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Abstract. We consider the problem of determining, given a graph G

with speci�ed nodes s and t, whether or not there is a path of at most k

edges inG from s to t. We show that solving this problem on polynomial-

size unbounded fan-in circuits requires depth 
(log log k), improving on

a depth lower bound of 
(log� k) when k = logO(1)
n given by Ajtai

(1989), Bellantoni et al. (1992). More generally, we obtain an improved

size-depth tradeo� lower bound for the problem for all k � logn.

The key to our technique is a new form of \switching lemma" which

combines some of the features of iteratively shortening terms due to

Furst et al. (1984) and Ajtai (1983) with the features of switching lemma

arguments introduced by Yao (1985), H�astad (1987), and Cai (1986) that

have been the methods of choice for subsequent results.

Key words. Circuit complexity, graph connectivity, switching lemmas,

resource tradeo�s.
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1. Introduction

Connectivity problems in graphs are among the most fundamental in computer

science. In particular, the fact that directed st-connectivity and transitive

closure are complete problems for NL, nondeterministic log-space, shows the

importance of connectivity from the viewpoint of computational complexity. It

also points to connectivity problems in general as good candidates for problems

in NP that may be proven to lie outside deterministic logspace, L, or NC1.

As well, good complexity bounds for connectivity problems on bounded or

unbounded fan-in circuit models, or on deterministic Turing machines, would

give us a better understanding of the relationships in the chain of complexity

classes

NC
1 � L � NL � SAC

1 = LOGCFL � AC
1 � NC

2:
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The research on graph connectivity is voluminous, and even since Wigderson's

excellent survey of the state of the art (Wigderson 1992), there have been sig-

ni�cant new developments in connectivity algorithms (Barnes & Feige 1996,

Feige 1996, Feige 1997), complexity class results (Nisan & Ta-Shma 1995,

Armoni et al. 1997), and lower bounds on restricted models of computation

(Edmonds 1998, Barnes & Edmonds 1999, Edmonds & Poon 1995, Yao 1994,

H�astad & Goldmann 1998).

The key tool in showing that every problem in NL may be solved with

circuits of relatively small depth is the \Repeated Squaring" or \Pointer Doub-

ling" algorithm for transitive closure. Another way of phrasing some of these

complexity questions is to ask whether or not repeated squaring gives an op-

timal depth for polynomial-size circuits computing transitive closure or st-

connectivity. (The O(log1:5 n) space algorithm of Nisan et al. (1992) and the

recent O(log4=3 n) space algorithm of Armoni et al. (1997) show that, for undir-

ected graphs, there are algorithms that use better space than repeated squaring,

but this does not yield improved depth for polynomial-size circuits, or say any-

thing about directed connectivity.)

Consider the problem of distance k connectivity, STCONN(k(n)): given

an unweighted graph G with n vertices with distinguished vertices s and t,

determine whether or not G contains a path of length at most k(n) from s to t.

(Note that distance-bounded connectivity for undirected graphs is just as hard

as distance-bounded connectivity in directed graphs via an easy reduction that

converts a directed graph into a layered undirected graph.) Since one can square

a Boolean matrix using a polynomial-size circuit of depth 2, consisting of a layer

of bounded fan-in ^-gates feeding into a single unbounded fan-in _-gate, by
using repeated squaring, one can solve STCONN(k(n)) using polynomial-size

(semi)-unbounded fan-in circuits of depth 2 log k. This also gives polynomial-

size fan-in 2 circuits of depth O(logn log k) for the problem.

On unbounded fan-in circuits, STCONN(k(n)) was �rst considered by Aj-

tai (1989) who showed that STCONN(k(n)) requires superpolynomial size

on constant-depth circuits for any function k(n) tending to in�nity. For k =

log!(1) n, the parity lower bound of H�astad (1987) implies that polynomial-size

unbounded fan-in circuits for STCONN(k(n)) require depth 
(log k= log logn),

but this says nothing about short distances.

Any improvement on repeated squaring for any distance k would result in an

improved algorithm for the general directed st-connectivity problem: Suppose

that for some k, we could compute distance k connectivity in depth Tk =

o(log k) on polynomial-size unbounded fan-in circuits. Then, by analogy with

repeated squaring, we would obtain a general directed st-connectivity algorithm
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of depth O(Tk logn= log k) = o(logn), which would be very surprising and

would improve the general simulations of NL both by unbounded fan-in circuits

and fan-in 2 circuits.

This motivated Wigderson in his graph connectivity survey, after discussing

Ajtai's result, to suggest a focus on small distance connectivity as an avenue

for beating the bounds given by repeated squaring. The question that we

investigate is the extent to which this focus can succeed, at least in the case of

unbounded fan-in circuits.

As noted above, Ajtai's bound says that, for growing k, we cannot ever

reduce the depth complexity for e�ciently computing STCONN(k(n)) to a

constant. An explicit computation of this non-constant lower bound and a

simpli�cation of the key lemma of Ajtai (1989), given in Bellantoni et al.

(1992), shows that Ajtai's technique gives an 
(log� k) depth lower bound for

polynomial-size unbounded fan-in circuits solving STCONN(k(n)).

Our main result is a substantially improved lower bound on the complexity

of computing STCONN(k(n)), when k is logO(1) n. Namely, we show that

for polynomial-size unbounded fan-in circuits, computing STCONN(k(n))

requires depth 
(log log k). In addition, we show that there is some con-

stant c such that for k � logn, any depth d unbounded fan-in circuit for

STCONN(k(n)) requires size at least nck
�d , where �d = ��2d=3. This latter

result improves on an n
(log
(d+3)

k) bound from Ajtai (1989), Bellantoni et al.

