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Abstract 

We prove optimal R(log n/log log n) lower 
bounds on the time for CRCW PRAM’s with poly- 
nomially bounded numbers of processors or memory 
cells to compute parity and a number of related prob- 
lems. We also exhibit a strict time hierarchy of ex- 
plicit Boolean functions of n bits on such machines 
which holds up to O(log n/ log log n) time. Further- 
more, we show that almost all Boolean functions of 
n bits require logn - log log n + Q( 1) time when the 
number of processors is at most polynomial in n. Our 
bounds do not place restrictions on the uniformity of 
the algorithms nor on the instruction sets of the ma- 
chines. 

1. Introduction 

One of the most widely used models of parallel 
computation is the parallel random access machine 
(PRAM). In this model any processor can access 
any memory location at given time-step. The most 
powerful form of the PRAM, the CRCW PRAM, in 
which both concurrent read and concurrent write ac- 
cesses are allowed, has received particular attention 
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both from designers of algorithms and from those 
studying the limitations of parallel machine compu- 
tation. Despite the significant interest, the only non- 
trivial lower bounds for decision problems on CRC’W 
PRAM’s that do not have drastic restrictions placed 
on either their processor and memory resources or on 
the instruction sets of their processors are due inde- 
pendently to Beame [Be21 and to Li and Yesha [LYj. 
The lower bounds are for parity and related problems 
and are far from optimal. In both of these bounds 
no restriction is placed on the instruction set of the 
processors, no limitation is placed on how much infor- 
mation a single memory location may store, and the 
resources allowed are only polynomially bounded. We 
will call a machine with these properties an abstract 
or ideal PRAM. 

In this very general setting we prove the first op- 
timal bound for any non-trivial decision problem on 
the CRCW PRAM by showing a time lower bound 
of Sl(logn/loglog rz) for parity which matches the 
known upper bound. This lower bound holds even in 
the cases when only one of the two resources, proces- 
sors or memory cells, is bounded by a polynomial in 
the input size. Because parity constant-depth reduces 
to a large number of problems, this SZ(log n/ log log n) 
time lower bound for the CRCW PRAM applies to 
a wide variety of interesting functions which include 
sorting or adding n bits, as well as multiplying two 
n-bit integers. 

Also, by looking at the so-called ‘Sipser’ func- 
tions which are defined by circuits, we obtain a 
very sharp time hierarchy for CRCW PRAM’S of 
polynomial bounded resources. That is, for ev- 
ery time bound T(n) at most log n/(3 log log n) - 
O(logn/(loglog n)2) we exhibit a family of functions 
which is computable in time bound T with n proces- 
sors and memory cells, but which cannot be computed 
even 2 steps faster by any machine with a polynomial 
bound on the number of processors. A similar sep- 



aration holds for machines with a polynomial bound 
on the number of memory cells. 

The proofs of both these results follow lines sim- 
ilar to the proofs in [Bell and [Be21 and involve show- 
ing new lemmas which generalize the key lemmas used 
in Hastad’s unbounded fan-in circuit lower bounds 
([Hal] and [Ha2]). 

We also prove a tight O(logn) lower bound on 
the time to compute almost all n-bit Boolean func- 
tions on CRCW PRAM’s with polynomial numbers 
of processors. 

2. History of the Problem 

Much of the lower bound work for CRCW 
PRAM’s has been based on their close relationship 
to unbounded fan-in circuits. These were defined by 
Furst, Saxe and Sipser [FSS] largely as a tool for try- 
ing to get, an oracle to separate the polynomial time 
hierarchy from PSPACE. Stockmeyer and Vishkin 
[SV] showed that simple CRCW PIRAM’s can sim- 
ulate unbounded fan-in circuits with essentially the 
same number of processors as the circuit size a.nd the 
same time as the circuit depth. In fact, by restricting 
the instruction set, of the CRCW PRAM to a limited 
set that includes addition, comparison, indirect ad- 
dressing and a few related instructions, Stockmeyer 
and Vishkin also showed that unbounded fan-in cir- 
cuits can easily simulate restricted CRCW PF1AM’s. 
The size of the resulting circuit is polynomial in the 
number of processors multiplied by the time ;and its 
depth is only a constant factor larger than the time. 
Using the latter result, and a R(log” n) lower bound 
of [FSS] on the depth of polynomial size unbounded 
fan-in circuits computing parity, [SV] obtained lower 
bounds for this restricted form of CRCW PR,QM. 

