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Abstract. We give exponential size lower bounds for bounded-depth Frege
proofs of variants of the bijective (‘onto’) version of the pigeonhole principle,

even given additional axiom schemas for modular counting principles. As

a consequence we show that for bounded-depth Frege systems the general
injective version of the pigeonhole principle is exponentially more powerful

than its bijective version. Furthermore this yields a slightly simpler proof

of exponential separations between modular counting principles in bounded-
depth Frege systems.

1. Introduction

Over the last several years, substantial progress has been made in the study
of the complexity of propositional proof systems. A particularly noteworthy devel-
opment in this effort has been the significant cross-fertilization between research
on circuit complexity and research on propositional proof complexity. One area
of application of circuit-complexity techniques in proof complexity has been in the
study of constant-depth Frege systems, proof systems in the conventional axiom
schema/inference rule format each of whose constituent propositional formulas has
constant depth.

Ajtai [2] introduced circuit-complexity techniques to the study of constant-
depth Frege systems and provided the first bound showing that the propositional
pigeonhole principle did not have efficient constant-depth proofs. His arguments
were simplified by Bellantoni, Pitassi, and Urquhart [9] and the complexity lower
bound improved to exponential by Beame, Impagliazzo, Kraj́ıček, Pitassi, Pudlák,
and Woods [7, 16, 14].

Given these results, a natural question to ask is: What is the power of the
proof system if it is augmented by axiom schemas for some family of tautologies
that does not have efficient proofs? Tautologies for several combinatorial principles
have been studied. Ajtai [3] showed that if the pigeonhole principle is added as an
axiom schema then the Count2 tautologies still do not have efficient proofs, where
the Countp tautologies express the fact that there is no perfect partition of a set
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M into blocks of size p, if |M | 6≡ 0 (mod p). Again, this bound was improved
to exponential in [8, 18] and can be extended to arbitrary values of p. These
arguments used the usual circuit-complexity techniques augmented by specialized
combinatorial techniques to handle the new axiom schemas.

A natural next question (asked originally in [15]) was to examine the relative
strength of the Countp principles for different values of p. Ajtai [1] first showed
that, when p and q are distinct primes, proofs of Countq are not efficient even
when given Countp as axiom schemas. To handle the Countp axioms Ajtai used
a reworking of several ideas from the theory of representations of the symmetric
group.

A different approach for handling the Countp axioms was taken by two other
groups of researchers independently. This approach was a natural extension of the
methods in [8, 18]. Riis [18] laid out a framework involving showing that certain
‘exceptional forests’ of decision trees do not exist. This problem was left unsolved
in [18]. Working along similar lines, Beame, Impagliazzo, Kraj́ıček, Pitassi, and
Pudlák [6] introduced the notion of a Nullstellensatz proof system and reduced
the existence question for objects similar to Riis’ exceptional forests to the degree
required for certain proofs in this system. They also showed lower bounds on
this degree using Ramsey theory, and thus extended Ajtai’s results to a somewhat
wider class of p, q combinations. Riis [19] applied similar Ramsey theory arguments
directly to the forests themselves.

One important contribution of [6] was to show that exponential lower bounds
for Countq given Countp would follow from improved degree bounds for the Null-
stellensatz proofs. These improved degree bounds were shown by Buss, Impagliazzo,
Kraj́ıček, Pudlák, Razborov, and Sgall [10] who introduced a nice inductive method
for producing such bounds.

The present paper uses similar techniques to give a further refinement of our
understanding of the strength of these combinatorial principles. Thus far, we have
referred to ‘the’ pigeonhole principle. However, there are a number of variations
of the pigeonhole principle depending on the sizes of the domain and range of the
map and on whether or not the map is required to be ‘onto’ (which is a weaker
version). The lower bounds mentioned above have applied to either version equally
and have assumed that the domain is one element larger than the range. We show
that the onto version of the pigeonhole principle from n + pbε lognc points to n

points, onto-PHPn+pbε lognc

n , requires exponential size constant-depth proofs even
given Countp as axiom schemas. The key feature of our argument is a new degree
lower bound for Nullstellensatz proofs of onto-PHPn+pk

n . (Our results strengthen
the results in [20] and are based on a substantially different presentation.)

Since onto-PHPn+pbε lognc

n does follow efficiently from axiom schemas for the
general PHPn+1

n , and additional axiom schemas for Countp do yield efficient proofs
of onto-PHPn+1

n , it follows that PHPn+1
n requires exponential size constant depth

proofs given axiom schemas for onto-PHPn+1
n . Also, since additional axiom schemas

for Countq, for appropriate q 6= p do give short proofs of onto-PHPn+pbε lognc

n , the
exponential separations between Countq and Countp principles are also corollaries
of our results. The idea of examining the relationship between onto-PHPn+pbε lognc

n

and Countp was originally used implicitly by Riis as the basis of the approach
in [18] towards proving a separation between Countp and Countq.
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There has been a substantial improvement in the precision and presentation
of the methods for proving lower bounds on constant-depth Frege systems with
additional axiom schemas and the papers above do not give entirely self-contained
explanations of the best of current techniques. In this paper we attempt to give as
complete a presentation as possible.

We now outline the structure of the argument, giving references for the key
techniques. We use the notion of a k-evaluation due to Kraj́ıček, Pudlák, and
Woods [14], incorporating the matching decision trees of Pitassi, Beame, Impagli-
azzo [16], and built for any small Frege proof using a switching lemma proved with
the methods of Beame [4]. Then, as in the argument of Riis [18] and Beame and
Pitassi [8], we show that having a k-evaluation implies the existence of a certain for-
est of matching decision trees. Following this we show, using a reduction analogous
to that of Beame, Impagliazzo, Kraj́ıček, Pitassi, and Pudlák [6], that the existence
of such a forest implies a small degree Nullstellensatz refutation of an associated
family of polynomials. Finally, the proof that such a small degree refutation does
not exist is analogous to that of Buss, Impagliazzo, Kraj́ıček, Pudlák, Razborov,
and Sgall [10]. This last is the main new technical contribution and the reader
who is familiar with the other aspects of this paper may wish to skip directly to
section 8. In section 9 we combine the arguments from the previous sections to
show our main results.

2. Frege Proofs and Counting Principles

A Frege system is a sound and implicationally complete propositional proof
system with a finite number of axiom schemas and inference rules. The size of a
proof in a Frege system is the total number of subformulas appearing in the proof.
We consider formulas over the basis ∨ (binary) and ¬ with propositional variables
and the constants 0 (false) and 1 (true) as atoms. We use F ∧ G as a shorthand
for ¬(¬F ∨¬G) and

∨r
i=1 Fi as a shorthand for an arbitrarily parenthesized tree of

binary ∨’s with F1, . . . , Fr at the leaves.
The depth of a formula F is the maximum number of runs of consecutive ∨

connectives on any path from an atom of F to the main connective of F . A depth d
Frege system is a restriction of a Frege system to proofs all of whose formulas have
depth at most d.

(One can define Frege systems over any basis of binary connectives and the
sizes of proofs in these systems are polynomially related to each other. For constant
depth d Frege systems this is also true, given the depth measure above, provided
that one excludes connectives ⊕ and ↔. We concentrate on connectives ¬ and ∨
for ease of presentation.)

Pigeonhole Principles: Let D and R be disjoint sets and consider propositional
variables Pij , i ∈ D, j ∈ R. There are 3 natural variations of the Pigeonhole
Principle:

“There is no total injective relation on D ×R:”

PHPDR = (
∨
i∈D
¬
∨
j∈R

Pij) ∨
∨
j∈R

∨
i 6=i′∈D

(Pij ∧ Pi′j).

“There is no 1-1 function from D to R:”

fun-PHPDR = PHPDR ∨
∨
i∈D

∨
j 6=j′∈R

(Pij ∧ Pij′).
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These two are polynomially equivalent as may be seen by imposing an order
on R and setting:

P ′ij = Pij ∧
∨
j′<j

¬Pij′ .

However, the following variant, as we will see, is strictly weaker than PHPDR :
“There is no 1-1 onto function from D to R:”

onto-PHPDR = fun-PHPDR ∨ (
∨
j∈R
¬
∨
i∈D
¬Pij).

When |D| > |R| all the variations are tautologies and for the purposes of this
paper we will assume that |D| ≥ |R|. Clearly, each pigeonhole principle variation
only depends on the sizes of D and R so we will usually refer to PHP

|D|
|R| , etc.