(1992), where log(i) is the i-fold composition of log with itself.

The key to our technique is a new form of \switching lemma," which com-

bines some of the features of the \independent-set-style" switching lemma,

due to Furst et al. (1984) and Ajtai (1983) with the \H�astad-style" switching

lemma arguments, introduced by Yao (1985), H�astad (1987), and Cai (1986)

which have been the methods of choice for subsequent results. The H�astad-

style switching lemmas show that if we are given a particular DNF formula,

then a random restriction allows us to represent the restricted formula as a

small-depth decision tree, with high probability. The method of converting

from the restricted DNF formula to the decision tree is a simple deterministic

procedure, in which queries to the variables are made in the order in which

they appear in the unset terms of the DNF formula.

In the independent-set-style switching lemma, one argues that if we are

given a particular DNF formula, then a random restriction allows us to �nd a

small set of variables such that, after applying the restriction and setting this

small set of variables, the remaining DNF formula has term size reduced by

at least 1. Using this method, the decision tree is built in r stages, where r

is the original term size, and at each stage, a successive restriction must be
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applied. The problem with this type of switching lemma is that we must apply

r restrictions in order to build a small-depth decision tree, and this leads to

barely superpolynomial �nal bounds. However, this type of switching lemma

involves a global reordering of variables in the construction of the decision tree,

and seems applicable in more situations.

Our new switching lemma combines the desirable properties of the above

two methods. We show that with high probability, a random restriction allows

us, for every assignment to some of the remaining variables, to �nd a small set

of variables such that, after setting this small set of variables (plus applying

the assignment and the restriction), the remaining DNF formula has term size

reduced by at least 1. Thus, the same restriction can be \re-used" at each stage

of the tree-building process.

A major conceptual tool in developing this new switching lemma is the more

direct and simpler formulation of H�astad's argument due to Woods (personal

communication) and Razborov (1993), which is developed further in Beame
(1994) for a variety of other examples.

The outline of the paper is as follows. Section 2 contains all of the necessary

de�nitions for the connectivity lower bound. In Section 3, we state and prove

the connectivity lower bound, assuming the connectivity switching lemma. In

Section 4, we give an overview of our new switching lemma proof technique and

show how to apply it to the uniform distribution. The purpose of this section

is to illustrate the basic ideas behind our new method in this simpler case; our

bounds in the uniform case are not as good as those of H�astad. In Section 5,

we prove the connectivity switching lemma using similar ideas. We conclude

in Section 6 with a few open problems.

2. De�nitions

2.1. Layered Graphs of Permutations. The speci�c family of graphs we

consider is the same as the one considered in Ajtai (1989): Let G(n; k) be

the set of all graphs with the following properties: Each graph G in G(n; k)
has k + 1 disjoint layers of vertices, V0; V1; : : : ; Vk, with each Vi containing n

vertices. The only edges in such a graph G will be between adjacent layers,

i.e., between Vi to Vi+1 for i < k, and the induced graph on Vi [ Vi+1 will be a

perfect bipartite matching. Alternatively, one can view these edges as de�ning

a bijection from Vi to Vi+1. Thus, the graph as a whole consists of n disjoint

paths of length exactly k from layer V0 to Vk. For simplicity, we will call any

member of G(n; k) a layered graph.
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As with all graphs, we can represent any layered graph by the variables

de�ning its adjacency matrix, but given the structure of layered graphs, it is

convenient to represent only the relevant entries. Thus, we represent members

of G(n; k) using kn2 Boolean variables xk
0

ij
for 1 � i; j � n, and 0 � k0 < k,

where xk
0

ij
is 1, if and only if there is an edge in the graph connecting the i-th

vertex in Vk0 to the j-th vertex in Vk0+1. Note also that over the domain of

layered graphs, we can eliminate all negated variables in any DNF formula in

the graph variables without a�ecting the term size by using :xk0
ij
� W

j0 6=j
xk

0

ij0
�W

i0 6=i
xk

0

i0j
, and then applying distributive laws.

2.2. Restrictions R`

n;k
. Using standard terminology, we say that a restric-

tion is a partial assignment of Boolean values to the input variables. Any

variable not assigned is said to be unset. We say that a set of variables is

unset, if every member is unset, and a set of literals is unset, if its set of un-

derlying variables is unset. We will follow standard notation using f ��; A��,

: : : for the application of a restriction � to a function, set, etc. and �� for the

restriction which is the union of the assignments given by � and � (assuming

that � and � assign values to di�erent variables.)

De�ne R`

n;k
to be the set of all restrictions � on graphs from G(n; k) con-

structed as follows. For each i, 0 � i � k, choose a set Ui � Vi of exactly `

unset vertices per layer. Then, choose a member G0 of G(n� `; k) whose vertex

layers are V0 �U0; : : : ; Vk � Uk. The variables unset by � will be xk
0

ij
, such that

i 2 Uk0 and j 2 Uk0+1. For the remaining variables xk
0

ij
, if both i 2 Vk0 � Uk0

and j 2 Vk0 � Uk0, then xk
0

ij
is set to represent G0; otherwise xk

0

ij
is set to 0.

The key motivation for de�ning this set of restrictions is that for any

� 2 R`

n;k
, we can identify G(n; k) �� with G(`; k) under a suitable renaming

of vertices.

