
SIAM J. COMPUT.
Vol. 20, No. 2, pp. 270-277, April 1991

(C) 1991 Society for Industrial and Applied Mathematics

006

A GENERAL SEQUENTIAL TIME-SPACE TRADEOFF
FOR FINDING UNIQUE ELEMENTS*

PAUL BEAMEt

Abstract. An optimal (n2) lower bound is shown for the time-space product of any R-way branching
program that determines those values which occur exactly once in a list of n integers in the range [1, R]
where R_-> n. This (n2) tradeoff also applies to the sorting problem and thus improves the previous
time-space tradeoffs for sorting. Because the R-way branching program is such a powerful model, these
time-space product tradeoffs also apply to all models of sequential computation that have a fair measure
of space such as off-line multitape Turing machines and off-line log-cost random access machines (RAMs).

Key words, lower bounds, time-space tradeoff, computational complexity, sorting, branching programs

AMS(MOS) subject classifications. 68P10, 68Q10, 68Q25

1. Introduction. The goal of producing nontrivial lower bounds on the time or
space complexity for specific computational problems in A/’ has largely been elusive.
Also, concentration on a single resource does not always accurately represent all of
the issues involved in solving a problem. For some computational problems it is possible
to obtain a whole spectrum of algorithms within which one can trade time performance
for storage or vice versa. Thus the question of obtaining lower bounds that say something
about time and space simultaneously has received considerable study as well.

The most interesting model for studying time-space tradeoff lower bounds that
has been developed is the R-way branching program model. The R-way branching
program is an unstructured model of computation that has unrestricted random access
to its inputs and which makes no assumption about the way its internal storage is
managed. The model is powerful enough that lower bounds proven in it apply to a
wide variety of sequential computing models including off-line multitape Turing
machines with random-access input heads. A particularly convenient model for which
the lower bounds for R-way branching programs apply is that of a random access
machine (RAM) with its input stored in a read-only memory, with a unit-cost measure
of time and with its read-write storage charged on a log-cost basis.

The R-way branching program model was introduced by Borodin and Cook
[BC82], who used it in showing the first nontrivial general sequential time-space
tradeoff lower bound for any problem. They showed that any R-way branching
program requires a time-space product of 2(ne/log n) to sort n integers in the
range [1, n2].

Since [BC82], time-space tradeoff lower bounds on R-way branching programs
have been shown for a number of algebraic problems such as discrete Fourier trans-
forms, matrix-vector products, and integer and matrix multiplication [Yes84], [Abr86].
In addition to these results, Reisch, in [RS82], has claimed an improvement of the
sorting lower bound to -(n2 log log n/log n) using the same approach as in [BC82].
[RS82] presents an improvement of only one of the two key lemmas in [BC82]; this
change appears to necessitate an overhaul of the second, more complex lemma as well
in order to obtain the claimed bound. However, even this bound leaves a gap between
the upper and lower bounds for sorting.

* Received by the editors March 16, 1989; accepted for publication (in revised form) June 28, 1990.
This research was supported by National Science Foundation grant CCR-8858799.

? Computer Science Department, FR-35, University of Washington, Seattle, Washington 98195.

270

TIME-SPACE TRADEOFF FOR FINDING UNIQUE ELEMENTS 271

The first problem considered here, the UNIQUE ELEMENTS problem, is to produce,
given an input list of n integers, a list of those integers that occur only once in the
input. No particular order is required for the output of UNIQUE ELEMENTS. It is related
to sorting, but its output provides much less information about the input than a sorted
list provides. The main result of this paper is that any R-way branching program for
UNIQUE ELEMENTS requires time T and space S such that S. T gl(n 2) and that this
bound is achievable using a simple RAM algorithm.

Borodin and Cook showed their time-space tradeoff for a somewhat unusual form
of the sorting problem and derived bounds for the usual form of sorting by a straight-
forward reduction. In this paper their problem will be termed the RANKING problem
and SORTING will be reserved for the usual form of output in which the elements are
presented in sorted order. An easy reduction of UNIQUE ELEMENTS to the SORTING
problem is shown which also yields an l)(n 2) time-space product lower bound for
SORTING. This improves the previous bounds in the amount of the tradeoff and also
improves the range of inputs for which the bound holds. In this expanded range it is
also shown that the tradeoff gap for sorting is closed, at least for R-way branching
programs, since the O(n2) time-space product is optimal.

