excluded middle axiom, say AVlA. By Lemma 7, 

the decision tree representing 1A is the tree TA, but with the opposite leaf labelling. 

Therefore, the decision tree for A V 1A is a l-tree. 

There are four different rules of inference to deal with. The more difficult cases are 

those involving unbounded fan-in OR gates-i.e. the merging and unmerging rules. We 

will first give the proof when the inference is an application of the cut rule, and then 

when the inference is an application of unmerging. The other rules are analogous. 

Suppose that the inference is the cut-rule, and let A be the formula X V Y, let B 
be the formula -X V Z, and let C be the formula Y V Z. We want to show that if 

TA and TB are l-trees, then so is Tc. By Lemma 7, T, is obtained by stacking the 

decision trees TX and Ty. Similarly, TB is obtained by stacking the decision trees Ti 
and Tz, and Tc is obtained by stacking the decision trees Tr and Tz. Suppose, for 

sake of contradiction, that a path, n, of Tc has leaf label 0. Thus, there are compatible 

subpaths XY in Ty and nz in TZ that both have leaf labels 0. Since both Tc and TX 
have height much smaller than the universe size there is some path p in TX (and thus 

also in Ti) compatible with 7t. By construction of TA, 0 = pxy labels some path in 

TA and by construction of TB, z = pnz labels some path in Ts. Now, in either TX or 



P. Beame, T. Pitassil Annals of Pure and Applied Logic 80 (1994) 195--228 207 

!I’& the path p has leaf label 0. Thus either cr in TA or r in TB has leaf label 0, a 
contradiction. 

Intuitively, the above argument holds because, in the case of the cut rule, the OR 
gate and the negations involved in the inference are not approximated and therefore, 
since both antecedent formulas are 1, the derived formula should also be 1. Now con- 
sider the unmerging rule. Let A be the formula V{Xl, . . . ,Xn, Y 1,. , . , Yz}, and let B 
be the formulaXVY whereX=V{Xl,...,Xn), Y=V{Yl,...,Ym}, andB follows 
from A by the unmerging rule. Assume that TA is a l-tree. By Lemma 7 T, rep- 

resents A’ = V{mfzps(T~i), . . . , maps( Txfi ), maps( Tul), , . . , maps( Tym )}, TX represents 

V{~ap~(Txl),..., maps( TX=)}, TY represents V{maps( TY~ ), . . . , maps{ Tym)}, and TB is 
obtained by stacking TX and Ty . 

Fix a path, n labelling TB_ We want to show that 7~ has leaf label 1. Since both T, 
and TB are decision trees of height much smaller than the universe size, there is some 
path p in TA compatible with n. By assumption, the path p in TA has leaf label 1. 
Since TA represents A’, it follows that A’(p) = 1. Therefore, 

V(maps(T_r ), . . . , maps(Tk),mw(Trl),. . . ,mw(Td)(~) = 1. 

Thus, either V(maps( TX{ ), . . . , mw.VidHd = 1 or V~~P@‘Y~ ),. . .,~wVY~)HP) 
= 1, say the former. Since p is compatible with the path XX in TX that is a subpath 
of n, and TX represents V{maps(T~~ ), . . . , maps(T~~)}, this path XX of TX also has 
leaf label 1. Finally, because TB is obtained by stacking the decision trees TX and Tr, 
the path of TB labelled by n must have leaf label 1. The cases of the other rules are 
similar and the claim follows by induction on the number of steps in the proof. Ei 

We now obtain a contradiction by showing that PAR,, converts into a O-tree. 

Lemma 10. The result of applying the conversion process for proof P to PAR,, TpAR., 
is a O-tree. 

Proof. By Lemma 7, TPAI~, represents the OR of the maps in the decision trees repre- 
senting its clauses: 

‘-7V(P,,: j<&+I, j#i} for iG2n + I; 
T ++ikv-P,k) for i # j # k, i,j,k<2n+ 1. 

Consider any path in T,EJAR. and let n be the map labeling this path. We will show that 
its leaf label must be 0. 

Suppose instead that its leaf label is 1. Therefore, we know that there is some 
leaf labelled 1 in some decision tree respresenting a clause of PAR,, that must be 
reached by n. Now it is easy to see that any T_(_P,,~_P,~) must be a O-tree since no 
partial matching is consistent with matching both i and j to k and so the satisfied 
map cannot be from one of these clauses. Therefore, the leaf labelled 1 is in some 
decision tree of the form T_v(~~~: jGz2n+,,jfil. In this case, a must not match any 
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element to i. However, since 7c leaves at least one other element j of od unmatched 

there is a truth assignment c( that extends rc in which i is matched to j and the clause is 

falsified by a. This contradicts the fact that x reaches a leaf labelled 1 in the converted 

clause. 

Thus, the final formula PAR,, converts into a O-tree. 0 

Theorem 4 follows immediately. 

5. The soundness of PHPb 

In this section we will prove Theorem 8. Since the decision trees produced are all 

of small height, in order to show that the tree produced by converting a pigeonhole 

axiom is a l-tree, it suffices to show that it is impossible to force this tree to 0 by a 

small partial matching restriction. 

Proof of Theorem 8. Consider an instance of the PHPb axiom schema, PHPb(F), in 

the original proof, P, such that PHPb(F) is the pigeonhole principle on m(m + 1) 

subformulas F(x, y). We wish to show that T = T,DH~~(F) is a l-tree. 

Suppose that T is not a l-tree and thus it has a leaf labelled 0. Since the height of 

T is at most td there is some map cr of size d td such that T I,,= 0. 
For each subformula G of PH&,(F), we will use the notation G’ to denote TG r,,. 

By definition, T to= 0 if and only if PHPb(F)’ is identically 0. The argument that 

the latter holds is based on the properties of the decision trees obtained for the various 

subformulas of PHPb(F). The easy cases are when some single decision tree expresses 

the fact that either the function is undefined on one of the m + 1 points or that the 

function is not l-l. The difficult case is when these decision trees do not obviously 

contradict the pigeonhole principle. That is, each one appears to define a part of a 

one-to-one function from m + 1 to m. 
If there were some partial matching, a, that extended some path in every tree, then 

it is easy to see that in this case PHPb(F)’ would not be identically 0 and we would 

be finished. Unfortunately, this ideal situation may not hold because a particular partial 

matching may not extend any path in a given decision tree. For example, if the root 

node of a tree queries i, then all matchings where i is unmatched will not extend any 

path of the tree. However, since we have required that the matching decision trees are 

not too deep, we will still be able to show that PHPb(F)’ cannot be identically 0. 

Theorem 11. PH&(F)’ is not identically 0. 

Let the size of the universe remaining after CJ is applied be 2n’ + 1 and call the 

resulting domain D’. By construction, the tree TPHP*(F) represents the v of the maps 

in the various trees TcI~(F,~), Tcz(F~,~,,~~,~) and TC3(F~.x.~~, ~2) over Dd. We can apply the 

restriction 0 to all of these trees and conclude that PHPb(F)’ represents the V of the 
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maps in the various Clb(F,x)‘, C2(F~,xi,.~,y)‘, and C3(F~,x,yi,y2)’ over D’. Thus, 
it suffices to show that at least one of these trees has a branch with leaf label 1. 