2.3. Decision trees for layered graphs. A decision tree for layered graphs

over G(n; k) is de�ned as follows. It is a rooted tree with each interior node

labeled by a query, which is a pair consisting of a vertex v 2 Vi and either + or

� indicating a forward or backward query. For the query hv;+i, the outedges
of the interior node are labelled by the possible choices of the forward edge

containing v, (v; w), where w 2 Vi+1; similarly, for query hv;�i, the edges are
labelled by the choices of the backward edge containing v, (u; v), where u 2 Vi�1.

There will be one outedge from the interior node for each choice which preserves

the property that the edge labels along every path in the decision tree de�ne

a partial layered graph over V = V0 [ � � � [ Vk. Note that if v 2 V0 or v 2 Vk,

only one type of query is possible. The leaves of the decision tree are labeled
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by either \0" or \1".

This is somewhat di�erent from the usual Boolean decision tree, in that we

query vertices in the graph (together with a direction) instead of the Boolean

variables, which represent edges in the layered graph. The response to a query

determines the values of several edge variables at once, so it is more concise

than the usual Boolean decision tree.

A decision tree T over V represents a function f over the domain of layered

graphs G(n; k), provided that for all leaf nodes l in T , if we let � be the partial

layered graph de�ned by the edge labels in the path in T from the root to l,

then for all (complete) layered graphs � in G(n; k) that are consistent with �,

f(�) is equal to the label of l.

Note that unlike similar decision trees constructed in Beame et al. (1992),

Pitassi et al. (1993), Beame et al. (1996) this representation is exact in that

every graph in G(n; k) will be consistent with some root to leaf path in T .

Let V 0 � V . We now de�ne a decision tree that determines the values of all

variables with endpoints in V 0. The complete decision tree for V 0 is de�ned as

follows. If V 0 = ;, then it consists of a single vertex (leaf). Otherwise, assume

that we have created the complete decision tree for V 00 = V 0 n fvg; we will

now extend it to a complete tree for V 0. For each leaf node l of the complete

decision tree for V 00, we do the following: Let pl be the path from the root to l.

The edge labellings along pl de�ne a partial layered graph where all of the edge

variables with endpoints vertices in V 00 are completely determined. If v =2 Vk
and this partial setting does not �x the forward edge of v, then label l by the

query hv;+i, and add new edges leading out of l, one for every consistent value

for the forward edge out of v. Then, if v =2 V0 and the partial assignment in

pl does not �x the backward edge of v, label each leaf below l by the query

hv;�i, and add new outedges, one for every consistent value for the backward

edge out of v.

3. The lower bound

In this section we prove our main lower bound for connectivity. The overall

idea of the proof follows the bottom-up, random-restriction method from Furst

et al. (1984), although formally, rather than simplifying the circuits after ap-

plying restrictions, we follow Beame et al. (1996), Beame (1994) in showing

that after these restrictions are applied, the functions computed by the gates

of the circuit have some simple property, namely, the ability to be represented

as a small height decision tree. As in Beame et al. (1992), Pitassi et al. (1993),

Beame (1994), we rephrase the notion of a switching lemma as a bound on
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the probability that, after the application of a randomly chosen restriction, a

disjunctive normal form (DNF) formula, each of whose terms is of bounded

size, can be represented by a decision tree of small height. A more traditional

switching lemma that converts a DNF formula with small terms to a CNF

formula with small clauses is a corollary of our lemma.

Before we proceed to make use of this machinery of restrictions and de-

cision trees, we need to justify its connection to the STCONN(k(n)) problem.

After all, STCONN(k(n)), in addition to an input graph, has as input two

distinguished vertices s and t. The idea is to work with a distance-bounded

transitive closure problem. Let DISTCONN(n; k) be the following problem

with n2 output bits: On inputs xk
0

ij
representing a graph G in G(n; k), determine

for each pair s 2 V0 and t 2 Vk whether or not s is connected to t in G.

Lemma 3.1. If C 0 is a circuit of size S and depth d solving st-connectivity for

all members of G(n; k), then there is a circuit C of size n2S and depth d solving

DISTCONN(n; k).

Proof. Create n2 reduced circuits from C 0 by hard-wiring in each of the n2

pairs of s 2 V0 and t 2 Vk. C is simply the union of these circuits. �

We now consider some unbounded fan-in circuit C, solving the problem

DISTCONN(n; k). For convenience we will assume that C has only two kinds

of gates, unbounded fan-in _ gates and fan-in 1 : gates. We will only count

the _ gates for size or depth so these measures correspond to the usual ones.

We can represent the literals at the leaves of this circuit by decision trees

of height 1. We will show that if C has small size, we can apply a random

restriction which allows us to represent the depth 1 subfunctions at the bottom

level of the circuit by small-depth decision trees. We apply this argument

repeatedly to higher and higher levels in the tree until we end up with decision

trees that represent each of the functions computed by the outputs of C. If

C is not too deep, then the �nal decision trees will all have height less than

k, and since the restriction will leave some G(n0; k) unset for n0 > 1, it will be

easy to get a contradiction.

Definition 3.2. An s-disjunction is a DNF formula in the variables xk
0

ij
, each

of whose terms contains at most s variables, all of which appear positively.

Furthermore, each term is consistent with some layered graph in G(n; k).
(Since we have assumed that our input graphs are from G(n; k) for some n,

as noted in Section 2.1, we can remove any negated variables in a DNF formula

without changing the lengths of its terms.)
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Let T be a decision tree over G(n; k) that represents a function f . If T has

depth d, then over the domain G(n; k), f is equivalent to a d-disjunction f 0,

which has one term tp for each path p in T that leads to a leaf labelled 1, where

tp is the conjunction of the variables that correspond to the edge labels along

p.