A particularly remarkable feature of these results is the relative simplicity of the
arguments required when compared with the involved arguments used in [BC82].

2. Definitions. An R(n)-way branching program consists of a directed acyclic
rooted graph of out-degree R R(n) with each nonsink node labelled by an index
from {1,. ., n} and with the R out-edges of each node labelled 1,. ., R. Edges of
the branching program may also be labelled by a sequence of values from some output
domain. The size of a branching program is the number of nodes it has. An R-way
branching program is levelled if the nodes of the underlying graph are assigned levels
so that the root has level 0 and the out-edges of a node at level only go to nodes at
level l+ 1.

Let x =(Xl,’" ", xn) be an n-tuple of integers chosen from the range [1, R]. An
R-way branching program computes a function of input x as follows. The computation
starts at the root of the branching program. At each nonsink node v encountered, the
computation follows the out-edge labelled with the value of xi where is the index
that labels node v. (Variable xi is queried at v.) The computation terminates when it
reaches a sink node. The sequence of nodes and edges encountered is the computation
path followed by x. The concatenation of the sequences of output values encountered
along the path that x follows is the output of the branching program on input x.

The time used by a branching program is the length of the longest computation
path followed by any input. The space used by a branching program is the logarithm
base 2 of its size.

Any branching program can be levelled without changing its time and with at
most squaring its size (see [BFK+81]). Because this leaves the time used unchanged
and changes the space used by no more than a factor of 2, it will usually be assumed
without loss of generality that R-way branching programs are levelled.

Let x (Xl, , xn) be an n-tuple of integers. An input value xi is unique in x if
there is no j # such that x xj. The UNIQUE ELEMENTS problem is, given an n-tuple
of integers x as input, to produce as output a list (in arbitrary order) of exactly those
values x that are unique in x.

In addition to the UNIQUE ELEMENTS problem the following two problems will
also be of interest. The SORTING problem is, given an n-tuple of integers x as input,
to produce as output the values of the x’s in sorted (e.g., nondecreasing) order. The

272 P. BEAME

RANKING problem is, given an n-tuple of integers x as input, to produce a list (in
arbitrary order) of the ranks of all the inputs xi in the sorted order of x where xi’s
rank is output as a pair (i, rank (x)).

3. Unique elements.
THEOREM 1. Any R-way branching program computing UNIQUE ELEMENTS for

input integers in the range [1, R], where R >-n, requires time T and space S such that
S" T l)(n2).

The general outline for the proof of this theorem is essentially the same as was
used in the previous proofs of time-space tradeoff lower bounds for R-way branching
programs [BC82], [Yes84], [Abr86], [Abr87] and which was originated in the context
of comparison branching programs in [BFK+81]. The R-way branching program is
broken up into layers and each layer is considered as a collection of shallow branching
programs, one rooted at each node on the interlayer boundary. It is shown that any
shallow branching program produces many output values for only a tiny fraction of
the input n-tuples. Because the problem requires a large number of outputs to be
made, if the time is not large then a large number of outputs must be made during
some layer and therefore during some shallow branching program. The bound then
follows since the total number of shallow branching programs must be sufficient to
compensate for the small fraction of inputs for which each produces enough outputs.

Most problems for which time-space tradeoff lower bounds have been shown
require a fixed large number of outputs, e.g., n outputs are required for sorting. In
contrast, certain input vectors for UNIQUE ELEMENTS require few outputs or possibly
none at all. However, a large number of outputs is required for a sufficiently large
fraction of the inputs that the technique still applies.

It will be convenient to express the argument in a probabilistic format. Denote
the uniform distribution on [1, R] by U.

LEMMA 2. If x is chosen at random from U then

Pr[x contains >-n/(2e) unique elements]> 1/(2e-I).

Proof Let u(x) denote the number of unique elements in x and let

1 if x is unique in x,
Y/=

0 if not.