Because disjunctive normal form formulas are 
unbounded fan-in circuits of depth two it follows 
that all Boolean functions may be computed in two 
steps using exponential resources on the CRCW 
PRAM. However, it is not reasonable to be us- 
ing exponentially many processors and memory 
cells. With polynomial resource bounds, (CRCW 
PRAM’s can compute any function with formula size 
no(l) in time O(logn/loglogn), using an algorithm 
based on an upper bound of size no(l) and. depth 
O(log n/ log log n) for unbounded fan-in circuits given 
by Chandra, Stockmeyer and Vishkin [CSV]. 

Since Stockmeyer and Vishkin’s paper, the 
lower bounds for unbounded fan-in circuits have 
been significantly improved. The s#eries of improve- 
ments ([Aj], pa]) culminated in the work of Hastad 

[Hal] who obtained an R(logn/logIogn) depth lower 
bound for polynomial size circuits computing parity 
which matchies the bound from Chandra, Stockmeyer 
and Vishkin’s algorithm mentioned above. However, 
the CRCW PRAM lower bounds which follow using 
Stockmeyer and Vishkin’s simulation are still not en- 
tirely satisfactory since the bounds rely in an essential 
way on the speciric restriction whic’h is placed on the 
instruction set. Some operations that are prohibited 
in this model seem to be perfectly reasonable ones. 

Abstract CRCW PRAM’s can be shown to be 
much more Ipowerful than these restricted machines; 
because of their equivalence with unbounded fan-in 
circuits, restricted CRCW PRAM’s with polynomi- 
ally many processors require exponential time to com- 
pute almost all Boolean functions whereas an abstract 
PRAM only takes O(logn) time without even using 
its power of concurrent reads or writes. Nevertheless, 
for certain s:pecific functions we shall see that, by us- 
ing direct techniques, lower bounds as strong as those 
derived for these restricted CRCW machines can be 
obtained for the most powerful model of CRCW 
PRAM. 

By applying and modifying the techniques of 
[FSS], Beame [Bell derived the first non-trivial lower 
bound which applies to the CRCW PRAM model de- 
scribed here. He showed that any CRCW PRAM 
computing the parity function with no(l) memory 
cells and an unbounded number of processors re- 
quires time Q(,/ll). Later, using the main 
lemma in [Hal], Beame [Be21 obtained the follow- 
ing: any CRCW PRAM which computes the par- 
ity function with no(l) processors (in fact with as 

many as n 
2$G 

processors for some 6 > 0) and un- 
bounded memory requires time a(-. With the 
same techniques, an Q(a) lower bound is easily 
shown for common-write CRCW PRAM’s (for defini- 
tions see section 3) which have no bound on the num- 

ber of processors but have a bound of O(n”“=) on 
the number of cells for some b > 0. 

It was noted by Chor [Ch] and Li and Yesha [LY] 
that a simulation of abstract CRCW PRAM’s by un- 
bounded fan-in circuits can be combined directly with 
Hastad’s circuit lower bound to obtain the a(e) 
lower bound. However, this simulation does not yield 
the above lower bound for the common-write model 
with an unbounded number of processors. The sim- 
ulation states that any CRCW PRAM solving a de- 
cision problem on n Boolean inputs using p(n) pro- 
cessors and T(n) time can be simulated by an un- 
bounded fan-in circuit of size ~(n)~‘(“)+~(” and depth 

W(n))- 
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Beame [Be21 and Li and Yesha [LY] have also 
independently shown optimal bounds on the time 
needed by CRCW PRAM’s to compute functions 
whose many-bit output is required to appear in a sin- 
gle memory cell. However, as was noted in [Be2], such 
an output requirement is somewhat artificial and the 
lower bounds disappear if each bit of the output is 
allowed to appear in a separate memory cell. 

3. Definitions and Preliminaries 

Definition: A CRCW PRAM is a shared memory 
machine with processors 9,. . . , Ppcn) which commu- 
nicate through memory cells Cl, . . . , C,(,). The in- 
put is initially stored in the first n cells of memory, 
Cl,... , C,. Initially all cells other than the input 
cells contain the value 0. The output of the machine 
is the value in the cell Cr at time T(n). 

Before each step t, processor Pi is in state qf . At 
time step t, depending on ql, processor Pi reads some 
cell Cj of shared memory, then, depending on the 
contents, (Cj), and qf, assumes a new state qf+’ and 
depending on this state, writes a value v = v(qf+‘) 
into some cell. 