Lemma 3.3. (Connectivity Switching Lemma) Let f be an r-disjunction over

G(n; k) and � be a randomly chosen restriction from R`

n;k
, and let s satisfy

4r2s2k < `. With probability at least  = 1 � (3e`r+1(2k)rr=n)s, f �� can be

represented by a depth 4r2s decision tree over G(`; k).

We postpone the proof of this lemma to the next section, and �rst see how

it can be used to obtain our desired lower bound.

The following lemma states that there exists a restriction which allows us

to represent a depth d circuit by a small-height decision tree.

Lemma 3.4. Suppose that C is a circuit of size S and depth d in variables xk
0

ij

for 1 � i; j;� n and 0 � k0 < k. Let n0 = n, r0 = 4, s0 = 4 log
n
S, and for every

i < d, let ri+1 = 4r2
i
si, si+1 = 4risi, and ni+1 = n

1=4ri
i

. If nd > (3erd(2k)
rd)3,

then for each i, 0 � i � d, there is a restriction �i 2 Rni

n;k
, such that for every

gate g of C of depth at most i, g��i can be represented by a decision tree of

height at most ri.

Proof. We �rst observe that

n
�s0=3
0 = n�(4=3) logn S = S�4=3 < 1=S;

and note that by our choices of parameters, for each i � 0, n
�si=3
i

= n
�s0=3
0 <

1=S. Furthermore, the ri and si values increase with i, and the ni values

decrease with i.

Using these facts about our parameters, we now prove the lemma by induc-

tion on i. It su�ces to argue about _-gates, because for :-gates, a decision

tree for :g is exactly the same as that for g except that the leaf labels 1 and 0

are reversed.

Base Case: i = 0. The gates at depth 0 are either inputs or their negations

and these can be represented by decision trees of height 1 < r0. We thus let �0
be the empty restriction.

Induction Step: Suppose that there is a restriction �i 2 Rni

n;k
, so that for

all gates g of depth at most i � d � 1, g��i has a decision tree of height at

most ri. Consider any _-gate g at depth i + 1. By the inductive hypothesis
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all the inputs to this gate can be represented by decision trees of height at

most ri. Therefore the functions computed at those gates can be expressed as

ri-disjunctions over G(ni; k). Since g is an _-gate, it follows that g��i can be

expressed as an ri disjunction over G(ni; k). Observe that
4r2

i
s2
i
k � 4r2

d�1s
2
d�1k � r2

d
k < nd � ni+1:

Thus we can apply Lemma 3.3 to g��i with r = ri, s = si, n = ni, and ` = ni+1

to show that less than a

(3enri+1
i+1 ri(2k)

ri=ni)
si

fraction of all restrictions � 2 Rni+1

ni;k
fail to keep the decision tree height of g��i�

at most 4r2
i
si = ri+1. Now, since nd > (3erd(2k)

rd)3, by the properties of ri
and ni, we have, ni > (3eri(2k)

ri)3. Thus the failure probability is at most

(3enri+1
i+1 ri(2k)

ri=ni)
si

� (nri+1
i+1 =n

2=3
i

)si

� (n
5ri=4
i+1 =n

2=3
i

)si since ri � 4

= (n
5=16
i

=n
2=3
i

)si < n
�si=3
i

< 1=S:

Since there are at most S _-gates of depth i+1, there is some �xed restriction

� 2 Rni+1

ni;k
such that for all gates at depth i+1, applying �i� leaves their decision

tree height at most ri+1. Letting �i+1 = �i�, we see that the conditions of the

lemma hold. �

Theorem 3.5. Let F�1 = 1, F0 = 0, and Fi+1 = Fi + Fi�1, for i � 0, be

the Fibonacci numbers. Let k � logn. For su�ciently large n and k, any

unbounded fan-in, depth d circuit for DISTCONN(n; k) requires size at least

n�dk
1=(3F

2d) , where �d = 4�(F2d+3�1)=F2d .

Proof. Let S be the size of a depth d unbounded fan-in circuit C which

computes DISTCONN(n; k). Consider the recurrences from Lemma 3.4. It

is easy to solve them and derive that for i � 0,

si = 4F2i+2(logn S)
F2i�1 ;

ri = 4F2i+3�1(logn S)
F2i;

ni = n1=(4
i
Qi�1

j=0 rj);

and
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4i
i�1Y

j=0

rj = 4F2i+2�1(log
n
S)F2i�1�1 < ri:

Suppose that S < n�dk
1=(3F

2d) . Then logn S < �dk
1=(3F2d), and thus

rd = 4F2d+3�1(log
n
S)F2d < k1=3:

Also (3erd(2k)
rd)3 � k4rd � k4k

1=3

. Now nd � n1=rd � n1=k
1=3

and, since

k4k
2=3

< n for k � logn, we have that nd > (crdk
rd)3. Thus we can apply

Lemma 3.4 to �nd a restriction �d from Rnd

n;k
, such that every output gate g of

C, g��d can be represented by a decision tree of height less than k over G(nd; k).
In particular, this holds for the output nodes corresponding to pairs which are

composed by taking one of the nd choices of s 2 V0 and one of the nd choices

of t 2 Vk that are left unset by �d. But this is impossible because a decision

tree of height k on G(nd; k) cannot determine if such an st pair is connected.