Then E[Y] Pr [Y 1]=[(n-1)/n]"-1 =(1-1/n)"/(1-1/n)> e-. Thus

E[u(x)]=E Y E[Y] >-
i=1 i=1 e

Since there are never more than n unique elements in x, an application of Markov’s
inequality shows that Pr [u(x) > n/(2e)]> 1/(2e- 1). (For let a Pr [u(x)_-> n/(2e)].
Then a.n+(1-a).n/(2e)>E[u(x)]>n/e. Solving for a yields the desired
result.)

For the UNIQUE ELEMENTS problem, say that an output value is correct for input
x if it is the value of a unique element in x. Say that a branching program correctly
outputs at least m values on input x if all values output along the computation path
in that x follows are correct for x and at least m values are output along that
computation path.

TIME-SPACE TRADEOFF FOR FINDING UNIQUE ELEMENTS 273

LEMMA 3. Let P be an R-way branching program of height <-_ n/4 where R >-_ n. Let
x be chosen at random from U. For m <-n/4,

Pr [correctly outputs at least m values on input x] <-e-’/2.

Proof. Consider a computation path 7r in . Let Q be the set of indices of
variables that are queried along 7r and V. be the set of the first m values that are
output along 7r. Some of the values in V. can be values of variables queried along 7r

but it is possible that some values in V are not. Call the values in V that are not
values of any variable queried along 7r extra values and suppose that there are exactly
k extra values in V. Let s-n-IQ=l-k. Since IQ=l<-_n/4 and k<-_lV=l-m<-n/4, it
follows that s _-> n/2.

Assume that x has nonzero probability in U. The fact that an input x follows
the path 7r in only determines the values of the variables whose indices are in Q.
The remaining s + k variables are completely unconstrained so there are exactly nS+k
possible inputs in [1, n] that can follow 7r in . For how many of these inputs are
the values in V correct? In order for all the values in V to be correct it must be the
case that, whatever the location of the k extra values in V among the s + k uncon-
strained input variables, each of the remaining s variables must avoid all m values in

V=. Thus there are at most (n- m) choices of the remaining s variables that would
permit the values in V to be correct. Since there are exactly (s+ k)!/s! ways that the
k extra values can occur in the input,

(s+k)! (n-m)
Pr V is correct for x lx follows -] _-<.

S! n s+k

<--_ 1-

e-m/:.

Since each input follows exactly one path in , the statement of the lemma
follows. S

Proof of Theorem 1. Consider an R-way branching program N for UNIQUE
ELEMENTS. Assume without loss of generality that N is levelled. Suppose that N uses
time T and space S, i.e., N has height T and has 2s nodes. For convenience we can
also assume without loss of generality that n is a multiple of 4 and that T is a multiple
of n/4. (Since N must at least query all inputs to produce an output, T is at least n
anyway.)

Divide the levels of N into layers of height n/4 where layer consists of the
portion of the branching program from level (i 1) n/4 to level in/4. View each node
v at a level that is a multiple of n/4 as the root of an R-way subbranching program
of height n/4 consisting of all nodes reachable from v in the layer whose levels start
at v’s level.

There are T/(n/4)=4T/n layers in N. By Lemma 2, a large fraction of x in
[1, n] require at least n/(2e) output values. For each such input x, at least
(n/(2e))/(4r/n) n/(Ser) outputs must be made during some single layer. An input

274 P. BLAME

reaches at most one node at each level and so reaches the root of only one subbranching
program per layer. Now, for an input x chosen at random from U,", by Lemma 3 each
subbranching program can correctly output >=nZ/(8eT) values on x only with prob-
ability <e-(nz/16eT"). (Note that n2/(8eT)< n/4 since T_-> n.)