The various subformulas Clb, C2, and C3 are defined in terms of subformulas 
F&c, y) and F&, y) and thus on Ffb(x) and F&(y) for x <m + 1 and y<m which 
are in turn based on the subformulas F(x, y). ‘II? largest OR used in these definitions 
is of size [log(m + l)]. Since [log(m + l)] 6 logs, by Lemma 7, trees Tcr*, TCZ, and 
Tc3 are obtained by stacking the bitwise trees TF;b(X) and TFR~~,,) and setting their leaf 

labels appropriately. The same property holds for the way trees Cli, C2’, and C3’ 
may be obtained from F$,(x) and F:;(y) for x <m + 1 and y <m, since restrictions 
commute with stacking. 

By Lemma 7, FL(x, y) becomes the tree, FL+, y), obtained by stacking the [log ml 
trees, FL\,(x). Similarly FA(x, y) is obtained by stacking the [log(m+ l)] trees 6$(y). 

For each x, lGx<m + 1 we can define LX = {F$(x) 1 i<[logm],b E {O,f}}, and 
similarly each tree FA(y,x), y$m is the stacking of [log(m + 1)1 trees from the set 
of 2[log(m + 1)1 trees RX = {F,!:(Y) 1 i6 [log(m + l)l,b E {O,l}}. 

Therefore, for each x, the tree obtained by stacking the trees in L,UR, is an extension 
of all of the trees FL@, *), and FA(*,x). We define 4 to be this single matching tree 
over D’, ID’1 = 2n’ + 1, which simultaneously extends all of the trees FL+, *) and 
FA(*,x), with the further modification that all the root-leaf paths are extended to some 
fixed length k << n’. This is accomplished by adding queries of other matching variables 
to any paths that are too short. Note that Z still extends all of the trees in Fk(*,x) and 
Fi(x, *). The leaves of % are labelled with pairs {X --+ ~1,. . . ,x + tik, q + x,. . . , ~1 -+ 

x} where the pair x -+ ui is a label of some path, p if and only if Fl(x, ui) fp= 1. 
Similarly, the pair vj + x is a label of p if and only if FA(vj,x)tp= 1. Note that since 
FR( *, m + 1) is not defined, no leaf label of Ym+i will contain a pair u + m + 1, for 
any u<m+ 1. We now let Y = {Z 1 xdm+ 1). 

Definition. ~7 is a llocal function if and only if: ‘dx<m + 1, ‘d paths p of g, there 
exists some z <rn such that the leaf label of p contains the pair x + z. In other words, 
if the map defined by p is p then there exists z<m such that Ff(x,z)f,= 1. 

De~ition, 5 is locally l-l if for all x and for all paths, p, in Z, the leaf associated 
with p has at most one label of the form x -+ zi and at most one label of the form 
z2 +x. 

Definition. F is consistent if for all x, y <m + 1 and for all pairs of paths, pX in g 
and pl, in 6, if the maps they define, px and py, respectively, are compatible then 
x --f y labels the leaf of pX if and only if x --+ y labels the leaf of py. 

We first show that if either F is not locally 1-I or not a local function then 
HP&F)’ is not identically 0. Then we will argue that one of these cases must be 
true. We do this by showing, using the way that 9 is cons~cted, that if Y is locally 
I-1 then it is also consistent and then showing that it is impossible for Y to be 
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consistent as well as both a local function and locally l-l. This latter proof requires 

a combinatorial argument. 

Lemma 12. Zf Y is not locally l-l, then PHPb(F)’ is not identically 0. 

Proof. Assume that F is not locally l-l. Then there exists an x <m + 1, and a path 

p in z such that leaf label associated with p contains either (1) x -+ zi and x -+ ~2, 

ZI # z2, or (2) zl 4 x and z2 + x, zi # ~2. Consider the first case. Let p be the map 

defined by p. Since z extends both F;(x,z~ ) and FL(x,z2), 

F&a > tp= Fkzd tp= 1 

and thus C2(F~,x,zi,z2)‘r,,= 1 which means that PHPb(F)’ is not identically 0. The 

second case is handled similarly. q 

Lemma 13. Zf 5 is not a local function, then PHPb(F)’ is not identically zero. 

Proof. If Y is not a local function, then for some x <m + 1, there exists a path, p, 
of 4, whose leaf label does not contain x + y, for any y dm. Let p be the map 

defined by p. Since K extends all F;;(x), for every i < [log ml and b = 0 or 1 we 

have F,$,(x)r,= 0 and thus Clb(F,x)‘l,= 1 so PHPb(F)’ is not identically 0. 0 

Lemma 14. Zf Y is locally l-l then Y is consistent. 

Proof. We will prove the contrapositive. Suppose that .Y is not consistent. Then there 

exists x, y <m + 1 and compatible maps, pX labelling path pX in z, and pY labelling 

path pY in 9& such that either FL(x, y) rh= 1 and Fk(x, y) I,,“= 0 or vice versa. We 

will assume that the former case occurs (in which case we also know that y <m); the 

latter case is completely analogous. 

We now sketch the remainder of the argument. Since FL(x, y) and FR(x, y) are 
constructed from the bitwise versions of F, this inconsistency occurs exactly if x is 

mapped to at least two different z’s in F, at least one of which agrees with y in each 

bit position (in effect the left bitwise version sees a phantom edge not really present 

in F.) Thus the underlying F is not l-l and this is easily translated upward to show 

that Y is not locally l-l. The formal argument follows. 

Recall that 

Fh y) tp,= VT V 
i=l,..., [log ml 

+$,(x)1 tp,. 

Because of the rules for conversion, the switching lemma is not used in producing 

FL(x, y) from the various F{%,(x) and so Fl(x, y)rpX= 1 implies that for all i < [logmj, 

F&(x) tm= 1. By similar reasoning, FA(x, y) rp,= 0 implies that there exists a j such 

that Fj:,(y)rpv= 0. 
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over Dd and thus F$,(x) represents 

Ak, = V mHF’(x, z)) 
z<m,z,=yi 

over D’. Similarly, Fj:, (y) represents 

V TW”(~, v)) 
w<m+l,w,=x, 

over D’. 
Since F;:,(y) rPY= 0 this implies in particular that F’(x, y) rPY= 0. Also, since for 

each i, F[\l(x) rPX= 1 this representation implies that there must be zl,. . . ,zr”gml <m 

such that for each i, zj = yi and F’(x,z’) IPI= 1. Now, because pX and pY are compat- 

ible, F’(x, y) rpY= 0 implies that F’(n, y) rP,# 1. Thus, for each i, y # zi, and so there 

must be at least two different values u # u among the zi such that 

F’(x,u&= F’(x,I&= 1. 

We will now use this to show that .T is not locally l-l. Since F’(x, u) rP,= 

F/(x, u) rP, = 1, we have for each i < [log ml, 

A$&) tp,= V mv(F’(x,z)) tpr= 1 
2gm,zI=u, 

and 

A;,(x) tp,= V vW”(w)) tp,= 1. 
zSm,z,=v, 

Since .s extends every F{:(x), pX fixes the value of every F{:(x), in particular of every 

Fi”, (x) and F{:,(x). B ecause F$, (x) represents AtU, (x) over D’, and Fi:‘;, (x) represents 

A:,:(x) over D’, for every i F$(x)r,= AkJx)t,= 1 and FL:,(x) to,= A&Jx)rpI= 1. 