This is a contradiction, and thus the theorem holds. �

Corollary 3.6. Let � = (
p
5 + 1)=2 be the golden mean. Then there is a

constant c such that for k � logn, any depth d unbounded fan-in circuit for

DISTCONN(n; k) requires size at least nck
��2d=3

.

Corollary 3.7. For any k(n) � logn, any depth d unbounded fan-in circuit

for STCONN(k(n)) requires size n
(k
��2d=3).

Corollary 3.8. For k(n) � logO(1) n, any polynomial-size unbounded fan-in

circuit for STCONN(k(n)) requires depth 
(log log k(n)).

4. The new switching lemma formulation

The idea of our switching lemma proof is as follows. Let f be an r-disjunction.

We want to show that with extremely high probability, a random restriction,

chosen from the distribution of restrictions, has the property that for any con-

sistent partial assignment T , (f��)�T has at most s \independent" terms. (This

is the main technical sub-lemma.) If this is true, then we can build a decision

tree for f �� that queries all variables in the s independent terms. Since all

other terms are dependent, we show that this reduces the overall term-size by

at least one. Then applying the sub-lemma again, we can �nd another set of
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at most s independent terms and query all of the variables in these s terms.

After continuing this process at most r times, we are guaranteed to terminate,

since all terms have been reduced to size 0.

The main ideas of our argument are somewhat simpler when applied to

prove a switching lemma for restrictions under the uniform distribution than

under the connectivity restrictions. Although this is much weaker than the

switching lemma from H�astad (1987), the proof illustrates the essential fea-

tures of our new technique more clearly than does the proof of the connectivity

switching lemma. We include it below for pedagogical purposes as an illustra-

tion of our technique.

4.1. A uniform switching lemma. Let f be a DNF formula with term size

� r over fx1; : : : ; xng, and let � be chosen uniformly from R`

n
, where R`

n
is

the set of all restrictions on fx1 : : : ; xng with exactly ` unset variables. We say

that a set of literals is consistent if it does not contain both a variable and its

negation. We can identify restrictions over fx1; : : : ; xng with consistent sets of

literals; a consistent set of literals corresponds to the minimal restriction that

forces each literal to 1. Therefore we can talk of one restriction containing

another, etc.

For E, C1; : : : ; Cs sets of literals, we say that C1; : : : ; Cs are E-consistent,

if their union with each other and E is consistent, and we say that they are

E-independent, if Ci \Cj � E, for every i 6= j. We say that � is s-bad for f , if

there is a set T of literals unset by �, so that there are least s terms C1; : : : ; Cs

in f such that

1. f��[T is not identically 1,

2. C1; : : : ; Cs are � [ T -consistent, and

3. C1; : : : ; Cs are � [ T -independent.

Lemma 4.1. Let f be a DNF formula with term size � r over fx1; : : : ; xng,
and let � be chosen uniformly from R`

n
. If s � ` � n=2, then the probability

that � is s-bad for f is at most (2r2r`=n)s.

Proof. Let D be the set of all pairs (G; �), such that G is a total truth

assignment, � 2 R`

n
, and G is consistent with �. We identify a certain interest-

ing subset of these pairs which contain restrictions � that are s-bad for f . We

argue that a large fraction of the pairs containing any � that is s-bad for f are

interesting, but that interesting pairs form only a small fraction of D. We then
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use the fact that each � is contained in the same number of elements to D (in

fact, exactly 2`) to conclude that only a small fraction of � are s-bad for f .

Let � be an s-bad restriction for f . Let T be a set of literals unset by

�, and let C1; : : : ; Cs be a set of terms from f which witness the fact that �

is s-bad. (Given a � that is s-bad for f , we choose T and C1; : : : ; Cs in a

canonical way, e.g., the lexicographically �rst such choices that work.) Let

S = (C1 [ � � � [ Cs)� �. We call a total truth assignment G consistent with �

an encoding of �, if it makes all literals in S true. ((G; �) form an interesting

pair.) Since jSj � rs, the number of encodings of � is thus at least 2`�rs out of

the 2` total truth assignments that are consistent with �. Therefore, for any �

s-bad for f , the fraction of pairs (G; �) 2 D for which G is an encoding of � is

at least 2�rs.

Any total truth assignment G is consistent with exactly
�
n

`

�
restrictions in

R`

n
, each of which can be speci�ed by naming its ` unset variables. We argue

that G can be the encoding of many fewer restrictions than this, by showing

how to identify some of these variables far more e�ciently than by naming

them. Given any encoding G of a � that is s-bad for f , and a relatively small

amount of additional information (advice), we identify s unset variables in �

using the following procedure.

Because G contains S and �, G forces all of C1; : : : ; Cs to be true, and

possibly other terms from f as well. Write f = F1 _ � � � _ Fm using some �xed

ordering of terms. Let C 0
1 be the �rst Fi forced to be true by G. Since � [ T

did not force f to be true, there must be some literal in C 0
1 � � � T . We use

the �rst log r bits of advice to �nd this literal among the r literals in C 0
1. Then

we modify G to make this variable unset, and �nd the next term C 0
2 in f that

is still forced to true. We repeat this process until s literals have been found.

This process would only be forced to stop before s literals are found, if at

some previous stage, there were no terms from f forced to true. But originally,

all of C1; : : : ; Cs are set to be true by G. Because the Ci's are �[T -independent,
by unsetting any one literal not in T , we cause at most one of the Ci's to be

no longer contained in G. Thus, this process continues for at least s stages.