Consider the probability, for x chosen at random from U, that there exists a sub-
branching program in 3 that correctly outputs at least nZ/(SeT) values on input x.
Since there are only 2s nodes in , the number of subbranching programs that need
to be considered is no more than 2s and thus this probability is less than 2 s e-(n2/16eT").
But, by Lemma 2, for x chosen at random from U, the probability is > 1/(2e- 1) that
the UNIQUE ELEMENTS problem requires at least n/(2e) output values. Therefore
must have

1
2s e-(n2/16eT)

2e-1

so that S f(n2/T), i.e., ST f(n2). [3

Because the proof technique for Theorem 1 is probabilistic, it can be applied to
show that the tradeott for UNIQUE ELEMEN’rs holds for average time and space as
well (see [Abr86]) in the case that the input integers are chosen uniformly from 1, n].

Any problem for which n input variables must be read before some output is
produced requires branching program time T >- n and therefore space S => log n. Thus,
for inputs in the range [1, n], the following theorem demonstrates that the tradeott in
Theorem 1 is optimal.

THEOREM 4. For any S with n >- S >- log n there is an n-way branching program that
solves the UNIQUE ELEMENTS problem for inputs in the range [1, n] using O(S) space
and O(n/S) time.

Proof The n-way branching program is a straightforward implementation of the
following RAM program:

ALGORITHM UNIQUE ELEMENTS.
b-0
for j= to In do

for i=lto Sdo
A[i] -0

end for
for i=l to n do

if b <xi -< b+S then do

k-xi-b
if A[k]<2 then A[k]-A[k]+ 1

end if
end for

for i=lto Sdo
if A[i] 1 then Output b +i

end for
b-b+S

end for

Each of the S entries in the array A only contains either 0, 1, or 2, and the other
variables only store values that require only O(log n) bits of storage. Each of the
O(n/S) passes through the outer loop uses only O(n) time. Thus the program uses
O(S) space and O(n2/S) time. [3

TIME-SPACE TRADEOFF FOR FINDING UNIQUE ELEMENTS 275

The technique of Theorem 4 does not apply if the range of inputs is significantly
larger, say [1, nO] for c > 1. For inputs in this range the best upper bound known is
an O(n2 log n) time-space product used by a number of straightforward algorithms.
If this really is the best possible then it leaves a log n gap which seems to be difficult
to close using the approach of Theorem 1 since larger ranges of inputs only increase
the likelihood that inputs are unique. It would be interesting to close this gap.

4. Sorting. Borodin and Cook’s time-space tradeoff [BC82] of S. T f(n2/log n)
for sorting n distinct integers actually holds for the RANI(ING problem on inputs in
the range [1, n]. In order to get the bound for SORTING they use an easy reduction
which uses small amounts of additional time and space from RANKING for inputs in
the range 1, n e] to SORTING for inputs in the range [1, n3]. In [RS82], Reisch’s better
bound of S. T---(rl 2 log log n/log n) is for RANKING distinct integers in the range
[1, n log n/log log n] and gives a similar reduction in the range for SORTING. The
above bounds for UNIQUE ELEMENTS will yield an improvement in both ofthese results.

With the output of the SORTING problem on inputs in the range 1, n it is possible
to solve the UNIQUE ELEMENTS problem for inputs in the range 1, n] using only small
amounts of additional storage and time. Intuitively think of the index and value of
the most recently generated output of the sorting program being stored along with a
flag bit that is if the stored value is the only one of its kind seen so far. When a new
output for the sorting problem is produced it is compared with the stored value. If the
flag bit is 1 and the compared values are different, then the stored value is output as
a unique element. The flag and the stored value are then reset appropriately.

In the context of n-way branching programs the reduction is implemented by
creating 2n copies of the program for SORTING to handle the different values of the
stored input as well as the flag bit. The test of the flag bit and of the stored output of
the sorting problem against the new one is handled implicitly since the state information
of the modified branching program will be sufficient. The edges on which outputs
occurred in the SORTING program have to be routed to the appropriate copy of the
original program and the outputs for SORTING have to be replaced by the unique
elements also where appropriate. This reduction uses no additional time and only
O(log n) additional space. Thus the following corollary of Theorem 1 is obtained.

COROLLARY 5. Any R-way branching program for SORTING for input integers in
the range [1, R], where R >-n, requires time T and space S such that S. T 12(n).