When several processors are attempting to write 
into a single cell at the same time step the one that 
succeeds will be the lowest numbered processor. A 
CRCW PRAM is defined to be a common-write ma- 
chine if the values that these processors are attempt- 
ing to write are always the same. 

In studying the progress of CRCW PRAM com- 
putations, what is important is the set of inputs which 
lead to a given value in a memory cell or a given state 
of a processor at a particular time step. The compu- 
tation then may be viewed as operating not on actual 
values so much as on the partitions associated with 
them. 

Definition: Let M be a CRCW PRAM. For any 
processor Pi the processor partition, P(M, i, t), of the 
input set at time step t is defined so that two inputs 
are in the same equivalence class of P(M, i, t) if and 
only if they lead to the same state of processor Pi at 
the end of time step 1. 

For any cell Cj the cell partition, C(M,j, t), of 
the input set at time t is defined so that two inputs 
are in the same equivalence class of C(M, j, t) if and 
only if they lead to the same contents of cell Cj at 
the end of time step t. 

We look at a measure of progress which was used 
in [Bell and [Be21 to prove lower bounds for CRCW 
PRAM’s 

Definition: Let f be a Boolean function defined 
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on a set 1 C (0, 1)” A Boolean formula F represents 
f on I if the inputs z E I satisfy F exactly when 
f(x) = 1. Let the maximum clause length of a DNF 
formula F be the maximum number of literals in any 
clause of F. The (Boolean) degree off on I, 6(f), is 
the smallest maximum clause length of all disjunctive 
normal form (DNF) formulas representing f on I. We 
extend this definition to sets of functions F by letting 
J(3) = maxfe W). 

The terminology of degree is derived from the 
standard way of writing a formula with the Boolean 
v as addition and the Boolean A as multiplication and 
then viewing the resulting formula as a polynomial. 
This should not be confused with the degree of a 
polynomial in the finite field of two elements where 
the exclusive-or rather than the V is the appropriate 
additive operation. 

In the notation of many lower bound proofs for 
monotone formulae, we could define the prime im- 
plicants and prime clauses of a Boolean function f. 
(Prime clauses are essentially prime implicants of f.) 
These have been described as minterms and max- 
terms respectively in the notation used by Yao [Ya] or 
Hastad [Hal]. Observe that the degree of a function 
and the length of its longest minterm or maxterm 
may differ because its longest minterm may be longer 
than the longest clause in an optimal DNF formula 
representing it. 

Definition: Let A be a partition of a set I g 
IO, l}-. Define the degree of A, 6(A), to be 6(7~) 
on I where 3~ is the set of characteristic functions 
of the equivalence classes of A in I. 

The major proof technique of the lower bounds 
for parity on unbounded fan-in circuits is the use of 
restrictions to set some of the input bits. Using re- 
strictions permits a simplified description of the re- 
sults of computations but does not drastically reduce 
the difficulty of the function being computed. The 
main idea behind using them is that, although ap- 
parently complex operations like the OR of n bits are 
computed in one step, by setting relatively few inputs 
to 0 or 1 the results of these operations are simple. 
In the case of the OR of n bits, setting a single input 
to 1 makes it trivial. 

Definition: A restriction ?r on IC C_ (1,. . ,,n} is a 
function 7r : IC -+ (0, 1, *} where: 

1 means zi is set to 1 
x(i) = 0 means ti is set to 0 

* means 2i is unset 



We define the results of applying ai restriction ?r to 
a partition, A[=, a function, frlr, and a Boolean for- 
mula, Fr,, in the natural way. If u and 7 are re- 
strictions then UT is a restriction which is the result 
of applying u first and then applying r. For any 
K E {l,..., n} define Proj[K] to be the set of re- 
strictions which assign 0 or 1 exactby to the inputs in 
K. 

In several places we will need the following simple 
observation. 

Lemma 3.1: Let A be a partitio,n of a cube I E 
{O, qn. For every K C { 1, . . . , n} there exists a 
restriction u E Proj[K] such that S(A) 5 (KI + 

G%)* 

The hard part in showing that restrictio:ns sim- 
plify the results of CRCW PRAM computations is 
naturally the very powerful concurrent write opera- 
tion since the read operation is sirnply the interac- 
tion of individual processors with single cells. It will 
be useful to define an abstraction of this operation 
in order to be able to describe conveniently the ac- 
tions of restrictions on the new cell partitions which 
result from the concurrent writes. It also will turn 
out that, in describing the effects (of restrictions on 
the processor partitions, we use a special case of this 
abstraction. 