Because the total number of advice bits we use is log r per stage, the total

number of advice bits used in the decoding is s log r. Thus, each total assign-

ment can be an encoding of at most rs
�
n�s

`�s

�
restrictions that are s-bad for f ,

out of
�
n

`

�
restrictions consistent with G, since after we �nd s unset variables,

we need to specify which are the remaining ` � s unset variables in order to

completely specify � given G.

Thus, the fraction of all pairs (G0; �0) 2 D for which (�0 is s-bad for f and)
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G0 is an encoding of �0 is at most

rs
�
n�s

`�s

�
�
n

`

� =
rs(n� s)! `!

n! (`� s)!
� rs`s

(n� s)s
� (2r`=n)s;

since n�s � n=2. On the other hand, for any �0 that is s-bad for f , the fraction

of pairs (G0; �0) 2 D, such that G0 is an encoding of �0, is at least 2�rs. Let B

be the set of � that are s-bad for f . Therefore

2�rs � jBj � 2` � (2r`=n)s � jDj = (2r`=n)s � jR`

n
j � 2`;

and so jBj=jR`

n
j � (2r`=n)s=2�rs = (2r2r`=n)s; as required. �

Definition 4.2. A Boolean decision tree over fx1; ::; xng is de�ned as follows.

It is a rooted tree with each interior node labeled by a variable xi; the two

outedges leading out of this node are labelled by xi and :xi, respectively.

The leaves of the decision tree are labelled by either \0" or \1". A decision

tree computes a function f over fx1; ::; xng in the obvious way: given a truth

assignment, follow the path in the tree consistent with the assignment, and

output the value at that leaf.

Lemma 4.3. Let f be a DNF formula with term size � r over fx1; : : : ; xng,
and let � be a restriction. If � is not (s+ 1)-bad for f , then f�� has a Boolean

decision tree of height at most r2s.

Proof. Since � is not (s + 1)-bad for f , f has a maximal �-consistent and

�-independent set of at most s terms. Query the at most rs unset variables

mentioned in these terms. Any set of answers to these queries shortens every

term in f�� by at least one, since no term is disjoint from these variables. Let

T1 be the set of literals corresponding to the answers. If f��[T1 is not identically

1, �nd and query a maximal set of � [ T1-independent and � [ T1-consistent

terms, and let T2 be the set of literals obtained by adding the set of answers to

these queries to T1. Repeat until f��[Ti is identically 1 or 0. Since each stage

shortens every term by 1, this will occur within r stages, for a total of at most

r2s queries. �

Corollary 4.4. Let f be a DNF formula over fx1; : : : ; xng with term size

at most r, and let � be chosen uniformly from R`

n
. If s � ` � n=2, then

the probability that f�� does not have a decision tree of height at most r2s is

� (2r2r`=n)s+1.



338 Beame, Impagliazzo & Pitassi cc 7 (1998)

5. The connectivity switching lemma

The argument for the connectivity switching lemma is somewhat more subtle

than for the uniform case. In particular, the de�nitions of consistency and

independence are more complicated. In this case, we �nd it natural to use

an identi�cation between restrictions on layered graphs and sets of edges that

are consistent with some layered graph. This is somewhat di�erent from the

identi�cation we used between restrictions and sets of literals in the uniform

case.

Given a set of edges E that forms a collection of disjoint partial paths in

the layered graph variables, we can de�ne a restriction based on E that assigns

the value 1 to any variable corresponding to an e 2 E, and assigns the value

0 to any variable corresponding to an e0 =2 E, such that there is edge e 2 E

incident to e0 and in the same layer as e0. We also refer to this restriction as E,

since there is no danger of confusion. Similarly, given a restriction � 2 R`

n;k
,

we can view � as de�ning a set of edges, namely, those corresponding to the

variables set to 1 by �.

We will �rst state and prove the main technical sub-lemma for the switching

lemma for connectivity restrictions. Let E and C1; : : : ; Cs be sets of edges. We

say that C1; : : : ; Cs are E-consistent, if there is a layered graph containing

E [ C1 [ � � � [ Cs. We say that the collection C1; : : : ; Cs is E-independent, if

any edge in more than one Ci is from E, and if there are no edges e 2 Ci �E,

e0 2 Cj �E with i 6= j, such that e and e0 are on the same path in E [ fe; e0g.
Given a disjunction f over G(n; k) and a restriction � we say that � is s-bad

for f if there is a set of edges T disjoint from � and a set C1; : : : ; Cs of terms

of f such that

1. f��[T is not identically 1,

2. C1; : : : ; Cs are � [ T -consistent, and

3. C1; : : : ; Cs are � [ T -independent.

Lemma 5.1. Let f be an r-disjunction over G(n; k), and let � be a randomly

chosen restriction from R`

n;k
. Let s be any integer with 4s2r2k < `. Then the

probability that � is s-bad for f is at most (3er`r+1(2k)r=n)s.

Proof. Let D be the set of all pairs (G; �) such that G is a layered graph,

� 2 R`

n;k
, and G is consistent with �. We identify a certain interesting subset

of these pairs which contain restrictions � that are s-bad for f . We argue that

a large fraction of the pairs containing any � that is s-bad for f are interesting,
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but that interesting pairs form only a small fraction of D. We then use the fact

that each � is contained in the same number of elements to D (in fact, exactly

(`!)k), to conclude that only a small fraction of � are s-bad for f .