It is worth remarking that the bounds in [BC82] and [RS82] hold for distinct
inputs to the SORTING problem. However, if the range of inputs is restricted to [1, n],
as could be the case for the bound proven here, then the problems for distinct inputs
are trivially solvable. The statement to Corollary 5 does hold for distinct inputs except
that R must be at least M

2 in this case. The reduction from UNIQUE ELEMENTS to
sorting distinct values is achieved by appending an input’s index to its value as the
low order log n bits. The sorting algorithm is used as above except that outputs are
not checked for simple uniqueness but rather for uniqueness in an interval of n
consecutive values in [1, R]. In fact, in general, SORTING can be used in this same
way to solve the following UNIQUE INTERVALS problem: Given an n-tuple of integers
x in the range [1, R], produce a list (in arbitrary order) of those ie[1, n] such that
the interval [(i-1)R’+ 1, JR’] for R’= JR n contains a unique value from x.

The average case argument for UNIQUE ELEMENTS with input integers chosen
uniformly from 1/n] that was alluded to in the last section can be used to show that
the tradeoff for SORTING in Corollary 5 also holds for average time and space for
input integers chosen uniformly from 1, R] for R _-> n: The key observation is that the

276 P. BLAME

probabilistic analysis of a branching program for the UNIQUE INTERVALS problem for
a random input n-tuple in [1, R] is essentially the same as for UNIQUE ELEMENTS in
the range 1, n]. Then the reduction from the UNIQUE INTERVALS problem to SORTING
gives the desired average case lower bound tradeoit.

The following theorem shows that Corollary 5 for SORTING is optimal for input
integers in the range [1, n] although the branching program that shows this is not
obviously expressible as a RAM program, as was the case with the program for UNIQUE
ELEMENTS in the proof of Theorem 4. As was the case for UNIQUE ELEMENTS, there
is a log n gap for inputs in ranges such as {1, n2].

THEOREM 6. For any S with n >- S >- log n there is an n-way branching program that
solves the SORTING problemfor inputs in the range [1, n] using O(S) space and O(n2/S)
time.

Proof First consider the situation when S n. The output of the SORTING problem
only depends on the number of inputs of each value, not on their order in the input.
There are n_l ways of selecting k numbers in the range [1, n]. The branching
program has a root node and a node for each of the ways of selecting k inputs from
1, n] where 1 _-< k <- n. The program makes one pass through the inputs, traversing the
nodes in the obvious way. On the edges leading to each node that describes the entire
selection of n numbers, the entire sorted sequence is output. Since (n+k-ln_)< 2n+k-
the program uses O(n) space and O(n) time.

The modification of the branching program for smaller values of S gets a little
trickier. It would be nice simply to make a pass through the inputs and record how
many inputs there are of each value in the range 1 through S, then output that prefix
of the sorted list and proceed on through the ranges S + 1 to 2S, 2S + to 3S, etc. The
problem is that there might be too many inputs in some of these ranges. In order to
handle this, the program never stores more than S values below the largest value in
the range for which it is currently recording. When the (S + 1)st value is found, the
upper end of the range being recorded is lowered until the count of inputs below the
largest value in the range is at most S. At the end of the pass through the input the
portion of the sorted list corresponding to the range is output. Each range is initially
set at length S and starts where the previous range left off.

To store the necessary markers and to record the number of inputs which take on
the largest value of the range requires only O(log n) space and the record for the
remainder of the range requires at most O(S) space. Each pass through the input
either reduces the number of inputs by S or outputs the sorted list for all values in a
range of length S. Thus there are a total of O(n/S) passes through the input for a
total time of O(n2/S). [-]

5. Conclusions. This paper shows the first optimal time-space tradeoff lower
bounds for UNIQUE ELEMENTS and for SORTING that apply to any general sequential
model that has a fair measure of space, without restrictions on its mode of accessing
the inputs or on the structure of its computation. In comparison with previous work
for SORTING, the bounds are better and the argument is considerably simpler. In
addition, the UNIQUE ELEMENTS problem deals with questions of distinctness in a
direct way and arguments about it may provide intuition that will be helpful for
studying the element distinctness problem which seems to be the next natural problem
to be attacked in the area of time-space tradeoffs for R-way branching programs.