Therefore, by construction, Ft(x, u) rP,= 1 and FL(x, v) rh= 1 and thus x + u and 

x --t v both label the leaf followed by pX in Z. Since u # v this shows that F is not 

locally l-l. 0 

Lemma 15. Let {g ( 1 <x<m + 1) be matching decision trees, as described above. 

Then it is impossible for Y to be at the same time a local function, locally l-l, and 

consistent. 

Proof. Assume for sake of contradiction that I is locally l-l, consistent, and a local 

function. By definition of .F, we also know that no leaf label of Fm+t contains (x, mS 1 ), 
for any x, 1 <x <m + 1. We will show that this leads to a contradiction. 
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Let U, Y be maps over D of size exactly k. Let Z, 4 be complete matching 
decision trees over D. Then we have the following definitions. 

(1) I(U) = Q(U) - rk( U), where YL( U) = #{(x, y) 1 U labels a path in K mapping 
x to y}, and YR(u) = #{(x, y) 1 U labels a path in YY mapping x to y}. 

(2) d(U, I’) = #1(x, y) I U 1 a e s b 1 a branch in x mapping x to y} and V labels a 
branch in 4 mapping x to y and U is compatible with V. 

(3) Let a(N,k) be the number of leaves in a complete, matching decision tree of 
height k over D, lt)l = N. 

(4) Let b(N,r, k) be the number of leaves in a complete matching decision tree of 
height k over D, IL>/ = N, that lie below a given node of height r. 

We will write Q(U) as QX,Yj rL(U,x, y), where r~(U,x, y) = 1 if U labels a path 
in Z with leaf value (x, y), and otherwise YL( U,X, y) = 0. Analogously, Q(U) = 

c (ryj Q( U,X, y), where Q( U,x, y) = 1 if U labels a path in YY with leaf value (x, y). 
Similarly, we will write d(U, V) as c,,, d(U, V,x, y), where d(U, V,x, y) is 1 if: U is 
compatible with V; U labels a path in S$ with leaf value (x, y); and V labels a path 
in 4 with leaf value (x, y). 

Lemma 16. Given the quantities de$ned above, 

(a) a(?? - 2k,k) v IL(U) = XV d(U, V) s b(N - 2k, /U fl Yl,k). 
(b) a(N -2k,k).~(U) = ~~d(~,U).b(~ - 2k,jUn P’[,k). 

Proof. We give the proof of part (a). The proof of part (b) is analogous. Rewriting 
the left- and right-hand sides, we want to show 

~)“L(U,x,y).u(N-2k,k)=CCd(U,V,r,y).b(N-2k,IUnVl,k). 
X,Y V 

Fix U,x, y. Then we will show that Q( U,x, y) e a(N - 2k, k) = CT d( U, Y,x, y) . b(N - 

2k, [U n VI, k). If r~( U,x, y) = 0, then d(U, V,x, y) = 0 for all V, and therefore the 
above equality holds for these choices of U,x, y. 

The other case is when YL( U,x, y) = 1. Recall that U labels a path of S$ with leaf 
label x -+ y if and only if IL.( UJ, y) = 1. Let 9-I = 4 Iv. We claim that the number 
of paths in 9’ equals Cy d(U, V,x, y). To see that each path of P contributes 1 to 
the quantity XV d( U, V,x, y), notice that if p is a path of Y’ labelled by V’, then V’ 
is compatible with U, and can be extended to a map, V, which labels a path of YY. 
Because the decision trees are consistent, since there is a path in 4 consistent with 
V and with leaf label x -+ y, it must be the case that x -+ y is also a leaf label of 
the path labelled by V in 4, and therefore d(U, V,x, y) = 1. In the other direction, 
if d( U, V,x, y) = 1, then Y is consistent with U, and V labels a path of 4 with leaf 
value x -+ y, and therefore the restricted path, labelled by V/o, will be a path of F-‘. 

Let Y” be the extension of 9’ to a complete, depth-k decision tree over If’, 
ID’\ = N - 2k. Then the number of branches in the new, extended tree is exactly 
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CV d( U, V,x, y) . b(N - 2k, ( U n VI, k). Alternatively, the number of branches in F” is 

a(N - 2k, k), which is equal to a(N - 2k, k) . r~( U,x, y), and thus the lemma holds. 0 

We are now ready to complete the proof of Lemma 15. Recall that the decision 

trees F are over the universe, D’ of size 2n’ + 1. Let N = 2n’ + 1. By the definition 

of F-, we know that for every U that labels a path in J&I, there is no z such that 

the leaf label of U contains z + m + 1. Therefore, Y(U) > 0 for those U’s that label 

paths in Fm+i. Secondly, because we are assuming that F is both locally l-l and a 

local function, we have that r(U)30 for every U. Therefore, ‘&r(U) > 0, and thus 

ELI a(N - 2k, k)r(U) > 0 as well. 

By Lemma 16, we have & CVb(N - 2k, IU f? Vl,k)[d(U, V) - d(V,U)] > 0. 

However, 

CC~(N-~~,IU~IVI,~)~(~J,V)=CC~(N-~~,IVIIUI,~)~(U,V) 
u v 

=~~b(N-2k,lun VI,k)d(U,V). 
u v 

The first equality follows by swapping the summations and using the commutativity of 

intersection, and the second equality follows by switching notations for U and V. But 

this contradicts the inequality above, and therefore the lemma holds. 0 

Proof of Theorem 11. By Lemmas 14 and 15, if F is locally l-l then it cannot also 

be a local function. Thus, F is either not locally l-l or not a local function and so, 

by Lemmas 13 and 12, PkPb(F)’ is not identically 0. 0 

Theorem 8 now follows as an immediate corollary. 

6. The switching lemma 

In this section we will assume that D” is a set with ID”1 = 2n+ 1 and the underlying 

probability distribution will be M (as defined in Section 3). All other D will be subsets 

of D” of odd cardinality. 

Let K CD. Then Projo[K] is the set of all minimal maps over D which involve all 

of the elements of K. A map g E ProjD[K] induces a restriction; we will refer to ~7 

interchangeably as a restriction and as a map. 

We define the complete matching tree for K CD over D inductively as follows. If K 

consists of a single node k E D, then label the root “k”, and create 2n edges adjacent 

to the root, labelled by {k,j}, for all j E D\(k). Otherwise, K = K’U{k} CD. Assume 

that we have created the complete tree for K’; we will now extend it to a complete 

tree for K. This is done by extending each leaf node ve as follows. Let pe be the path 

from the root to ue. The edge labellings along pe define a partial matching involv- 

ing all elements of K’. If this partial map does not include k, then label ue by k, and add 
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new edges leading out of ve, one for every possible mapping for k that results in a 

map extending the partial matching along pd. Otherwise, if k is involved in the partial 

matching, leave UC unlabelled. Note that each path of the complete tree over K will 

be labelled by some o E Projb[K]. 
For X CD, let p(X) = * denote the condition that all vertices in X are unmatched. 

Also, let #(p) = k denote the condition that exactly k vertices are unmatched by p. 

Lemma 17. Let f be a boolean function over the variables Pij, i # j E D. For every 
K c D, there exists a restriction, o E Projn[K] such that d&f)< 1~~1 + dm,(fra). 