Let � be an s-bad restriction for f . Let T be a set of edges and C1; : : : ; Cs

be a set of terms of f that witness this fact. (We assume that T and C1; : : : ; Cs

are chosen in some canonical fashion as a function of �, for example, as the

lexicographically �rst such choices that work.)

We �rst remove elements of T that are extraneous for any minimal witness.

Let T 0 = [s

i=1(T \ Ci), i.e., those edges of T that actually occur in one of the

terms. It is easy to see that C1; : : : ; Cs are � [ T 0-independent and � [ T 0-

consistent, and that � [ T 0 does not force f to be identically 1.

Let S = (C1 [ � � � [ Cs) � �. Since T was disjoint from �, T 0 � S, and so

jT 0j � jSj � rs, because the fact that f is an r-disjunction implies that for

each i, jCij � r. Moreover, since C1; : : : ; Cs are � [ T 0-consistent, S consists

of several disjoint paths in the unset variables. Since C1; : : : ; Cs are � [ T 0-

independent, each such path P is entirely contained in Ci [ T 0 for some i.

Otherwise there would be some edge e from some Ci � � � T 0 in P , and an

edge e0 from some Cj � �� T 0, i 6= j, also in P . Taking the pair of such edges

closest together, all intermediate edges would have to be from � [ T 0, which

contradicts � [ T 0-independence.

We say that a layered graph G consistent with � is an encoding of � if it

contains S, and if no two paths in S are part of the same path in G. ((G; �)

forms an interesting pair.) We can pick G to be a random encoding of � as

follows. Let P1; : : : ; Pp, p � rs, be the paths in S. Extend P1 backwards

and forwards one edge at a time to get a path from the �rst layer to the last,

avoiding any node in any of the other paths. Then repeat with P2 on the

remaining nodes. When all paths have been extended, pick a random layered

graph on the remaining ` � p nodes at each layer. For each of the pk � jSj
extension phases, we will have at least `� p choices for the edge at that layer.

We then have (`� p)!k choices after the extension phases are over. Thus, each

bad � has at least

(`� p)pk�jSj(`� p)!k

� (`� p)pk(`� p)!k=`jSj

= (1� p=`)pk`pk(`� p)!k=`jSj

� (1� p=`)pk(`!)k=`jSj

� e�4p2k=`(`!)k=`jSj
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� e�1(`!)k=`jSj

encodings, since 4p2k � 4(rs)2k � `. Thus, for any � s-bad for f , the fraction of

layered graphs consistent with �, that are encodings of �, is at least e�1(`)�jSj.

That is, for any � s-bad for f , the fraction of pairs (G; �) 2 D for which G

is an encoding of � is at least e�1(`)�jSj. (Intuitively, the fraction of layered

graphs consistent with � that are encodings of � is approximately the same as

the fraction of all layered graphs that contain S, and each edge, of the at most

rs edges in S, is included with probability 1=`.)

Given any encoding G of �, we can give a small amount of additional in-

formation that will allow us to compute � using the fact that we know f . This

is equivalent to �nding which ` of the n paths in G were unset by �. We show

how from G and s(log r+1)+ rs(log k+1) bits of well-chosen information (ad-

vice), we can compute s of the unset paths in �. We can then specify explicitly

which of the
�
n�s

`�s

�
choices for the set of remaining paths is correct.

The decoding method is as follows. Since G contains S and �, G forces all

of C1; : : : ; Cs to be true, and possibly other terms of f . Write f = F1_� � �_Fm

using some �xed ordering of terms. Let C 0
1 be the �rst Fi forced to be true

by G. Since � [ T 0 did not force f to be true, there must be some edge e1 in

C 0
1 � � � T 0, and the accompanying path P1 must be unset by �. We use the

�rst log r bits to specify e1 among the r edges in C 0
1. The location of all the

edges in P1\T 0 will be given to us by the layer at which each such edge occurs,

using log k bits per such edge. (Technically, we use the �rst bit to say whether

there are any such edges; if there are, we use the next log k bits to obtain the

�rst edge, and the next bit tells us whether there are any more along the same

path.) We delete all the edges in P1�T 0 from G, and �nd another term C 0
2 still

forced to be true. As before, this gives us another path P2 which was unset by

�. We repeat until s paths are found.

The process would only be forced to stop before s paths are found, if at some

previous stage, there were no terms from f forced to be true. But originally

all of C1; : : : ; Cs are set to be true by G, i.e., contained in G. By the property

of the encoding, each Pj contains at most one path from S, and so Pj � T 0 is

contained in some Ck, and is thus disjoint from the other Ci's. Therefore, by

deleting the edges in Pj � T 0, we cause at most one of the Ci's to be no longer

contained in G. Hence, we can repeat the process at least s stages, since at

any point before then, at least one Ci remains forced to true.

The total number of advice bits we use is log r+1 per stage for each of the

s stages, and an additional log k + 1 per edge of T 0 found. Since there are at

most rs edges in T 0, this is at most s(log r + 1) + rs(log k + 1).
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Thus, each layered graph G can be an encoding of at most (2r)s(2k)rs
�
n�s

`�s

�

restrictions, that are s-bad for f , out of
�
n

`

�
restrictions consistent with G.

Thus the fraction of all pairs (G0; �0) 2 D for which (�0 is s-bad for f and) G0

is an encoding of �0 is at most

(2r)s(2k)rs
�
n�s

`�s

�
�
n

`

� =
(2r)s(2k)rs(n� s)!(`)!

n!(`� s)!