There is a sense in which the lower bounds proven here for SORTING and those
in [BC82] and [RS82] are orthogonal. The bounds in [BC82] and [RS82] hold for
RANKING as well as for the SORTING problem. There do not seem to be any reductions

TIME-SPACE TRADEOFF FOR FINDING UNIQUE ELEMENTS 277

using small time and space between the RANKING and UNIQUE ELEMENTS problems,
so the previous bounds for RANKING are not improved by these results.

Clearly, the most interesting open problem in the area of time-space tradeoff is
that posed in [BC82]mnamely, to prove a nontrivial tradeoff for some decision problem
in an unrestricted unstructured model like the R-way branching program. As mentioned
above, the element distinctness problem seems to be a natural candidate. Good
time-space tradeoff lower bounds have been shown for models with unstructured
computation but restricted access to the inputs [Kar86], as well as for structured models
with unrestricted access to the inputs [BFM/87], [Kar86], [Yao88]. However, there
appears to be a big stumbling block in the way of achieving similar results for R-way
branching programs since, so far, the limit of time-space product lower bounds for
R-way branching programs has been O(nm) where n is the number of inputs and rn
is the number of outputs.

In one aspect, the inability to prove tradeoffs for decision problems may be due
to a lack of intuition about measures of "progress" for solving them; in structured
models a good measure of progress for the problem of element distinctness has led to
interesting and nearly optimal time-space tradeoff lower bounds [BFM/87], [Yao88].
However, it also seems likely that in addition to better measures of progress a more
sophisticated handling of how branching programs make their progress is also needed.
In the general framework for the time-space tradeoff shown here and in virtually all
similar tradeoffs for branching programs it is granted that every input that could make
good use of a subbranching program has been routed to the root of that subbranching
program. The recent result of Yao [Yao88] for comparison branching programs uses
a more careful accounting but it remains to be seen if even this accounting will be
effective for R-way branching programs.

Acknowledgments. I would like to thank Richard Anderson, Larry Ruzzo, Martin
Tompa, All Borodin, and Steve Cook for several helpful discussions and suggestions
concerning these results.

[Abr86]

[Abr87]
[BC82]

[BFK+81]

[BFM+87]

[Kar86]

[RS82]

[Yao88]

[Yes84]

REFERENCES

K. ABRAHAMSON, Time-space tradeoffs for branching programs contrasted with those for
straight-line programs, in Proc. 27th IEEE Symposium on the Foundations of Computer
Science, 1986, Toronto, Ontario, Canada, IEEE Computer Society, Washington, DC, pp.
402-409.
, Generalized string matching, SIAM J. Comput., 16 (1987), pp. 1039-1051.
A. BORODIN AND S. COOK, A time-space tradeofffor sorting on a general sequential model of

computation, SIAM J. Comput., 11 (1982), pp. 287-297.
A. BORODIN, M. FISCHER, D. KIRKPATRICK, N. LYNCH, AND M. TOMPA, A time-space

tradeoff for sorting on non-oblivious machines, J. Comput. System Sci., 22 (1981),
pp. 351-364.

A. BORODIN, F. FICH, F. MEYER AUF DER HEIDE, E. UPFAL, AND A. WIGDERSON,
A time-space tradeofffor element distinctness, SIAM J. Comput., 16 (1987), pp. 97-99.

M. KARCHMER, Two time-space tradeoffs for element distinctness, Theoret. Comput. Sci., 47
(1986), pp. 237-246.

S. REISCH AND G. SCHNITGER, Three applications of Kolmogorov complexity, in Proc. 23rd
IEEE Symposium on the Foundations of Computer Science, 1982, Chicago, IL, IEEE
Computer Society, Washington, DC, pp. 45-52.

A. YAO, Near optimal time-space tradeofffor element distinctness, in Proc. 29th IEEE Symposium
on the Foundations of Computer Science, 1988, White Plains, NY, IEEE Computer
Society, Washington, DC, pp. 91-97.

Y. YESHA, Time-space tradeoffs for matrix multiplication and the discrete Fourier transform on

any general sequential random-access computer, J. Comput. System Sci., 29 (1984),
pp. 183-197.