Proof. The proof is very similar to that of Beame and H&ad [3]. Fix K c D. We start 

with the complete matching tree for K. As noted above the paths of this tree correspond 

exactly to elements of Projn[K]. Let v, be the leaf node corresponding to the path 

labelled by c E Projn[K]. For each 0, we replace the leaf node, vO, by a subtree that 

is a matching decision tree for f lo over DIV. The resulting tree clearly represents f 

over D. The depth of the resulting tree for K is at most max,{ 101 + dDt,( f IO)}. 0 

If f is a map disjunction defined over a set D and p is a restriction on D recall 

that we use the notation S(f lp) for dDl,(f rp). We prove the following lemma. 

Lemma 3 (Switching Lemma). Let f be a r-disjunction over DC D”. Choose p at 

random from A!:. Ifs 30 and pn >(r + s)(2r + 2s + 1) then 

where a > 0 satisjes (1 + 225p4n3/a2)’ = 2. 

The proof of the switching lemma, like that of [ll], proceeds by induction on the 

number of clauses in f. We work along the clauses one by one: if p falsifies a 

particular clause, then we are left with essentially the same problem as before; if p 

does not falsify the clause then, it is much more likely that p satisfies the clause (and 

thus ensures that the whole formula is set to true) than p leaves any variable in the 

clause unset. 

There are significant complications however in dealing with partial matching restric- 

tions as opposed to fully independent ones. These complications are similar to those 

that occurred in [4, 151 where the domain of inputs was bipartite graphs. 

We obtain Lemma 3 from the somewhat stronger Lemma 23 by conditioning on 

some arbitrary function F being forced to 0 and on some arbitrary map Q that is 

disjoint from f being entirely unset. First we prove several technical lemmas. 

LemmalS. LetDsatisfy]D]=2n+l;letQ~Dwith]Q]=qandletxED\Q.If 
p(2n - q - 1) >q + 1 then for p chosen at random from A$, 

pdPr[p(x) = * I p(Q) = *I <2p. 



P. Beame, T. Pita&I Annals of Pure and Applied Logic 80 (1996) 195-228 215 

Proof. Consider p = (z, II,) E A’:. Let V = i denote the event that exactly i elements 
of Q are matched outside of Q by the matching, n. Then the probabili~ in question 
is a weighted average of the probabilities Pr[p(x) = + 1 p(Q) = * A Y = i], for all i, 
O<i Gq. (Note that i + q is odd if and only if the unmatched element of D falls in 
Q.) We will upper bound the above probability for a fixed value of i. 

There are two cases based on the way that x is matched by n: 
1. x is an endpoint of an edge e E z disjoint from Q. In this case, the probabili~ 

that n is set to * is the probabili~ that e is set to * which happens with probability p. 
2. x is not an endpoint of any matching edge disjoint from Q. In this case, x is 

certainly set to *. However, we now consider the probability that this case occurs. If 
the unmatched point is in Q then the probability that x is among the i points outside Q 
that are matched with points in Q is i/(2n - q + 1). If the unmatched point is not in Q 
then there is an additional probabili~ of l/(Zn - q + 1) that n is the u~atched point 
for a total probability of i + 1/(2n - q + l)<q + 1/(2n - q + 1)dp by hypothesis. 

The lower bound follows because the probability that x is set to * in each case is at 
least p and the upper bound follows by summing the probabilities in the two cases. 0 

Lemma 19. Let D satisfy IDi = 2n + 1; let Q and R be disjoint subsets of D with 

IQ1 = q and 1RI = r. If p(2n -q - r)>q $ r then for p chosen at random from A$, 

p” QPr[p(R) = * I p(Q) = *I Q(2p)‘. 

Proof. Let R = (XI ,x2 ,...,xr}, Then the probability that R is set to *, given that 
p(Q) = * is equal to 

Pr [P(XI ) = * I P(Q) = *I x f’rldx2 I= * I dQ U 1x1 I > = *I 
x ‘1. x Pr[p(x,) = * / ~(Qu {xI,...,x,_I)) = *]. 

Because each term is of the form Pr[p(x) = * / p(Q’) = *], where qf = IQ’] Gq+r- 1 
satisfies p(2n - q’ - 1) >q’ + 1, by Lemma 1X each term is between p and 2p, and 
therefore the whole quantity is between p’ and (2~)‘. q 

Lemma 20. Let Q CD where ID/ = 2n + 1 and IQ\ = q, and let Y be a partial 
matching over D that is disjoint from Q and / Y 1 = k. If p(2n - 2k - q) 2 2k + q, then 
for p chosen at random from 4: 

PrW’) # 0 I P(Q) = *I 2 . 

Proof. Following along the lines of the previous lemma, the probability Pr[p(Y) # 
0 1 p(Q) = *] can be written as: Pr[p(el) # 0 I p(Q) = *I. + *Pr[p(ek) # 0 I p(Q) = 
* A p(ei . . . ek__i) # 0] where Y = ele2.“ek. We will show that if IY] = r and q 
satisfy p(2n - 2(r + 1) - q) > 2(r + 1) + q, then for a given map of size one, i.e. 
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an edge e, disjoint from u(Y) U Q, Pr[p(e) = 1 1 p(Q) = * A p(Y) = I] is at least 
(1 - p)/Zn. Therefore, since we will only apply this with r <k - 1, the probabili~ 
B@(Y) = 1 / p(Q) = *] is at least ((1 - p)/Z~l)~. 

Let W = i denote the event that exactly i elements of u(Y) U Q are mapped outside 
of u(Y) U Q by rc. The probability Pr[p(e) # 0 1 p(Q) = * A p(Y) # 0] is a weighted 
average of the probabilities Pr[p(e) # 0 1 p(Q) = * A p(Y) # 0 A W = i]. for 
Odifq + 2r. Note that the conditioning implies that each of the i elements outside 
v(Y) U Q matched with an element of v(Y) U Q must be set to * by p. Furthermore, if 
i + q is even then the unmatched point in D lies outside v(Y) U Q and is also always 
set to *. If the matching rr includes e then certainly p(e) # 0. Since e is disjoint from 
v(Y) U Q the matching n includes e if its smaller endpoint avoids the up to if 1 points 
outside of v(Y) U Q mentioned above and n matches this endpoint to the other end of e. 
This probability is 

( 
I- 

if1 1 ,1-P 
2n-2r-q+l 2n-2r-q’2n > 

sincei+1<2r+q+l <2k+q. 0 

Lemma 21. Let F be a boolean formula over D, IDI = 2n + 1 and let R C D. Then 

for aZ1 kgn, Pr[Fr,= 0 1 A+(p) = 2(k - 1) + 1 A p(R) = *] B Pr[Fr,= 0 1 g(p) = 

2k + 1 A p(R) = *]. 

Proof. Note that the dis~bution of restrictions given p(R) = * can be described as 
follows. Choose a category, i, 0 <id /RI from some distribution. Then choose k ac- 
cording to the shifted binomial distribution, B(n - IRI - i, p) + i. Choose a random set, 
S’, of size 2k + 1 from D \ R, and let S = S’ U R. Choose a random matching, n’, on 
D\S. Therefore, the distribution of restrictions given p(R) = * and the extra condition 
that #(p) = 2k + 1 can be described by: Choose a random set, S’ of size 2k + I - /RI 

from D \ R. Let 5’ = S’ U R and then choose a random matching, E’ on D \ S. 