Counting Principles: Let M be any set and p be a positive integer. Let M (p)

denote the set of all p-element subsets of M . The mod p counting principle over M
is defined on the set of propositional variables Ye, e ∈M (p).

“There is no perfect p-partition of M .”

CountMp = (
∨
v∈M

∧
v∈e∈M(p)

¬Ye) ∨
∨

e,f∈M(p), e⊥f

(Ye ∧ Yf )

where we write e ⊥ f if e 6= f and e ∩ f 6= ∅. If |M | 6≡ 0 (mod p) then CountMp
is a tautology. Again, the tautology really only depends on |M |, so we can refer
to Countmp . We will use Countp to refer to the family of tautologies Countmp with
m 6≡ 0 (mod p).

3. Restrictions and Matching Decision Trees

The main argument in this paper is a lower bound for the lengths of bounded-
depth Frege proofs of onto-PHP, given Count formulas as axiom schemas. There-
fore the propositional variables with which will primarily be concerned are those
that appear in the onto-PHP formula. We introduce some notation for discussing
formulas involving these variables.

Let MD×R be the set of all partial matchings on D × R. A matching term A
is
∧
〈i,j〉∈π Pij for some matching π ∈ MD×R. A matching disjunction F is

∨
iAi

where Ai are matching terms.
We say that i and j are the endpoints of Pij . If Y is a term or a set of variables,

then v(Y ) denotes the set of endpoints of variables in Y . We use dom(Y ) = v(Y )∩D
and range(Y ) = v(Y ) ∩R.

For |R| = n and |D| = n+m, defineM`
D×R to be the set of all partial matchings

on D ×R, ρ which match all but ` nodes of R.
Every ρ in M`

D×R determines a unique partial assignment or restriction, r,

r(Pij) =


1 if 〈i, j〉 ∈ ρ
0 if there is an e′ ∈ ρ such that |v(e′) ∩ {i, j}| = 1
∗ otherwise

where ∗ indicates that Pij is not assigned a value. If r is the restriction obtained
from ρ, we will refer to both the restriction and the partial matching by ρ. For
a Boolean formula F in the variables over D × R and a partial matching ρ, F
restricted by ρ will be the formula in the variables unset by ρ that remains after
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assigning values to the variables set by ρ; we denote this by F �ρ. Given a set
S ⊆ D ∪R, let S �ρ denote S \ v(ρ).

Our key interest in the set of restrictions given by the partial matchings ρ ∈
M`

D×R, is that for any such ρ, onto-PHPDR �ρ= onto-PHP
D�ρ
R�ρ

.
We say that two partial matchings σ and τ are compatible if σ ∪ τ is also a

partial matching. When viewed as restrictions, we use the notation στ to denote
the restriction defined by the partial matching σ ∪ τ .

Definition 3.1. A matching decision tree over D×R is a rooted directed tree
T whose internal nodes are labelled by elements of D ∪ R, and whose leaves may
be labelled by elements of some label set L so that:
1. (a) If the root of T is labelled by i ∈ D then for each j ∈ R there is one out-edge

from the root labelled 〈i, j〉.
(b) If the root of T is labelled by j ∈ R then for each i ∈ D there is one out-edge

from the root labelled 〈i, j〉.
(c) There are no other out-edges from the root of T .

2. T 〈i,j〉 is a matching decision tree over D′ × R′ where D′ = D \ {i}, R′ =
R \ {j}, and T 〈i,j〉 is the tree whose root is the node connected to the root
of T by the edge labelled 〈i, j〉.

Define Br(T ) to be the set of branches (root-leaf paths) in T and Bra(T ) to be
the set of those branches in T with leaf label a ∈ L. The set of edge labels along
any branch of T forms a partial matching. We identify a branch with its matching
so we view Br(T ) and Bra(T ) as sets of partial matchings. We say that T ≡ a if
and only if Br(T ) = Bra(T ).

Lemma 3.2. Let π be a matching and T be a matching decision tree over D×R
such that |π|+ height(T ) ≤ min(|D|, |R|). Then

(i) there is a σ ∈ Br(T ) compatible with π.
(ii) the tree T �π obtained by contracting all edges of T whose label is in π and

deleting all edges of T (and their associated subtrees) whose labels are not
compatible with π is a matching decision tree over D �π ×R�π.

Proof. We prove part (ii) first by induction on the height of T : The base case
when T is a single labelled vertex is trivial.

If the label of the root of T is touches π in edge 〈i, j〉 then T �π= T 〈i,j〉 �π′
where π = π′ ∪ 〈i, j〉. We apply the inductive hypothesis to T 〈i,j〉 and π′ over
(D \ {i})× (R \ {j}) to obtain the desired result.

If the label i ∈ D of the root of T is not touched by π then the tree T �π
consists of the root of T with an outedge labelled by 〈i, j〉 for each j ∈ R �π and
this reaches subtree T 〈i,j〉 �π. Apply the inductive hypothesis to each such T 〈i,j〉

over (D \ {i}) ∪ (R \ {j}) to obtain the desired result.
The case when the root label of T is j ∈ R and is not touched by π is similar.

Part (i) follows by observing that any branch in T that is contracted to a branch
in T �π suffices.

Definition 3.3. For any matching decision tree T with label set L = {0, 1},
let T c be the same tree as T except that the leaf labels 0 and 1 are reversed, i.e.
Br1(T c) = Br0(T ) and Br0(T c) = Br1(T ). Matching decision tree T represents
boolean formula or function f iff:

∀π ∈ Br(T ), f �π≡ the leaf label of π in T .
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Given matching decision tree T , the matching disjunction given by T is

Disj(T ) =
∨

π∈Br1(T )

∧
〈i,j〉∈π

Pij

Note that T represents Disj(T ) and that if T has height ≤ k then Disj(T )
has terms of size ≤ k. Observe that Disj(T c) is not equivalent to the negation of
Disj(T ) but that if T represents f then the tree T c does represent ¬f .

4. k-Evaluations

Definition 4.1. Let Γ be a set of formulas closed under subformulas. A k-
evaluation, T, of Γ is an association of a matching decision tree T(A) = TA of
height ≤ k with each formula A ∈ Γ such that

(1) T0 and T1 are single nodes labelled 0 and 1, respectively, and TPij is the
unique tree of height 1 querying i that represents Pij ,

(2) T¬A = T cA.
(3) If the major connective of A is ∨ then write A =

∨
i∈I Ai where the major

connective of each Ai is not ∨. It must be the case that TA represents∨
i∈I Disj(TAi).

Let T be a k-evaluation of a set of formulas containing formula A. We say that
A k-evaluates to true (false) under T if and only if TA ≡ 1 (respectively TA ≡ 0).

Let the size of an axiom/rule in a Frege system F be the maximum number of
distinct subformulas in it.

Lemma 4.2. Let P be a proof in Frege system F whose rules have size at most
s, augmented by Countp axiom schemas. Suppose that sk ≤ |R| ≤ |D| and let
T be a k-evaluation of the set of subformulas of P . If every Countp axiom in P
k-evaluates to true under T then all formulas in P k-evaluate to true under T.

Proof. By induction on the number of Frege axioms and inferences in P .
Consider a Frege axiom/inference in P :

A1(B1/p1, · · · , Bm/pm), . . . , A`(B1/p1, · · · , Bm/pm)
A0(B1/p1, · · · , Bm/pm)

where the inference rule R is:
A1(p1, · · · , pm), . . . , A`(p1, · · · , pm)

A0(p1, · · · , pm)

and assume that each Ai(B1/p1, · · · , Bm/pm) for 1 ≤ i ≤ ` k-evaluates to true
under T. We now show that this also holds for A0(B1/p1, . . . , Bm/pm):

LetA be the set of distinct subformulas ofR and let Γ beA(B1/p1, · · · , Bm/pm).
By assumption |Γ| ≤ s, say Γ = {A0, . . . , A`, . . . , Aj} for j < s.

Let π0 ∈ Br(TA0). Since sk ≤ n we can apply the Lemma 3.2 to inductively
find πi ∈ Br(TAi) compatible with π0 · · ·πi−1 for 1 ≤ i ≤ j. Therefore all the πi
are mutually compatible. Let π = π0π1 · · ·πj ∈Mn.