� (2r)s(2k)rs(`)s

(n� s)s

� (3r(2k)r`=n)s;

since n � s � 2n=3. On the other hand, for any �0 that is s-bad for f , the

fraction of pairs (G0; �0) 2 D, such that G0 is an encoding of �0, is at least

e�1(`)�jSj � e�1(`)�rs. Let B be the set of � that are s-bad for f . Therefore

e�1(`)�rs � jBj � (`!)k � (3r(2k)r`=n)s � jDj = (3r(2k)r`=n)s � jR`

n;k
j � (`!)k;

and so jBj=jR`

n;k
j � (3r(2k)r`=n)s=(e�1`�rs) = (3er(2k)r`r+1=n)s, as required.

�

We are now ready to prove the connectivity switching lemma.

Proof of Lemma 3.3. By Lemma 5.1, with probability , a random

restriction � drawn from R`

n;k
has the following property, P: For all consistent

collections T of unset edges so that f ��[T is not identically 1, any maximal

collection of � [ T -independent, � [ T -consistent terms in f�� has size at most

s. We will show that from any � with property P, we can construct a depth

4r2s decision tree for f��.

Fix � with property P. We will implicitly describe the decision tree for

f�� by giving a procedure to decide the value of f�� by making queries to the

predecessors and successors of unset nodes; the depth of the tree will be the

maximum number of queries made during any execution of this procedure.

The procedure operates in r stages, and at each stage, at most 4rs queries

are made. When a successor query concerning node u is made, and the answer

v is obtained, then we say that edge (u; v) has been discovered by the procedure;

similarly for predecessor queries. Let Ti be the set of edges discovered in the

�rst i stages, and de�ne T0 = ;. Stage i + 1 of the procedure is as follows. If

f ��[Ti is identically 1, halt and accept. If no terms of f are consistent with

�[Ti, halt and reject. Otherwise, there must be a maximal collection of �[Ti-
independent and � [ Ti-consistent terms C1; : : : ; Cs0 with s0 � s. Let Si+1 be
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the set of nodes mentioned in some edge of some Cj. Since each Cj is an r-

conjunction, and each variable involves 2 vertices, jSi+1j � 2rs. Then for each

v 2 Si+1, make the following queries: if v is not in any edge of Ti, then query

the predecessor and successor of v. Otherwise, v is in some path P of Ti; query

the predecessor of the �rst node of P and the successor of the �nal node of P .

In either case, at most 2 queries are made per vertex, so the total number of

queries in stage i is at most 2jSi+1j � 4rs.

To see that the above procedure halts within r stages, consider any term C

of f . We claim that if C is consistent with �[Ti, then at least i edges of C have

been discovered in the �rst i stages. In particular, until C becomes inconsistent

with � [ Ti, at least one new edge of C is discovered in each stage. Assume

C is consistent with � [ Ti, and let C1; : : : ; Cs0 be the maximal collection of

�[Ti-consistent and �[Ti-independent terms found in stage i+1. If C is one

of the terms in this collection, all of its nodes are queried. Thus, either it will

become inconsistent, or all of its edges will be discovered.

Now suppose that C is not among C1; : : : ; Cs0. Then C;C1; : : : ; Cs0 is either

� [ Ti-inconsistent or � [ Ti-dependent.

In the �rst case, since C is consistent with � [ Ti, and all the other terms

together are consistent with � [ Ti, C � Ti � � must be inconsistent with some

Cj � Ti � �. Thus, there must be an edge e = (u; v) of C � Ti � � and an edge

e0 = (u0; v0) from Cj � Ti � � with u = u0 or v = v0. Assume u = u0; the case

v = v0 is similar. Then, since e0 62 � [ Ti, u's successor will be queried in stage

i + 1, and so either C will become inconsistent, or e will be discovered.

In the other case, C;C1; : : : ; Cs0 are � [ Ti-consistent but they are not not

� [ Ti-independent. Then there is an edge e = (u; v) 2 C � Ti � � and an

edge e0 = (u0; v0) in some Cj � Ti � � connected via a (possibly empty) path

P � �[Ti. Assume that P starts at v and ends at u0; the reverse case is similar.

Then the queries for stage i + 1 involving u0 will include the predecessor of v.

Thus either e and hence C will become inconsistent, or e will be discovered in

stage i + 1.

Thus, if the procedure continues for r stages, every term has either to

become inconsistent, or has had all of its edges discovered. If any term has all

of its edges discovered, the function is forced to 1; if all terms have become

inconsistent, the function is forced to 0. In either case, the procedure halts

after the r-th stage. �

6. Concluding remarks

It would be very nice to close the gap signi�cantly further between the upper
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bound of O(logk(n)) and our lower bound of 
(log log k(n)) polynomial-size

circuits solving STCONN(k(n)). It is easy to improve our lower bound slightly

by replacing the 4r2s in the statement of Lemma 3.3 by 4
�
r+1
2

�
s, but this has

virtually no e�ect on the asymptotics of the depth lower bound. However, if

one could improve this 4r2s bound to a function of r and s whose total degree

were 1 + o(1), then one would obtain a substantial improvement in the depth

lower bound.

One of our original motivations for considering STCONN(k(n)) was that

the lower bound of Ajtai (1989) was the only one using an independent-set-style

switching lemma that seemed impossible to improve upon using a H�astad-style

switching lemma. We view our new switching lemma as progress towards de-

veloping a general switching lemma which might give a simple characterization

of the properties on a family of restrictions that permit a switching lemma to

be proved.
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