Let Ak denote the subdistribution of restrictions given that p(R) = * and #(p) = 
2k + 1, and let Ak-’ denote the subdistribution of restrictions given that p(R) = * and 
#(p) = 2(k - 1) + 1. We would like to show that the probability that F lp= 0 in Ak is 
no greater than the probability that F tp= 0 in Ak-‘. 

Let pk-’ = (7~~-~,rr$:-‘) f A’-‘, and let pk = (~k,~~) E Ak. Then we say that 

P k-i and pk correspond if: there exists an (x, y) E & such that rci U (x, y) = TC-’ 

and rck U (cc, y) = nkml. Note that whenever pk E Ak forces F to 0, so do all of the 
elements of Ak-’ which correspond to pk. This is true because for every pkP1 which 
corresponds to pk, all underlying variables are the same except for a few variables 
which are set to * in pk, and set to 0 or I in pk-‘; in other words, pk-’ is a further 
restriction of pk. Now, because F is already forced to 0 by pk, it must continue to be 
0 as we set more variables. Thus, F is also forced to 0 by pk-’ . 

Let Ck denote the elements of Ak which force F to 0. For each pk in Ak, there are 
(2k + 1)k elements in Ak-’ which correspond to it, and conversely, for each pk-’ E 
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Ak-‘, there are n+ 1 -k - \I?[ elements of Ak which correspond to it. The probability that 

a random pk over Ak forces F to 0 equals ICkl/lAkl; thus the probability that a random 

P k-’ over Ak-’ forces F to 0 is at least lCkl . (2k + l)k/(n + 1 - k - IRI)IAk-‘I. Since 

IAk,-‘I is equal to (2k + l)klAkl/n + 1 - k - [RI, the probability that F is forced to 0 

over Ak-’ is greater than or equal to the probability that F is forced to 0 over Ak 
which is what we wanted to prove. 0 

Lemma 22. Suppose that 0 <a0 <al < 1. . 

Then for all k < n, cJ_k Cijaj < cyzk ajbj. 

d LX,, and for all k <n, Cyzk aj < xy=k bj. 

Lemma 23 (Stronger Switching Lemma). Let D be an arbitrary set with IDI = 2n+l, 

and let Q be an arbitrary map over D with IQ\ = q. Let f be an r-disjunction over 

D’ = D \ {v(Q)} and let F be an arbitrary function over D. Let p be a random 

restriction chosen according to &‘;. Then for s 2 0 and pn B (r+s+q)(2r+2s+2q+ 1) 

we have 

W&f tp)ks I Flp= 0 A p(Q) = *]<a’, 

where cc > 0 satisJes (1 + 225p4n3/a2)’ = 2. 

Proof. The proof proceeds by induction on the total number of maps in f. 

Base Case. There are no maps in f. In this case f is identically 0 and therefore f 

is represented by the tree consisting of the single node labelled 0. Hence, S(f rP) = 0 

and the lemma holds. 

Induction Step. Assume that the lemma holds for all map disjunctions with fewer 

maps than the map disjunction of f. We will write f as fr V f2 V . . . where each fi 

is a map of f. We will analyze the probability by considering separately the cases 

in which p does or does not force the map fi to be 0. The failure probability, the 

probability that 6( f rp) as, is an average of the failure probabilities of these two cases. 

Thus, 

Pr[&fr,)>s I Ftp=O~p(Q)=*] 

G maWr[&f tp)2s I Ftp= 0 A p(Q) = * A fi rP= 01, 

M&f tp)- 1 F tp= 0 A P(Q) = * A fi tpf 01). 

The first term in the maximum is Pr[G(f rP)>s I (F V fi)rp= 0 A p(Q) = *I. Let 

f’ be f with map f, removed; then Pr[&f rP)>s I (F v fi) IQ= 0 A p(Q) = *] 
= Pr[&f’r,)>s I (F V fi)rp= 0 A p(Q) = *]. Because f’ has one less map than f, 
this probability is no greater than d, by the inductive hypothesis. 

Now we will estimate the second term in the maximum. Let T be the set of variables 

appearing in the first map, f,. By hypothesis, size(T) <r. We will analyze the cases 

based on the subset Y of the variables in T to which p assigns *; we use the notation 
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*(or) = Y to denote the event that the variables in T which are assigned * by pr are 
exactly those in Y. Then 

Pr [&ftp)% I Ftp= 0 A P(Q) = * A fi tp# 01 

= &M&f tp) A *(pr> = y I Ftp= 0 A P(Q) = * A fl rpf 01. 
- 

Consider the case in which Y = 0. In this case the value of fr is forced to 1 by 
p. It follows that f is forced to 1 and hence S(f) = 0 so the term corresponding to 
Y = 0 has probability 0. The sum then becomes 

C W&fl,)ksA*(m) = Y 1 Ftp= Or\ P(Q) = *A firpf 01, 
YG r, 
Y#@ 

which is equal to 

c Pdd(fr,)>s 1 Frp=OAdQ)= *Ahtp#o" *bT)=Yl 
YC r, 
Y#0 

(1) 

x pr[*(pT) = Y 1 Ft,,= OAF%?) = *Aflrp# 01. (2) 

We will first bound the latter term, (2), in each of these products. Given that fl I,,# 0, 

the probability that *(Pr) = Y is equal to the probability that p(Y) = * A p(T \ Y) = 1. 

Thus, term (2) is no greater than 

Pr[p(Y)=*r\p(T\Y)=l I Ftp=OAdQ)=*Afitp#Ol 

<Pr[p(Y) = * 1 Ftp= 0 A p(Q) = * A ,o(T \ Y) = 1 A p(Y) # 01. 

Let F’ be F v G where Gr,,= 0 if and only if p sets all variables in T \ Y to 1; then 

the above probability is equal to Pr[p( Y) = * I F’ lp= 0 A p(Q) = * A p(Y) # 01. 

Claim A. Let IYI = k, IQ1 = q. When pn>(k+q)(2k+2q+ l), Pr[p(Y) = * I Ftp= 
OAdQ)= *Ap(Y) # 01 G PO(Y)= * 1 P(Q)= *AdY) #Ol. 

The proof of this claim is somewhat involved so we postpone it until after the rest 
of the main line of the argument. 

Since ( Y 1 <r and pn 2 (r + s + q)(2r + 2s + 2q + 1) we can apply Claim A to show 
that the term (2) is at most Pr[p(Y) = * 1 p(Q) = * Ap(Y) # 01. Since the conditions 
on the parameters also imply that p(2n - 2r - 2q) > 2r + 2q > 21 Y I + 29, by Lemma 19, 

Pr[p(Y) = * ( p(Q) = *]<(2p)2’y’, 

Also, by Lemma 20, 
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Therefore, 

P@(Y) = * I P(Q) = * A P(Y) # OIG <(9&r)“‘. 