Observe that for any Ai ∈ Γ, Disj(TAi) �π is the constant 0 or 1 and define
V : Γ→ {0, 1} by V (A) = Disj(TAi) �π. By the definition of k-evaluations, V is a
consistent truth evaluation and by assumption

V (A1) = · · · = V (A`) = 1.
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Since the rule R is sound it follows that V (A0) = 1, i.e.

Disj(TA0)�π= 1.

Since π extends branch π0 of TA0 , the leaf label of π0 must be 1 as required.

On the other hand we show that the tree associated with the goal formula of
the proof cannot k-evaluate to true.

Lemma 4.3. If k + 1 ≤ |R| < |D| and T is a k-evaluation of a set of formulas
closed under subformulas and containing onto-PHPDR then onto-PHPDR does not
k-evaluate to true under T.

Proof. In fact we show that every leaf of Tonto-PHPD

R

has label 0. By defi-
nition of a k-evaluation it is necessary and sufficient to show that Br1(TA) = ∅ for
each disjunct A in PHPDR .

Case 1: A = (Pij ∧ Pi′j) = ¬(¬Pij ∨ ¬Pi′j) = ¬B
Let π ∈ Br(TA). It is also in Br(TB). Since TB represents Disj(T¬Pij ) ∨

Disj(T¬Pi′j ), it suffices to show that π is compatible with some element in Br1(T¬Pij )
or in Br1(T¬Pi′j ).

By definition T¬Pij has height 1 with root label i and all its leaves are labelled
1 except the one below the out-edge with label 〈i, j〉.

Since k + 1 ≤ n, T¬Pij �π is well-defined and consists of contractions of all
branches compatible with π. If π does not contain 〈i, j〉 then some branch of T¬Pij
other than 〈i, j〉 remains and this has leaf label 1.

If π does contain 〈i, j〉 then it does not contain 〈i′, j〉 and we apply the same
argument to T¬Pi′j .

Case 2: A = ¬
∨
j∈R Pij

Similar to the previous case. Here, we show that π ∈ Br(TA) is compatible
with some element of Br1(TPij ) for some j ∈ R.

If π contains 〈i, j〉 for some j ∈ R then every branch in TPij compatible with π
will be in Br1(TPij ).

If π does not contain 〈i, j〉 for any j ∈ R then let j′ ∈ R be unmatched by π
(such a j′ must exist). Since π matches neither i nor j′ and k + 1 ≤ |R| < |D|, π
is compatible with the 〈i, j′〉 branch of TPij′ which is what we need.

Case 3: The other onto-PHPDR disjuncts are handled exactly as in Case 1.

5. Building a k-evaluation

Given an Frege proof P of limited size and depth we wish to find a restriction ρ
such that after ρ is applied we have a suitable k-evaluation for all the subformulas in
P. This is too hard to do in a single step. Instead, we inductively build restrictions
and k-evaluations for all depth i subformulas in P for i = 0, . . . , d. The following
lemma permits us to build upon previous k-evaluations.

Lemma 5.1. If Γ is a set of formulas closed under subformulas and T is a k-
evaluation of Γ over D ×R and ρ is a restriction on S with |ρ|+ k ≤ |R| then the
map Tρ given by

T ρF =

{
TF �ρ if Br1(TF ) 6= ∅
T0 if Br1(TF ) = ∅

is a k-evaluation of Γ�ρ over (D ×R)�ρ.
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Proof. Note that for any matching decision tree T and formula F , if T rep-
resents F over D ∪R then T �ρ represents F �ρ over (D ∪R)�ρ. Also note that for
any matching decision tree T ,

Disj(T )�ρ= Disj(T �ρ).

From this the Lemma follows easily by induction. (The extra condition when
Br1(TF ) = ∅ is to make sure that TPij �ρ= T0 when Pij �ρ= 0.)

The construction of decision trees for the higher level formulas of the proof uses
the probabilistic method. The following so-called ‘Switching Lemma’ is the basis
for that construction. We prove it as Lemma 5.4 below.

Lemma 5.2. Let F be an r-disjunction over D × R with |R| = n and |D| =
n + m. If s ≥ 0 and 10m ≤ ` ≤ (n/r)1/2/10 then, for ρ chosen uniformly at
random fromM`

D×R, the probability that there does not exist a decision tree T over
(D ×R)�ρ of height less than s representing F �ρ is less than (1.5`2

√
r/n)s.

Lemma 5.3. Let |R| = n, |D| = n + m. Let n0 = n, ni+1 = (ni/9 log2 S)1/4

for i ≥ 0 and suppose that nd ≥ max{10m, log2 S}. For any Frege proof P of
size at most S and depth at most d in the pigeonhole variables on D × R there
exists a restriction ρ ∈ Mnd

D×R such that there is a log2 S-evaluation T of the set
of subformulas of P �ρ over (D ×R)�ρ.

Proof. Let k = log2 S. We construct a sequence of restrictions ρ0, . . . , ρd = ρ
and maps T0, . . . ,Td = T such that for each i = 0, . . . , d, |R�ρi | = ni and Ti is a
k-evaluation of the set of formulas in Pi �ρi , where Pi is the set of subformulas of
depth at most i in P. We only specify trees for unnegated formulas at each depth
since negations do not add to depth and if we have a tree TF then we easily have
a tree T¬F = T cF of the same height.

Base Case: i = 0. Let ρ0 be the empty restriction. The only nodes of depth
0 are inputs and their negations. For each literal Pij , let T 0

Pij
be a tree of height

1 that queries i and has its only leaf label 1 on the node reached by edge labelled
〈i, j〉. Let T 0

b be a single node labeled b for b = 0, 1.
Induction Step: Now suppose that after ρi is applied we have a k-evaluation Ti

of Pi �ρi . We wish to find a π such that ρi+1 = ρiπ and extend T i to a k-evaluation
Ti+1 of Pi+1 �ρi+1 .

Now for any choice of π ∈ Mni+1

(D×R)�ρi
and any A ∈ Pi, using Lemma 5.1 we

can define T i+1
A = (T i)πA. Observe that for such A ∈ Pi, Disj(T i+1

A ) = Disj(T iA �π)
which is a k-disjunction.

It remains to choose π and define T i+1
A for A ∈ Pi+1 \Pi of the form A =

∨
j Aj

where A ∈ Pi+1 \ Pi. and each Aj ∈ Pi. We consider π chosen at random from
Mni+1

(D×R)�ρi
. By Lemma 5.2, the probability that π does not admit a choice for T i+1

A

is

< 1.5n2
i+1

√
(log2 S)/ni)log2 S = 2− log2 S = 1/S.

Since |Pi+1 \ Pi| ≤ S the probability that some choice of π works for all formulas
in Pi+1 \ Pi is strictly less than 1. We choose this π, fix ρi+1 = ρiπ and set T i+1

A

according to that π for all A ∈ Pi+1 \ Pi. The conditions for Ti+1 are clearly
satisfied.
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We assume that there is a total order on the elements of D∪R with all elements
of D preceding those of R. Let K ⊆ D ∪R and define

MD×R(K) = {π | K ⊆ v(π) and ∀e ∈ π.v(e) ∩K 6= ∅},
i.e., all minimal partial matchings over D × R which involve all of the elements of
K.

We define the complete matching tree for K ⊆ D∪R over D×R as a matching
decision tree over D × R with no leaf labels. It is the unique tree T such that
Br(T ) = MD×R(K) and the query at each node v is the smallest element of K
that is not an endpoint of the matching associated with the path from the root to
v.

Given a disjunction F over D, assume that F has a total order on its terms
and an order on the variables within each term. A restriction ρ is applied to F in
order, so that F �ρ is the disjunction whose terms consist of those terms of F that
are not falsified by ρ, each shortened by removing any variables that are satisfied
by ρ, and taken in the order of occurrence of the original terms on which they are
based.

The canonical decision tree for F over D ×R, TD×R(F ) is defined inductively
as follows:

1. If F is the constant function 0 or 1 (contains no terms or has an empty first
term, respectively) then TD×R(F ) consists of a single leaf node labelled by
the appropriate constant value.