Now we look at the first term, (l), in each product. Suppose that 21 Y 1 ds. For each 

fixed Y, we will analyze the probability above by applying Lemma 17 with K = u(Y) 
and D = D rp. By this lemma, if S(f rP)>s then there is some o E Proj~r~[u(Y)], 

such that +rp)to((f tP) rb)/ > s - 1~~1. To use this requires that we consider all maps 
in Proj,rp[u(Y)]. One difficulty is that D rp is itself a random variable dependent on 
p. We handle this by considering all maps cr in ProjD[o(Y)] and including them only 
if p(o) = *. For notational convenience, let P(D, Y) = Projo[u(Y)]. When p(o) = t, 
(f rP) to= (f to) rP and applying the definition of S(f rP), the above probability is no 
greater than 

C Pr[&(f tb) tp) 2s - If4 A ~(0) 
UEP(D,Y) 

= * I F tp= 0 A P(Q) = * A t-1 tp# 0 A *(iv) = Yl 

G ,DW&(f toI tp) 2s - 101 1 F tp= 0 A P(Q) 
GP(D,Y) 

= * A fl tp# 0 A *(PT) = y A p(o) = *] 

x Pr[p(o)=* 1 Ftp=OAP(Q)=*A\ltp#OA*(PT)=Yl 

=gyw tb) tp) &-2lYI 1 Frp=OAp(Q)=*Ap(T\Y) 

= 1 A p(o) = *] 

x Pr[p(o) = * I Fro= 0 A p(Q) = * A p(T \ Y) = 1 A p(Y) = *I. 

The last inequality above holds because lo] <2]YI, the events j-1 rP# 0 A *(pa) = Y 
are equivalent to the events p(Y) = * A p( T \ Y) = 1, and the condition p(Y) = * is 
implied by p(o) = *. Recall that if Y is a map, u(Y) CD denotes the set of underlying 
vertices which are contained in the map. We will split up the map g into two maps, 
cr and 02, where a variable, P;j E r~ is in crt if both i E u(Y) and j E u(Y). Otherwise, 
Pij E 02. Note that for every ~7 E ProjD[u(Y)], O< 101 I < IYI. We further divide the 
above probability into sums according to the size of crt to get 

IYI 
zg nEfxY) pr[@(ft,)tP), >s-2lYI ) Frp=OA\(Q)=*AP(T\Y) 

% , 
Ic71=IYI-i 

= 1 A p(o) = *] (3) 

x Pr[p(o) = * ( Ftp= 0 A p(Q) = * A P(T \ Y) = 1 A P(Y) = *I. (4) 
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For a fixed value of Y and (T E P(D, Y), we estimate the first term. Let f’ be f 

with fi removed and consider the different possibilities for Q. Let f’ be f with the 

variables in T \ Y set to 1. Let F’ be F V G where G rP= 0 if and only if p sets all 

variables in T \ Y to 1. Then the first term is equal to 

MUf’M,Ps - 21YI 1 F’r,= 0 A p(Q) = * A p(a) = *]. 

Now, if (r = Y then f{ is satisfied by CJ and f’ lb is the constant 1 and this probability 

is 0<c8-*lyl. Otherwise, cr # Y, the map f,' is falsified by CJ, so f’l,, has one fewer 

map than the original f that we started with. If we let Q’ be the map which is the 

conjunction of Q and (T, then we can rewrite the term above as 

WWf’LJ,)>~ - 2IJ’l I F/r,= OA dQ’) = *I. 

Furthermore, letting s’ = s-21YI 20, since lr7<2lYI and q’ = IQ’1 = lQl+Jol<q+21YI 

we have pnZ(r+s+q)(2r+2s+2q+ l)>(r+s’+q’)(2r+2~‘+2q’+ 1) so we 

can apply the inductive hypothesis with f', F’, Q’, q’, and s’ to show that the above 

quantity is no greater than aS-*lyl. 

Since the above calculation gives the same upper bound for term (3) for all values 

of Q, we can pull this quantity outside the sum to obtain 

= 1 A p(Y) = *]. 

Now we will estimate the inner summation for a fixed value of i. As above, we replace 

the condition F fp= 0 A p(T \ Y) = 1 by the single condition F’ rp= 0. Also, for a 

particular 0, the event p(a) = * is equivalent to the events ~(01) = * A ~(02) = *. 

Because ~(01) = * is implied by p(Y) = *, the inner summation is equivalent to 

C Pr[p(a2) = * I F/r,= 0 A p(Q) = * A p(Y) = *]. 
~E‘W,n 
101j=IYI-i 

If we let Q’ be the conjunction of Q and Y then we can rewrite this as 

c Pr[p(aa) = * 1 F/r,= 0 A p(Q’) = *]. 
~EWV), 
lall=IYI-i 

We would like to remove the conditioning on F’ rp= 0 but we cannot do this for each 

term as in Claim A. We have to consider the terms in this sum in the aggregate rather 

than individually. Let Nj be the number of o’s such that 101 I = I Y I - i. Then the above 

probability can be rewritten as 

Ni . ~qo2.p)b(~2) = * I F’ tp= 0 A dQ’) = *I, 

where the above probability is over all pairs (a~, p), such that 1~1 I = (YI - i. For 

each 02, let u be the set of vertices in cr2 which are not contained in u(Y). Note that 
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the number of vertices in u equals 2i. Also note that for 02 chosen at random, u is a 

uniformly distributed set over D” = D\ u(Q’) having these properties. Letting Vi be the 

collection of all sets over D” of size 2i, this probability is equal to N; . Pr~u,P),[p(u) = 

* 1 F’ rP= 0 A p(Q’) = *], where the probability is over all pairs (u,p), such that 

u E 6 and p E A;. This probability can be further divided according to #(p), the 

exact number of vertices of D that are unmatched by p: 

~~ .e ~r(u,~,[p(u) = * 1 F’t,= 0 A p(Q') = * A #(PI = 2j + 11 
j=O 

xPqu,,)[#(p) = 2j + 1 j F/r,= 0 A p(Q') = *]. 

Given that #(p) = j, for a randomly chosen u the event p(u) = * is independent of 

F’ rp= 0. Thus, the above probability is equal to 

N; t- Pqu,p,[p(u) = * I P(Q') = * A W) = 2j + 11 
j=O 

x Pr[#(p) = 2j + 1 1 F’&= 0 A p(Q’) = *], 

where we have dropped the subscript on the probability in the second factor in each 

term since this probability only depends on p. For all k<n, xj,kPr[#(p) = 2j + 

1 1 F’ rp= 0 A p(Q’) = *] equals Pr[#(p)32k + 1 IF’ rp= 0 A p(Q’) = *], 
because the events are disjoint. Similarly, ~jBkPr[#(p) = 2j + 1 1 p(Q’) = *] equals 

Pr[#(p)22k + 1 A p(Q’) = *]. 

Claim B. For all k, Pr[#(p)>k 1 F’r,= OAp(Q’) = *] Q Pr[#(p)ak I p(Q’) = *]. 

Using Claim B and noting that P~-(~,~,[p(u) = * I #(p) = 2j + 1 A p( Q’) = *] 

<Pr(U,p)[p(u) = *I #f(p) = 2j + 3 A p(Q’) = *] for all j>O, we can apply Lemma 22 

with aj = Pr(,,)[p(u) = * I #(p) = 2j+ 1 Am = *], ai = Pr[#(p) = 2j+ 1 I F’rp= 
0 A p(Q’) = *], and bj = Pr[#(p) = 2j + 1 A p(Q’) = *] to show that the above 

probability is no greater than 

N . ePrcu,p,[~(u) = * 1 #(P) = 2j + 1 A P(Q’) = *I 
j=O 

xPr[#(p) = 2j + 1 I p(Q’) = *] 

which is equal to Ni .I+(,,,)[p(u) = * I p(Q’) = *I. 

Since for each fixed value of u E 6, the probability that p(u) = * is the same, the 

above probability is equal to Ni .Pr[p(u) = * I p(Q’) = *], where the probability is now 

over the distribution JY~. Using the fact that \ul+lo(Q’)l = 2i+2]YJ+2q<2r+2s+2q 
and the bound on pn, we can apply Lemma 19 to conclude that for u E vi, Pr[p(u) = 

* I p(Q’) = *I <G’P)~‘. 
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Recall that Ni is equal to the number of o’s such that (err ( = (Y( - i. There are at 
most 

2lYI ( > (2jYl - 2i)! 

2i 21rl-i(lYl -i)! < ( > 

‘PI (Iyl _ i)lYI-r 

choices of 01 with ]crt ( = IY I - ’ z and for each such cl there are at most (;)(2i)! < m2i 

choices of a2 where m = 2n + 1 - (YI - 2q <2n. Thus, there are a total of at most 

2lYl ( > 2i (IYI - i)lyl-i(2n)2i 

choices of c E P(D, Y) such that 101 I = IY I - i. 

Thus, for all Y such that 2 ( Y I <s, using the expression in (5), we have 

Pr [d(.f tp)2s 1 F tp= 0 A P(Q) = * A fi tp# 0 A *(PT) = Yl 

< @IYI 1’1 ‘El 
CC 1 

2n2i(IyI _ i)lyl-i(2p)2i 

<cc’-2/‘1 IY’ 2lYI 
4 > i=O 

2i 2n2’(lYI)“‘-i(2p)2’ 

= a-Nl)y)lrl c 
zJ2:‘> ( s)2i 

< a-W7lyllrl c 
;=: (2y’) ($$ 

4pn = cIs-W lyllrl _ 

( ) 

2lYl 

JU+’ 

5Pn 

( ) 

2lYI 
<aW71yllrl _ 

dvi 

For Y such that 21 Y I > s we cannot use the expansion in terms of (3) and (4) to esti- 
mate this probability. However, in this case, since a < 1 and 5pn 2 1, c8s-2~y~(5pn)2~y~ > 1 
so it still is an upper bound on this probability. 
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Plugging in the bounds we have for the terms (1) and (2) we get 

The last inequality holds since a satisfies (1 + 225p4n3/a2)’ < 2. 0 

We now provide the proof of Claim A above. 

Lemma 24 (Claim A). Let IDI = 2n + 1 and Y and Q be d~j~int maps over D with 
/Y / = k and /Q/ = q. Let F be an arbitrary unction deemed over the var~les on 

D. When pn>(k+q)(2k+2q+l), Pr[p(Y) = * / Ff,= OAp(Q) = *A&Y) # 

01 6 N?W = * I ~02) = * A ~(0 # 01. 

Proof. As in previous proofs of switching lemmas, we will prove Claim A by showing 
that 

Pr[Fr,= 0 1 p(Y) = * A p(Q) = *] < Pr[Ft,= 0 1 p(Y) # 0 A p(Q) = *]. 

This proves the claim because for arbitrary events A, B, and C, Pr[A j BAC] d &[A 1 C] 
++ Pr[B j A A C] < Pr[B 1 C]. 

Let V = i denote the event that there are exactly 2i + 1 elements in D \ (v(Y) U v(Q)) 

not matched with points in D \ (u(Y) U v(Q)) by x. Note that this number is always 
odd since IDI = 2n + 1 and Iv(Y) U u(Q)] . IS even. Furthermore, since each such point 
either is matched to a point of v(Y) U v(Q) or is the point unmatched by n we have 
0 < i 6 k + q. Therefore, Pr[F tP= 0 1 p(Y) = * A p(Q) = *] is equal to 

x Pr[Ff,= 0 1 p(Y) = * A p(Q) = * A V = i] .Pr[V = i I p(Y) 
i=O 

= * A p(Q) = *]. 

Similarly, Pr[Ff,= 0 / p(Y) # 0 A p(Q) = *] is equal to 

z Pr[Ft,= O]p(Y) # 0 A p(Q) = * A I’ = i] . Pr[V = i ] p(Y) # 0 A p(Q) = *]. 
i=o 
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We will show: 

(1) 

(2) 

(3) 

For each i, O<i<k +q, 

Pr[Fr,= 0 ] p(Y) = * A p(Q) = * A V = i] 

<F’r[&= 0 1 p(Y) # 0 A p(Q) = * A I’ = i]. 

For each i, Obi<k + q, 

Pr[F~,= 0 / p(Y) = * A p(Q) = * A Y = i] 

>Pr[fo&=O 1 p(Y)=*l*\p(Q)=*AY=i+l]. 

For ali j, O<j<k + q, 

kPr[V = i 1 p(Y) = * A p(Q) = *I< ,$Z’r[V = i I p(Y) # 0 A p(Q) = *I. 
i=O 

Then, by Lemma 22, the claim follows. 
We will first prove step (1). We break up the collection of restrictions satisfying 

(p(Y) # 0 A p(Q) = x A V = i) into equivalence classes as follows. Suppose that 
p is chosen as (n, rr* ). Let D’ = D \ (u(Y) U u(Q)) and fl’ and a$’ C #’ be the 
resections of rr and 71% respectively to those edges both of whose endpoints lie in D’. 
The condition that V = i says that there are exactly 2i + 1 points in D’ u~atch~ by 
rc so it simply fixes the size of #‘. 

Consider some fixed choice of 78” and al*)’ and consider all p = (rc, n,) consistent 
with them. Given this, the condition that (p(Y) = * Ap(Q) = *) completely determines 
p as a restriction so the event F rp= 0 is completely determined. If F rp= 0 then it 
will certainly also be forced to 0 if we allow the possibility that p does not assign all 
of Y to * so in particular it is also 0 if (p(Y) # 0 A p(Q) = *). Therefore, it is at 
least as likely to be forced to 0 if (p(Y) # 0 A p(Q) = *) as if (p(Y) = * A p(Q)). 
Since this is true for each choice of 76” and r$‘, it is true over all. This completes 
the proof of (I). 

The in~ition behind step (2) is simply that the larger Y = i is, the more stars p is 
likely to have, and hence the less likely it is that F is forced to 0. To prove step (2), 
let R be the conjunction of Q and Y and fix i. Then we want to prove 

Pr[Ff,= 0 1 p(R) = * A V = i]<Pr[Fr,= 0 I p(R) = * A V = i - 11. 

The probability Pr[F rp= 0 1 p(R) = * A V = i] can be divided according to the 
exact number of *‘s that are assigned by p: 

Pr[Ft,= 0 1 p(R) = * A P = il 

= ,eoRIF rp= 0 A #(p) = 2j -t- 1 1 p(R) = * A V = i]. 
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A similar equation holds when p(R) = * and V = i - 1: 

Pr[Ft,= 0 1 p(R) = * A V = i - l] 

= 2 Pr[F],= 0 A #(p) = 2j + 1 1 p(R) = * A v = i - 11. 
j=O 

(When j < i + [RI, Pr[Fr,= 0 A #(p) = 2j + 1 1 p(R) = * A V = i] = 0.) 