2. If the first term C1 of F is not empty then let F ′ be the remainder of
F so that F = C1 ∨ F ′. Let K = v(C1). We start with the complete
matching tree for K. The paths of this tree correspond exactly to elements
of MD×R(K). Let vσ be the leaf node corresponding to the path labelled
by σ ∈ MD×R(K). To obtain TD×R(F ), for each σ we replace the leaf
node, vσ, by the subtree T(D×R)�σ (F �σ). (Note that for the unique element
σ ∈MD×R(K) which satisfies C1 the leaf label of vσ will be 1. For all other
choices of σ, T(D×R)�σ (F �σ) = T(D×R)�σ (F ′ �σ).)

TD×R(F ) clearly represents F over D × R. We’ll show that for appropriately
chosen restriction ρ the height of TD×R(F �ρ), |TD×R(F �ρ)|, is small with high
probability. This lemma is a switching lemma in the spirit of [13] because it will
allow us to obtain a disjunction that approximates the negation of F by representing
F by a matching decision tree T and then taking Disj(T c).

Lemma 5.4. Let F be an r-disjunction over D × R with |R| = n and |D| =
n+m. If s ≥ 0 and 10m ≤ ` ≤ (n/r)1/2/10 then

|{ρ ∈M`
D×R : |T(D×R)�ρ(F �ρ)| ≥ s}|

|M`
D×R|

≤ (1.5`2
√
r/n)s.

Proof. We only need to consider s > 0. Let S ∈ M`
D×R be the set of

restrictions ρ such that |T(D×R)�ρ(F �ρ)| ≥ s. As in [4] we obtain a bound on
|S|/|M`

D×R| by defining a 1-1 map from S to a small set.
Let stars(r, s) to be the set of all sequences β = (β1, . . . , βk) such that for each

j, βj ∈ {∗,−}r \ {−}r and such that the total number of *’s in all the βj is s. We
will define a 1-1 map

S →
⋃

s/2≤j≤s

M`−j
D×R × stars(r, j)× [1, `+m]s
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The map: Let F = C1 ∨ C2 ∨ . . .. Suppose that ρ ∈ S and let π be the partial
matching labelling the lexicographically first path in T(D×R)�ρ(F �ρ) that has length
≥ s. Trim the last few edges of π along the path from the root so that |π| = s. We
use the formula F and π to determine the image of ρ. Let Cν1 be the first term of
F that is not set to 0 by ρ. Then Cν1 �ρ will be the first term in F �ρ. Since |π| > 0,
such a term must exist and is not the empty term. Let K = v(Cν1 �ρ) and let σ1 be
the unique partial matching in M(D×R)�ρ(K) that satisfies Cν1 �ρ. Let π1 be the
portion of π that touches K. We have two cases based on whether or not π1 = π.

1: If π1 6= π then by the construction of π, π1 ∈M(D×R)�ρ(K). Note also that
Cν1 �ρσ1= 1 but since π1 6= π, π1 6= σ1, and thus Cν1 �ρπ1= 0.

2: If π1 = π then it is possible that v(π) does not contain all of K. In this case
we shorten σ1 so that it is the unique element of M(D×R)�ρ(K

′) that does
not falsify Cν1 �ρ where K ′ = v(π1) ∩K.

Note that in either case |π1| ≤ 2|σ1|.
We define β1 to be a vector of length r based on the fixed ordering of the

variables in term fν1 . The j-th component of β1 is ∗ if and only if the j-th variable
in Cν1 is in v(σ1). Note that since Cν1 �ρ is not the empty term then there is at
least one ∗ in β1. From Cν1 and β1 we can reconstruct σ1.

Now, by the definition of T(D×R)�ρ(F �ρ), π \ π1 labels a path in the canonical
tree T(D×R)�ρπ1

(F �ρπ1). If π1 6= π, we repeat the above argument, with π \ π1 in
place of π, ρπ1 in place of ρ and find a term Cν2 which is the first term of F not
set to 0 by ρπ1. Based on this we generate π2, σ2, β2, as before. We repeat this
process until the round k in which π1π2...πk = π.

For each i, πi matches all elements of v(σi), so the σ1, . . . , σk are mutually
compatible and thus σ1...σk = σ1 ∪ · · · ∪ σk. The image of ρ under the 1-1 map we
define is a triple, 〈ρσ1...σk, (β1, ..., βk), δ〉 where δ is defined below. Let σ = σ1...σk
and j = |σ|. Clearly ρσ = ρσ1...σk ∈M`−j

D×R and (β1, ..., βk) ∈ stars(r, j).
We now define the information δ. This will encode the relationships between all

the σi and πi. The set v(πi) contains v(σi) possibly together with some nodes unset
by ρσ, each of which must be connected by πi to some element of v(σi). We list the
edges of πi using the total order induced on v(σi) by the order on the elements of
D ∪R. For each vertex of dom(σi) in order, we list the name of the other node to
which it is matched in pii. This endpoint can be one of |σi|+ `− j ≤ ` possibilities
(all of which are known) so a number between 1 and ` is sufficient to encode this
using the order induced on these vertices. After this, for each vertex of range(σi)
in order, that is not matched so far, we can similarly give a number between 1 and
` − j + m ≤ ` + m to indicate its mate in D. The information δ is then simply
the vector of these numbers, one per edge of π and is thus contained in [1, `+m]s.
Thus the image of the map is as required.

Inverting the map: It remains to show that the map we have just defined is
indeed 1-1. To do this we show how to recover ρ from its image. The reconstruc-
tion is iterative. In the general stage of the reconstruction we will have recovered
π1, ..., πi−1, σ1, ..., σi−1, and will have constructed ρπ1...πi−1σi...σk. Recall that for
i < k, Cνi �ρπ1...πi−1σi= 1 and Cj �ρπ1...πi−1σi= 0 for all j < νi. This clearly also
holds when we append σi+1...σk to the restriction. When i = k, something similar
occurs except the only guarantee is that Cnui �ρπ1...πk−1σk 6= 0. Thus we can recover
νi as the index of the first term of F that is not set to 0 by ρπ1...πi−1σi...σk.
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Now, based on Cνi and βi we can determine σi. Since we know σ1, ..., σi we can
examine the entries in the vector δ associated with each of the vertices in v(σi). At
this point, although σi+1, ..., σk are still undetermined, πi can still be determined
since πi does not touch any of the vertices these restrictions touch.

We can now change ρπ1...πi−1σi...σk to ρπ1...πi−1πiσi+1...σk using the knowl-
edge of πi and σi. Finally, given all the values of the πi we can reconstruct ρ.

The numbers: Now we compute the value |S|/|M`
D×R|. We can describe an

element of M`
D×R by choosing ` elements of R and then, for each of the n − `

remaining vertices in turn, choosing an element of D with which it is to be matched.
Thus |M`

D×R| =
(
n
`

)
(n+m)(n−`) = n(`)(n+m)(n−`)

`! and

|M`−j
D×R|

|M`
D×R|

=
n(`)(n+m)(n−`)(`− j)!

(n− j)(`−j)(n+m)(n−`+j)`!

=
(`+m)(j)`(j)

(n− `)(j)

≤
(

(`+m)`
n− `

)j
There is an easy bound of |stars(r, s)| ≤ 2s−1rs but we can also prove:
Claim: |stars(r, s)| < (r/ ln 2)s.
For convenience in the proof we shall include the empty string in stars(r, 0)

which would otherwise be empty. We shall show by induction on s that |stars(r, s)| ≤
γs for (1 + 1/γ)r = 2; the statement of the lemma follows by using 1 + x < ex for
x 6= 0.

The base case s = 0 follows trivially. Now suppose that s > 0. It is easy to see
from the definition that for any β ∈ stars(r, s), if β1 has i ≤ s *’s then β = (β1, β

′)
where β′ ∈ stars(r, s− i). (For i = s we have used our augmentation of stars(r, 0).)
There are

(
r
i

)
choices of β1 so

|stars(r, s)| =
min(r,s)∑
i=1

(
r

i

)
|stars(r, s− i)|

≤
r∑
i=1

(
r

i

)
γs−i

= γs
r∑
i=1

(
r

i

)
(1/γ)i

= γs[(1 + 1/γ)r − 1]
= γs

by the inductive hypothesis and the definition of γ. Thus the claim is proved.
Now applying our bounds we obtain

|S|
|M`

D×R|
≤

∑
s/2≤j

|M`−j
D×R|

|M`
D×R|

· |stars(r, j)| · (`+m)s

≤ (`+ 1)s
∑
j≥s/2

(
r`(`+m)
(n− `) ln 2

)j
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Since 1/ ln 2 < 1.4427 and 10m ≤ ` ≤
√
n/r/10, we have (` + m) ≤ 1.1` and

n ≤ 1.02(n− `). Thus the series is at most

(1.1`)s
∑
j≥s/2

(1.7r`2/n)j .

This is a geometric series with ratio < .02. Therefore it is at most

1.03(1.1`)s(1.7r`2/n)s/2

≤ (1.5`2
√
r/n)s.

6. Generic systems and Exceptional Forests

Suppose that we have a k-evaluation T of the subformulas in a Frege proof
P of onto-PHPDR with Countp axiom schemas. By Lemmas 4.2 and 4.3, there is
some instance F of a Countp axiom in P that does not evaluate to true under T.
Therefore there is some π ∈ Br0(TF ).

By Lemma 5.1, the map, T′, given by

T ′A =

{
TA �π if Br1(TA) 6= ∅
T0 otherwise

is also a k-evaluation of the formulas in F over (D ×R)�π and T ′F is ”false”.
Let Fe for e ∈ M (p), |M | 6≡ 0 (mod p) be the formulas that substitute for Ye

in F and let Te = T ′Fe . Using the Te, we will see that if they ‘locally’ appear to
define something that is a p-partition of M then T ′F ≡ 1. Then we show that it
is impossible for the Te to describe something that locally does appear to be a
partition of M into blocks of size p. This latter is achieved by a reduction to a
problem over polynomials.

Lemma 6.1. Suppose that some π ∈ Br0(TF ) exists and 3k ≤ |R| < |D|.
(a) If e, e′ ∈ M (p) with e ⊥ e′ there are no compatible branches σe ∈ Br1(Te)

and σe′ ∈ Br1(Te′).
(b) For any restriction τ such that |τ | + k ≤ |R|, τ is compatible with some

element of
⋃
e∈M(p) Br1(Te).

Proof. For part (a), suppose that there are compatible branches σe ∈ Br1(Te)
and σe′ ∈ Br1(Te′). Let σ = σe ∪ σe′ and apply it to all formulas in the k-
evaluation T′. We see that it will make T ′¬Fe∨¬Fe′ �σ≡ 0. Thus T ′¬(¬Fe∨¬Fe′ )

�σ≡ 1
so T ′F �σ= T ′F ≡ 1 which is a contradiction.

For part (b), apply τ to all formulas in the k-evaluation T′. If τ is incompatible
with all elements of

⋃
e∈M(p) Br1(Te). then T ′W

e∈M(p) Fe
�τ≡ 0 so T ′¬W

e∈M(p) Fe
�τ≡ 1

and thus T ′F �τ= T ′F ≡ 1 which is a contradiction.

Now for each v ∈ M let Bv =
⋃
v∈e Br1(Te). Lemma 6.1 implies that any Bv

consists of mutually incompatible elements and it contains an element compatible
with any fixed τ with |τ | ≤ |R|−k. In the terminology of [20] this is a (|R|−k)-basis
of height ≤ k.

Definition 6.2. A (p,M)-generic system of height h over D×R is a collection
of matching decision trees over D×R: Tv, v ∈M , with leaf labels that are p-subsets
of M such that:
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(1) each Tv has height at most h;
(2) each branch in Tv with leaf label e has v ∈ e;
(3) for all e ∈M (p), for all v, w ∈ e, Bre(Tv) = Bre(Tw).

Lemma 6.3. If F is an instance of a CountMp axiom schema and there is
some π ∈ Br0(TF ) then if n′ = |R| < |D|, ph ≤ N , N ≤

√
(n′ − k)/k/10, and

(1.5N2
√
k/(n′ − k))h ≤ 1/|M |, there is restriction ρ ∈ MN

(D×R)�π
such that there

is a (p,M)-generic system over (D ×R)�πρ of height at most ph.

Proof. For each v ∈M , let Bv be as above and define

Gv =
∨
σ∈Bv

∧
〈i,j〉∈σ

Pij .

By Lemma 5.4, for a ρ chosen uniformly at random fromMN
(D×R)�π

, the probability
that Gv �ρ fails to have a canonical matching decision tree of height at most h is
less than 1/|M |. Therefore the probability that a ρ fails to do this for all v ∈ M
is less than one. Choose some ρ that achieves this for all v ∈M and let T ∗v be the
tree associated with Gv �ρ.

By Lemma 6.1, if τ is a branch of T ∗v then ρτ is compatible with some σ ∈ Bv,
i.e. some σ ∈ Br1(Te) for some e with v ∈ e, and thus the leaf label of τ must be
1. Therefore, since T ∗v is a canonical decision tree for Gv �ρ, σ must be contained
in ρτ . Since the elements of Bv are mutually incompatible, the choice of σ must be
unique. Therefore, each leaf of T ∗v is associated with a unique e ∈M (p) with v ∈ e.
Relabel the leaves of the T ∗v by their associated e ∈M (p). Lemma 6.1 implies that
for any v, v′ ∈M , if τ and τ ′ are compatible branches in T ∗v and T ∗v′ then their leaf
labels e, e′ are compatible.

In order to create the trees Tv, for each branch σ of T ∗v with leaf label e, extend
σ in T ∗v by appending trees T ∗w �σ for each w ∈ e in turn and labelling all leaves
of the resulting branches by e. This at most multiplies the height of the trees by
p. Observe that for e = {v1, . . . , vp} the branches with leaf label e in Tvj are all
elements of the form

{π1 · · ·πp | πi ∈ Bre(T ∗vi) for i = 1, . . . , p}

and are thus independent of the choice of j.

The above construction of a generic system is essentially from [6]. Alternatively,
one could create the trees T ∗v by constructing the canonical decision trees for the
Gv without applying any restriction. Using an argument like the one showing
that any Boolean formula that has CNF clause size c and DNF term size d has
Boolean decision tree of height ≤ cd, one can show that the canonical decision tree
constructed for Gv has height at most k(k+ 1). This latter approach is very much
like the one in [19].

The key property that we use about any (p,M)-generic system of height h over
D × R is that it is a forest T of matching decision trees over D × R of height
≤ h such that each branch appears 0 (mod p) times in T and such that the total
number of trees is 6≡ 0 (mod p). In the terminology of [18] this is a p-exceptional
forest of (D,R)-labelled trees.
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7. Nullstellensatz Proofs

Definition 7.1. Given multivariate polynomials

Q1(~x), . . . , Qm(~x) ∈ R[x1, . . . , xn]

there is no solution to

Q1(~x) = 0
· · · = ·

Qm(~x) = 0

over {0, 1} if ∃P1(~x), . . . , Pm(~x) ∈ R[x1, . . . , xn] such that
∑m
i=1 Pi(~x) ·Qi(~x) ≡ r 6≡

0 (mod p) in R[x1, . . . , xn]/(x2
1 − x1, · · · , x2

n − xn). We say that P1, . . . , Pm are a
Nullstellensatz r-refutation of {Q1, . . . , Qm}. (We drop the r when r = 1. If p is a
prime then the exact value of r is irrelevant. Also, if p is prime then a Nullstellensatz
refutation is guaranteed to exist by Hilbert’s Nullstellensatz whenever there is no
{0, 1} solution.) The degree of the r-refutation is the maximum degree of the Pi

Definition 7.2. Let onto-PHPDR be the following system of polynomial equa-
tions in variables xi,j with i ∈ D, j ∈ R:

(1) QDi (~x) = (
∑
j∈R xi,j)− 1 = 0 one for each i ∈ D, and

(2) QRj (~x) = (
∑
i∈D xi,j)− 1 = 0 one for each j ∈ R, and

(3) Qi,jk(~x) = xi,j · xi,k = 0 one for each i ∈ D, j, k ∈ R, j 6= k, and
(4) Qij,k(~x) = xi,k · xj,k = 0 one for each i 6= j, i, j ∈ D, j ∈ R.

Again we use onto-PHP |D||R| to emphasize that the sizes of D and R are all that
matter.

Definition 7.3. We relate monomials and sets of edges in D × R as follows:
Given a set of edges π ∈ D × R, define Xπ =

∏
〈i,j〉∈π xi,j and given a monomial

X = xe1i1,j1 · · ·x
ek
ik,jk

with e1, . . . , ek ≥ 1, define πX = {〈i1, j1〉, . . . , 〈ik, jk〉}.