First, note that the conditioning that Y = i- 1, or V = i is irrelevant to the probability 

that F I,,= 0, given that #(p) = 2j + 1 and p(R) = *, Therefore, we have 

Pr[Fr,=O 1 V=i-lAp(R)=*A#(p)=2j+l] 

= Pr[Fr,= 0 1 V = i A p(R) = * A #f(p) = 2j + l] 

= Pr[F rp= 0 1 p(R) = * A #(p) = 2-j + 11. 

Thus, it is left to show 

5 Pr[F rp= 0 1 #(p) = 2j + 1 A p(R) = *] 
j=O 

xPr[#(p) = 2j + 1 I V = i A p(R) = *] 

< 5 Pr[F to= 0 1 #(p) = 2j + 1 A p(R) = *] 
j=O 

xPr[#(D’) =j I V = i - 1 A p(R) = *]. 

By Lemma 21 we know that Pr[F rp= 0 I p(R) = *A#@) = 2j+l] is a nonincreasing 

function of j. That is, the larger j is, the less likely that F is forced to 0. Therefore, it 

suffices to show that the conditioning that V = i makes it more likely that j is larger 

than the conditioning that V = i - 1. More explicitly, by Lemma 22 it suffices to show 

that for all j, 

Pr[#(p)<2j + 1 1 V = i A p(R) = *] <Pr[#(p)<2j + 1 I V = i - 1 A p(R) = *]. 

Recall that the distribution given (V = i A p(R) = *) can be described as follows. 

First, choose k at random, according to the binomial distribution, shifted by i: B(n - 

[RI - i, p) + i; then choose a random matching rc of n - [RI -k edges on D \ o(R). The 

distribution of #I(p) given this conditioning is then given by 2[B(n - IRI - i, p) + i + 

/RI] + 1. The distribution of #(p) given (V = i - 1 A p(R) = *) is then 2[B(n - ]R] - 

i + 1, p) + i - 1 + IR]] + 1. Therefore, it is clear that Pr[#(p) Q 2j + 1 I V = i A p(R) = 

*] <Pr[#(p)<2j + 1 I V = i - 1 A p(R) = *]. By Lemma 22 this completes step (2). 

We will now prove Step (3). We want to show that for all j, 0 <j< k + q, 

Pr[Vbj I p(Y)= *Ap(Q)= *]<Pr[V<j ) p(Y)#OAp(Q)= *I. 

The right side of this inequality is a weighted sum of Pr[ V d j I p( Y’) = 1 A p( Y \ 

Y’) = * A p(Q) = *], where Y’ ranges over all subsets of Y. We want to show that 
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this probability is smallest when Y’ = 0. Notice that for all choices of Y’ C Y of a 
given size the probability is the same. Therefore, it suffices to prove that, for Y’ c Y 
and e E Y \ Y’ and Y” = Y’ U {e}, 

Pr [V<j 1 p(Y') = 1 A p(Y \ Y’) = * A p(Q) = *] 

<Pr[V<j 1 p(Y”) = 1 A p(Y \ Y”) = * A p(Q) = *]. 

LettingR=Q~(Y\Y”) we can rewrite what we want to show as 

Pr[ V <j 1 p( Y’) = 1 A p(e) = * A p(R) = *] 
< Pr[ V <j 1 p( Y’) = 1 A p(e) = 1 A p(R) = *]. 

Let D’ = D \ u(Y’) and m = n - ]Y’l. Note that the events other than p(Y’) = 1 do not 
involve variables that touch Y’, and the conditional distribution of p on the variables 
over D’ given that p(Y’) = 1 is the same as a p’ chosen from A’:‘. Therefore, it is 
equivalent to show that 

Pr[V Q j I p’(e) = * A p’(R) = *] <Pr[V < j I p’(e) = 1 A p’(R) = *] 

which in turn is equivalent to 

Ciaj Pr[ V = i A p’(e) = * A p’(R) = *] 

Pr[p’(e) = * A p’(R) = *] 

~ CiGj Pr[V = i A p’(e) = 1 A p’(R) = *] 

Pr[p’(e) = 1 A p’(R) = *] ’ 

Consider the two denominators: 

P@(e) = * A p’(R) = *] 

= Pr[p’(e) = * 1 p’(R) = *] . Pr[p’(R) = *] 2 p’Pr[p’(R) = *] 

by Lemma 19, 

Pr[p’(e) = 1 A p’(R) = *] < Pr[p’(e) # 0 A p’(R) = *] 

= Pr[p’(e) # 0 I p’(R) = *] . Pr[p’(R) = *] 

G +Pr[p’(R) = *] 

by Lemma 20. Therefore, 

P@(e) = 1 A p’(R) = *] < sPr[p’(e) = * A p’(R) = *]. 

(6) 

Now let Y = II?] + 1. The condition (6) is clearly satisfied when jar - 1 since the 
probability on the right side is 1 so we can assume that j G r - 2. We will show that for 
j < r - 2 each term in the numerator on the right of (6) is at least 2( 1 - p)/pr(2r + 1) 
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times the corresponding term on the left. This is sufficient since then the right-hand 

side of (6) is at least 

W - p) mp2 
p42r+l)l-p 

2pm >l 
- = r(2r+ 1)’ 

times the left-hand side of (6) since 2pm 2 pn 3r(2r+ 1) by assumption since r 6 1 Y I+ 

IQ1 Gk + 4. 
We will actually compare the two probabilities with V = i in the two cases given 

a fixed choice of the set I of 2i + 1 points outside of v(R U e) that correspond to the 

V = i event and a fixed choice of p’ outside of I u u(R U e): 

In the case that p’(e) = *, we can count the number of ways that rc’ can match the 

points in I u u(R U e) as follows: Consider some fixed ordering of the points in 1. We 

first choose an ordering of the 2r points of RUe along with an extra dummy point. The 

first 2i + 1 of the points are paired with the 2i + 1 points of I in order. The remaining 

points of u(R U e) are paired up consecutively according to this order. The point paired 

with the dummy point will be the point unmatched by 7~; the other pairs will constitute 

the matching edges of rc’. This ordering overcounts the number of choices of the r - i 

edges occurring inside u(R U e) - there are 2 equivalent orderings of the endpoints 

within each edge and (r - i)! equivalent orderings amongst the edges. Thus, the total 

count is (2r + 1)!/2’-‘(r - i)!. Finally, all r + i edges of rc’ in I U v(R U e) are set to 

* which happens with probability P’+~. 

In the case that p(e’) = 1, e is guaranteed to be matched by n’ so the number of 

choices for rc’ can be counted as above except that R replaces R U e in the count. 

Therefore the number of choices of 7~’ is (2r - 1)!/2’-‘-‘(r - i - 1 )!. Finally, e must 

be set to 1 and the remaining r + i - 1 edges must be set to * which happens with 

probability ( 1 - p)p’+‘-’ . 

Therefore, the case that p’(e) = 1 is 

(2r--l)!(l--p)p’+‘- 
2r-I-I(r-_i-_1)! (1 - p)(r - 9, 2(1 - P) = 

(2r+l)!p’+’ 
2’-‘(r-i)! 

pr(2r + 1) ‘pr(2r+ 1) 

times as likely as the case that p’(e) = * which is what we required. Cl 
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