Lemma 7.4. If |M | ≡ r (mod p) and a (p,M)-generic system of height h over
D × R exists then there is a Nullstellensatz r-refutation of onto-PHPDR of degree
at most h− 1 over Zp.

The basic idea is to consider the polynomial whose monomials are the products
of the variables associated with each branch of the trees in the generic system. That
is, with each tree Tv we get a polynomial

PTv =
∑

π∈Br(Tv)

Xπ.

We first show that each PTv is 1 + Lv where Lv a linear combination of the Q
polynomials of degree at most h− 1.

Lemma 7.5. Let T be a matching decision tree over D × R. Then PT =∑
π∈Br(T )

∏
e∈π xe is of the form 1 + L where L is a linear combination of the

onto-PHPDR polynomials with coefficient polynomials of degree ≤ h− 1.

Proof. Proof by induction on the number of internal vertices of T .
Base Case: If T has no internal vertices then it has one branch of height 0,

PT (~x) = 1 and all coefficient polynomials are 0 which gives degree -1.
Induction Step: Suppose that T has at least one internal vertex and has height

h. Then it has one such vertex v all of whose children are leaves. Let T ′ be the



RELATIVE STRENGTH OF COUNTING PRINCIPLES 15

matching decision tree obtained by removing all the children of v. Let π be the
matching given along the path from the root to v.

If the query at v is i ∈ D, then

PT (~x) = PT ′(~x) +Xπ −
∑

j∈R\range(π)

Xπ · xi,j

= PT ′(~x) +Xπ · (1−
∑

j∈R\range(π)

xi,j)

= PT ′(~x) +Xπ · (1−
∑
j∈R

xi,j) +Xπ ·
∑

k∈range(π)

xi,k

= PT ′(~x)−Xπ ·QDi +Xπ ·
∑

k∈range(π)

xi,k.

Xπ has degree at most h − 1, the last term is a degree h − 2 combination of the
Qij,k, and applying the induction hypothesis to PT ′ yields the desired result.

The case when the query is j ∈ R is analogous.

Proof of Lemma 7.4. Consider
∑
v∈M PTv in Zp. On the one hand it is∑

v∈M
(Lv + 1) = r +

∑
v∈M

Lv.

On the other hand, every branch in the generic system appears some multiple of p
times. Therefore over Zp, ∑

v∈M
PTv = 0.

We derive r +
∑
v∈M Lv = 0 and obtain the Nullstellensatz refutation by re-

versing signs.

8. A Nullstellensatz degree lower bound for onto-PHPN+p`

N

In this section we prove the following theorem which is of independent interest.

Theorem 8.1. Let r 6≡ 0 (mod p). If N ≥ ((p+ 2)`− p`)/2 then any Nullstel-
lensatz r-refutation of onto-PHPN+p`

N over Zp must have degree at least 2` − 1.

Definition 8.2. A d-design for D×R is a mapping D from the partial match-
ings of size ≤ d on D ×R into Zp such that

(a) D(∅) = 1 for the empty matching ∅,
(b) For each partial matching π with |π| < d and i ∈ D \ dom(π)∑

j∈R\range(π)

D(π ∪ 〈i, j〉) ≡ D(π) (mod p)

(c) For each partial matching π with |π| < d and j ∈ R \ range(π)∑
i∈D\dom(π)

D(π ∪ 〈i, j〉) ≡ D(π) (mod p)

Lemma 8.3. Let r 6≡ 0 (mod p). If there is a d-design for D × R then any
r-refutation of onto-PHPDR over Zp requires degree at least d.
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Proof. We extend the d-design D to be a function from the set of polynomials
to Zp. For any monomial X in variables xi,j with i ∈ D and j ∈ R define

D(X) =

{
D(πX) if πX is a matching with |πX | ≤ d
0 otherwise

and extend D linearly over Zp to a map D : Zp[~x] → Zp by setting D(P1 + P2) =
D(P1) +D(P2) for P1, P2 ∈ Zp[~x] and D(aP ) = aD(P ) for a ∈ Zp and P ∈ Zp[~x].

Clearly D(1) = D(∅) = 1 by part (a) of the design definition. We consider the
polynomials in the definition of onto-PHPDR and show that for any P ∈ Zp[~x] of
degree < d,

D(P ·QDi ) = D(P ·QRj ) = D(P ·Qi,jk) = D(P ·Qij,k) = D(P · (x2
i,j−xi,j)) = 0.

(∗)
We see that (∗) is sufficient by observing that it implies if 0 6= r = ΣiPiQi is an r-
refutation of onto-PHPDR over Zp of degree < d then 0 6= r = D(r) = D(ΣiPiQi) =
ΣiD(PiQi) = 0 which is a contradiction.

To prove (∗), by the linearity of D it clearly suffices to prove it when P is simply
a monomial X of degree < d. Furthermore, if µX is not a partial matching then
D(X) = 0 so, by the linearity of D, we can assume that µX is a partial matching.

Since Qi,jk and Qij,k are monomials and both µQi,jk and µQij,k are not partial
matchings we immediately have D(X ·Qi,jk) = D(X ·Qij,k) = 0 for any monomial
X.

Also, since µX·x2
i,j

= µX·xi,j , the linearity of D implies that D(X ·(x2
i,j−xi,j)) =

0.
For QDi (~x) =

∑
j∈R xi,j − 1 = 0 we have two cases depending on whether or

not i ∈ dom(πX). If i /∈ dom(πX) then

D(X ·QDi (~x)) = D(X · (
∑
j∈R

xi,j − 1))

=
∑
j∈R
D(X · xi,j) −D(X)

=
∑

j∈R\range(πX)

D(X · xi,j) −D(X)

=
∑

j∈R\range(πX)

D(µX ∪ 〈i, j〉) −D(µX)

= 0

over Zp by part (b) of the definition of a d-design since |πX | < d. If i ∈ dom(πX)
then let 〈i, j∗〉 ∈ πX . In this case

D(X ·QDi (~x)) = D(X · (
∑
j∈R

xi,j − 1))

=
∑
j∈R
D(X · xi,j) −D(X)

= D(X · xi,j∗) −D(X)
= D(µX ∪ 〈i, j∗〉) −D(µX)
= 0

since µX·xi,j is not a matching for j 6= j∗ and µX ∪ 〈i, j∗〉 = µX .
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The result for QRj (~x) follows similarly using part (c) of the definition of a d-
design.

Lemma 8.4. If there is a d-design D for D×R over Zp then there is a 2d+ 1-
design D′ for D′×R′ over Zp where |D′| = (p+1)|D|+|R| and |R′| = |D|+(p+1)|R|.
(Observe that |D′| − |R′| = p(|D| − |R|).)

Before we prove Lemma 8.4, we show how it implies Theorem 8.1.

Proof of Theorem 8.1. For ` ≥ 0 let N` = ((p + 2)` − p`)/2. We show by
induction that there is a 2`−1-design for [1, N`+p`]× [1, N`] over Zp. The theorem
then will follow by Lemma 8.3.

For ` = 0, letting D(∅) = 1 is sufficient to satisfy the conditions for a 0-design.
Suppose we have a 2` − 1-design D for [1, N` + p`] × [1, N`]. Observe that

N`+1 + p`+1 = (p+ 1)(N` + p`) +N` and N`+1 = (N` + p`) + (p+ 1)N `. Applying
Lemma 8.4 we get a 2(2`−1)+1 = 2`+1−1-design D′ for [1, N`+1 +p`+1]× [1, N`+1]
over Zp as required.

Proof of Lemma 8.4. Let D be a d-design for D × R over Zp. Let D′ =
{i1, . . . , i|D′|} and R′ = {j1, . . . , j|R′|}. Divide D′ into |R| individual points i1, . . . ,
i|R| and |D| blocks D1, . . . D|D| each of size p+ 1 and divide R′ into |D| individual
points j1, . . . , j|D| and |R| blocks, R1, . . . , R|R| each of size p+1. Following [10], we
also fix a cyclic ordering on the elements within each block, e.g. as a permutation
σ : D′ ∪R′ → D′ ∪R′ which maps each of the individual points to itself and whose
other orbits are the blocks of size p + 1. We say that 〈i, j〉 is parallel to 〈i′, j′〉 iff
there is some r such that i′ = σr(i) and j′ = σr(j). Observe that this forms an
equivalence relation on edges.

In matchings on D′×R′, we say that an edge is a cross edge if it is in Da×Rb
for some a and b and is a rung if it is in b × Rb or Da × a for some a or b, i.e.
it joins some individual point to its corresponding block. Given π ⊆ D′ × R′, let
Im(π) = {〈a, b〉 | π ∩Da ×Rb 6= 0}, i.e. Im(π) is the projection of the cross edges
in π onto D ×R.

Definition 8.5. For each choice, V , of a set of |D| + |R| representative ele-
ments, ui ∈ Di for i = 1, . . . , |D| and vj ∈ Rj for j = 1, . . . , |R| and matching π on
D′ ×R′, we say that π respects V if

(A) the only edges of π are rungs or cross edges,
(B) each rung in π matches a representative element given by V , i.e. is of the

form 〈ui, ji〉 for i ≤ |D| or 〈ij , vj〉 for j ≤ |R|,
(C) for any a and b, each cross edge of π in Da × Rb is parallel to 〈ua, vb〉 but

not equal to it.

For each V as above, we can define a map DV from the set of partial matchings
of size ≤ d on D′ ×R′ to Zp.

DV (π) =

{
D(Im(π)) if π respects V and Im(π) is a matching of size ≤ d
0 otherwise.

Finally, we define D′(π) =
∑
V DV (π).

Claim: D′ is a 2d+ 1-design for D′ ×R′ over Zp.
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Clearly D′(∅) =
∑
V DV (∅) = (p+ 1)|D|+|R| = 1 over Zp since there are exactly

(p+1)|D|+|R| different choices of V and for each of these DV (∅) = 1. Thus condition
(a) for a design is satisfied.

We now show that condition (b) for a 2d + 1-design is satisfied. The proof
for condition (c) is analogous. Let |π| ≤ 2d be a matching on D′ × R′ and i′ ∈
D′ \ dom(π).

We can assume without loss of generality that Im(π) is a matching of size ≤ d
since otherwise D′(π) = 0 and D′(π ∪ 〈i′, j′〉) = 0 for all j′ ∈ R′.

Now ∑
j′∈R′\range(π)

D′(π ∪ 〈i′, j′〉) =
∑

j′∈R′\range(π)

∑
V

DV (π ∪ 〈i′, j′〉)

=
∑
V

∑
j′∈R′\range(π)

DV (π ∪ 〈i′, j′〉).

We have several cases:
Case 1: if i′ = ij for 1 ≤ j ≤ |R| then Im(π∪〈i′, j′〉) = Im(π) and, if π∪〈i′, j′〉

respects V , it must be the case that j′ = vj . Thus∑
j′∈R′\range(π)

D′(π ∪ 〈i′, j′〉) =
∑
V

∑
j′∈R′\range(π)

DV (π ∪ 〈i′, j′〉)

=
∑
V

DV (π ∪ 〈ij , vj〉)

=
∑
V

DV (π)

= D′(π)

as required.
Case 2: i′ ∈ Da for some a. We split this case into several subcases based

on the structure of π. Let Vi′ be the set of those V such that ua 6= i′. For each
subcase we first observe that we only need to consider those V ∈ Vi′ such that
π respects V . If π does not respect V then π ∪ 〈i′, j′〉 does not respect V , so
DV (π) = DV (π ∪ 〈i′, j′〉) = 0. If V has ua = i′ then j′ = a is the only value such
that V respects π ∪ 〈i′, j′〉 and for this value, Im(π ∪ 〈i′, j′〉) = Im(π). Thus for
each V /∈ Vi′ , ∑

j′∈R′\range(π)

DV (π ∪ 〈i′, j′〉) = DV (π).

Subcase (a): π has a cross edge 〈i∗, j∗〉 with i∗ ∈ Da and j∗ ∈ Rb for some b.
If π respects V ∈ Vi′ then there is exactly one j′ such that Im(π ∪ 〈i′j′〉) is a
matching and π∪〈i′, j′〉 respects V . This is the unique j′ ∈ Rb such that such that
〈i′, j′〉 is parallel to 〈i∗, j∗〉, i.e. i′ = σr(i∗) and j′ = σr(j∗) for some r. For this
value of j′, Im(π ∪ 〈i′, j′〉) = Im(π), so for each V ∈ Vi′ ,∑

j′∈R′\range(π)

DV (π ∪ 〈i′, j′〉) = DV (π).

Subcase (b): π has no cross edges touching Da and |Im(π)| < d.
In this case, given V ∈ Vi′ such that π respects V , for each b ∈ R \ range(Im(π))
there is one choice of j′ ∈ D′ \ range(π) such that Im(π ∪ 〈i′, j′〉) is a matching
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and π ∪ 〈i′, j′〉 respects V . This j′ is the unique member of Rb such that 〈i′, j′〉 is
parallel to 〈ua, vb〉 and for this value, Im(π ∪ 〈i′, j′〉) = Im(π) ∪ 〈a, b〉. Thus∑

j′∈R′\range(π)

DV (π ∪ 〈i′, j′〉) =
∑

b∈R\range(Im(π))

D(Im(π) ∪ 〈a, b〉)

= D(Im(π))

= DV (π)

using the fact that D satisfies condition (b) for a d-design over D ×R.
Subcase (c): π has no cross edges or rung edges touching Da and |Im(π)| = d.

In this case, |Im(π ∪ 〈i′, j′〉)| > d for any j′ so DV (Im(π ∪ 〈i′, j′〉)) = 0 for all
V . We show that the sum of DV (π) for all V ∈ Vi′ is also 0. We can group
such V that π respects into equivalence classes based on their choices other than
ua. Observe that the choice of ua 6= i′ does not affect the value of DV (π) since π
has no cross edges touching Da. Within each equivalence class there are exactly p
choices of ua 6= i′, so for each such class C,

∑
V ∈C DV (π) is a multiple of p and

thus equal to 0 in Zp. Therefore, the sum of DV (π) for all V ∈ Vi′ is 0, and thus∑
V ∈Vi′

∑
j′∈R′\range(π)DV (π ∪ 〈i′, j′〉) =

∑
V ∈Vi′

DV (π).
Subcase (d): π has a rung edge but no cross edges touching Da and |Im(π)| = d.

As in the previous case, |Im(π ∪ 〈i′, j′〉)| > d for any j′ such that π ∪ 〈i′, j′〉 is a
matching so DV (Im(π ∪ 〈i′, j′〉)) = 0 for all V . Again we show that the sum of
DV (π) for all V ∈ Vi′ is also 0. In this case, π has at least d cross edges and at
most 2d total edges, one of which is a rung edge that does not touch the same block
as any cross edge. Thus there is some cross edge of π, 〈i∗, j∗〉 ∈ De ×Rf for some
e and f , such that no other edges of π touch De or Rf . We group all V ∈ Vi′ that
π respects into equivalence classes based on their choices of points other than ue
and vf . Since π has no other edges touching De or Rf , the value of DV (π) is the
same for all V in each equivalence class. Within each equivalence class there are
exactly p choices of V since π respects each V and there are exactly p choices of ue
and vf such that 〈ue, vf 〉 is parallel to 〈i∗, j∗〉 but ue 6= i∗. Therefore for each class
C ′,

∑
V ∈C′ DV (π) = 0 over Zp. It follows that the sum of DV (π) for all such V is

0, and thus
∑
V ∈Vi′

∑
j′∈R′\range(π)DV (π ∪ 〈i′, j′〉) =

∑
V ∈Vi′

DV (π).
Summarizing Case 2, we have

∑
V

∑
j′∈R′\range(π)DV (π∪〈i′, j′〉) =

∑
V DV (π),

i.e. ∑
j′∈R′\range(π)

D′(π ∪ 〈i′, j′〉) = D′(π)

as required.

When p is prime, using a construction from [18], we can see that the degree of
a Nullstellensatz refutation is not too much larger than the above lower bound. To
see this we first need the following:

Proposition 8.6. If p is prime and m−p` < p`a ≤ m then
(
m
p`

)
≡ a (mod p).

Proof. For each r, 1 ≤ r ≤ p`, let m(r) be the unique integer between m −
p` + 1 and m that is congruent to r modulo p`. Observe that(

m

p`

)
≡

p`∏
r=1

m(r)
r

(mod p).
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Since m(p`) = p`a, by assumption, m(p`)
p`
≡ a (mod p).

For 1 ≤ r < p`, write r = pkr′ where gcd(p, r′) = 1 and k < `. Since m(r) ≡ r
(mod p`), there is some m′ such that m(r) = p`m′ + r = pk(pk−` + r′). Therefore
m(r
r = pk−`+r′

r′ . Since pk−` + r′ ≡ r′ (mod p), we derive that m(r)
r ≡ 1 (mod p)

from which the proposition follows.

Lemma 8.7. If p is prime and p` ≤ N , there is a Nullstellensatz refutation of
onto-PHPN+p`

N of degree p` − 1.

Proof. Let D = [1, N + p`] and R = [1, N ]. Consider the polynomial∑
A⊂D, |A|=p`

∑
π, dom(π)=A

Xπ −
∑

B⊂R, |B|=p`

∑
π, range(π)=B

Xπ.

Since each Xπ with |π| = p` appears exactly once in each sum, the value of the
polynomial is 0. On the other hand, notice that

∑
π, dom(π)=AXπ is the polynomial

PT for a matching decision tree of height h that queries each element of A along each
path. Therefore by Lemma 7.5,

∑
π, dom(π)=AXπ = 1 + LA where LA is a linear

combination of the onto-PHPDR polynomials of degree ≤ p` − 1 over Zp. Similarly,∑
π, range(π)=B Xπ = 1 + LB where LB is a combination of degree ≤ p` − 1.

Therefore

0 =
∑

A⊂D, |A|=p`

∑
π, dom(π)=A

Xπ −
∑

B⊂R, |B|=p`

∑
π, range(π)=B

Xπ

=
(
N + p`

p`

)
−
(
N

p`

)
+ L

where L is a combination of the onto-PHPDR polynomials of degree at most p`− 1.
Since

(
N+p`

p`

)
−
(
N
p`

)
≡ 1 (mod p) by Proposition 8.6, we obtain a Nullstellensatz

refutation of onto-PHPDR of degree at most p` − 1.

9. Putting it all Together

Theorem 9.1. For ` ≤ ε log2 n with 1/ε = 3 · 4d+1( 1
2 + log2(p+ 2)), any depth

d proof of onto-PHPn+p`

n in a Frege system augmented by Countp axiom schemas
requires size at least n2`/(4d+1p).

Proof. Suppose that ` satisfies the conditions of the statement and that P is
a depth d Frege proof with Countp axioms of onto-PHPn+p`

n of size S < n2`/(4d+1p).
Let k = log2 S, and N = n1/(2·4d+1)/

√
k.

Since ` ≤ ε log2 n,

10(p+ 2)`
√
k ≤ 10(p+ 2)`2`/2

√
log2 n

≤ 10nε(
1
2 +log2(p+2))

√
log n

≤ 10n1/(3·4d+1)
√

log2 n

< n1/(2·4d+1).

for n sufficiently large relative to d. Therefore 10(p+ 2)` < N .
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Define n0, . . . nd as in the statement of Lemma 5.3. Then nd = n1/4d/(9k)δd

where δd =
∑d
i=1 4−i < 1/3 and thus nd ≥ n1/4d/(9k)1/3 > N . It follows that

nd ≥ k = log2 S and nd ≥ 10p`.
Therefore by Lemma 5.3, there is a restriction ρ ∈Mnd

D×R and a k-evaluation T
of the set of subformulas of P �ρ over (D×R)�ρ= D′×R′ where |D′| = |R′|+ p` =
nd + p`.

By Lemmas 4.2 and 4.3, there must be some instance F of a CountMp axiom
schema in P �ρ and π ∈ Br0(TF ). We now let h = 4d+1 logn S. Observe that by
assumption about S, h < 2`/p and that

(1.5N2
√
k/(nd − k))h < (3N2

√
k(9k)1/6/n1/(2·4d))h

< (n1/4d+1−1/(2·4d))h

= nh/4
d+1
≤ 1/S ≤ 1/|M |

and apply Lemma 6.3 to obtain a (p,M)-generic system of height ph < 2` over
D′′ × R′′ where |D′′| = |R′′| + p` = N + p`. Applying Lemma 7.4, we obtain a
Nullstellensatz |M |-refutation of onto-PHPN+p`

N of degree less than 2` − 1 which
contradicts Theorem 8.1.

Riis [18], by considering all possible domain and range subsets of size p`, as
in Lemma 8.7, has shown that one can prove onto-PHPn+p`

n from Countp using a
constant-depth proof of size nO(p`) so the above bound is relatively tight.

Corollary 9.2. Any depth d Frege proof of PHPn+1
n requires size nΩ(n1/(30·4d))

even if axiom schemas for onto-PHPn+1
n are permitted.

Proof. Apply Theorem 9.1 with p = 2, ` = (log2 n)/(30 · 4d) − 1, and
n′ = n + 1 − p`. (It is not hard to check that the conditions hold.) This implies
that any depth d Frege proof of onto-PHPn

′+p`

n′ using axiom schemas for Count2
requires size nΩ(n1/(30·4d)). Now it is easy to see that onto-PHPn+1

n is an immediate
consequence of Count2n+1

2 so the same lower bound applies to the size of the proofs
with onto-PHPn+1

n schemas instead of Count2 axiom schemas. Finally, observe that
onto-PHPn

′+p`

n′ is an immediate consequence of PHPn
′+p`

n′+p`−1
, i.e. of PHPn+1

n .

Corollary 9.3. [10] If p and q are positive integers such that q contains a
prime factor not dividing p then any depth d Frege proof of Countq requires size

2n
Ω(1/4d)

even if axiom schemas for Countp are permitted.

More generally:

Corollary 9.4. If p and q1, . . . , qk are positive integers such that each qi con-
tains a prime factor not dividing p then any depth d Frege proof of

∨k
i=1 Countqi

requires size 2n
Ω(1/4d)

even if axiom schemas for Countp are permitted.

Proof. If qi contains a prime factor not dividing p then there is an easy proof of
onto-PHPn+p`

n from Countqi by counting the number of edges touching the domain
and range, respectively, and observing that these must be different modulo qi. The
implementation of this as a proof of size (2n+p`)O(qi) is quite straightforward. The
Ω(·) in the lower bound depends on the sizes of p and the qi but does not depend
on n or d. The overall argument is easily handled by cases.
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Following standard connections between bounded-depth Frege systems and
bounded arithmetic (see [15]) the results above also have implications for the rel-
ativized system of bounded arithmetic S2(R), defined by Buss [11], in which R is
an uninterpreted function symbol. In general, lower bounds for S2(R) follow from
2(logn)ω(1)

size lower bounds. If we let PHP∗+1
∗ (R) (respectively onto-PHP∗+p

`

∗ (R),
Countp(R), etc.) denote the first-order version of the pigeonhole principle (etc.)
for the relation R then the following are immediate corollaries of the above results.

Corollary 9.5.

(1) Let `(n) be an integer function of n such that `(n) = ω(log log n) and `(n) =
o(log n). There is no proof of PHP∗+p

`(∗)

∗ (R) in S2(R) + Countp(R).
(2) There is no proof of PHP∗+1

∗ (R) in S2(R) + onto-PHP∗+1
∗ (R).

(3) [10] If q contains a prime factor not dividing p then there is no proof of
Countq(R) in S2(R) + Countp(R).

10. Remarks

It is interesting to compare the degree lower bound for the Nullstellensatz
refutations of onto-PHPN+p`

N with the degree lower bound for PHPN+s
N using the

quite different construction in [5]. If we take p = 2 and N = (4` − 2`)/2, then the
degree lower bound from Theorem 8.1 is d = 2`− 1 which satisfies N = d(d+ 1)/2,
i.e. the same degree as in [5] despite the more stringent conditions required in
Theorem 8.1. (For p > 2, Theorem 8.1 does not give as large a degree bound.)

Recently, Razborov [17] has shown an Ω(N) degree lower bound not only for
Nullstellensatz refutations of PHPN+s

N but also for more general polynomial refu-
tations called Polynomial Calculus or Gröbner proofs [12, 10]. It is an open prob-
lem to prove non-trivial lower degree bounds for polynomial calculus proofs of
onto-PHPN+p`

N ; the sorts of characterizations of polynomials based on PHPN+s
N

that are critical for proving the lower bounds in [17] do not seem to extend easily
to this problem.

Finally, it would be interesting to improve our lower bound and close the gap
between p` − 1 and 2` − 1 or to reduce the size of N required to achieve it.
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