Definition: We say that an input x E {O, 1)” 
satisfies a Boolean function F : (0, 1)” ---+ .(O, 1) if 
F(x) = 1. We say that x falsifies F if F(x) =: 0. 

Definition: A graded set of Boolean functions is 
a set G of Boolean functions such that each F E Q 
has an associated positive integer grade, y(F) (or has 
grade = co) and no two functions of a given grade are 
simultaneously satisfiable. 

Definition: For any graded set of Boolean func- 
tions, G, the parli2ion determined by G, (G), on (0, 1)” 
is the partition such that x, y E {O, 1)” are in the 
same equivalence class if and only if: 

(a) t and y both satisfy some function F E G, 
and t and y both falsify all F’ E G with 

Y(F’) < Y(F). 

or (b) x and y both falsify all fu:nctions F E 6. 

The reflexivity and symmetry of the relation 
above are obvious. The transitivity is a simple conse- 
quence of the fact that the definition of a graded set of 
functions excludes the possibility that two functions 
of a given grade are simultaneously satisfiable. For 
technical reasons the following straightforward lemma 
is convenient. 

Lemma 3.2: Let Q be a graded set of Boolean 
functions. If ?r is a restriction then (G) rx is the same 
partition as (GL) on (0, l}“[,. 

We note that the above definitions can be carried 
over easily to Boolean formulas which represent the 
Boolean functions in the obvious way. Observe that 
if T represents G on (0, l}“r, then (3)[,= (6) r%, 
Also, the notion of degree applies to graded sets of 
Boolean functions simply using the natural definition 
of degree for sets of functions. It is easy to see that a 
graded set of Boolean functions 6 can be represented 
on a cube (0, 1)” rX by a graded set of DNF formulas 
.T, each with maximum clause length bounded by 

~6%)~ 

Definition: Let M be a CRCW PRAM. Define 
G(M, j,t) to be the graded set of Boolean functions 
as follows: 

(i) For each positive integer i, the functions of grade 
i in G(.M, j,t) are the characteristic functions of 
those equivalence classes in P(M, i, t) on which 
Pi writes into cell Cj during time step 1. 

(ii) The functions of grade 00 in G(M, j, 2) are all the 
characteristic functions of the equivalence classes 
in C(M,j,i - 1). 

Lemma 3.3: Let M be a CRCW PRAM. 
(G(M, j, t)) is a refinement of C(M, j, t) on (0, 1)“. 

Proof: The way in which a partition is determined 
by a graded set of functions imitates the priority write 
operation of the CRCW PRAM. Condition (b) in the 
definition of the partition determined by a graded set 
of function cannot occur here since every input sat- 
isfies the characteristic function of some equivalence 
class in C(M, j,i - 1). Condition (a) in this defini- 
tion corresponds to one of two cases. Either the input 
causes processor Pi to write and Pi is guaranteed to 
succeed since no lower numbered processor attempts 
to write, or no processor writes and thus the previ- 
ous value in the cell remains (we view this as the cell 
writing its old value back to itself). [7 

The general method we employ for showing lower 
bounds on CRCW PRAM computations for decision 
problems is as follows. We show that after certain re- 
strictions (which set more inputs as time progresses) 
are applied to the inputs, the processor and cell par- 
titions have only small degree relative to the degree 
required to solve the problems. In using restrictions 
to obtain our lower bounds we must maintain a bal- 
ance between the amount of simplification that a re- 
striction achieves and the number of inputs it sets. 
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4. Tight Lower Bounds for Parity 

We now state our main result. 

Theorem 4.1: If M is a CRCW PRAM which com- 
putes the parity function in time T = T(n) then for 
sufficiently large n 

(4 

(bl 

(4 

the total hardware h(n) = p(n) + c(n) must be 
at le& 2[hn”T-21, 

the number of processors p(n) must be at least 
21 &n w-4 even if the number of memory cells is 
infinite, and 

the number of memory cells c(n) must be at least 
2[M”lT! PT -21 even if the number of Processors 
is infinite. 

For the proofs of each of the parts of this theorem 
we define restrictions rrt for each step t of the compu- 
tation such that after step t and after rt is applied, 
the cell (and processor) partitions all have degree less 
than the number of unset variables. The lower bound 
follows since setting variables of parity just leaves a 
smaller parity function and any representation of par- 
ity in DNF has clauses which depend on all the unset 
variables. 

In order to prove the existence of restrictions 
that satisfy these properties we need an appropriate 
probability space from which to choose restrictions. 
This distribution was introduced by Furst, Saxe, and 
Sipser [FSS] and has been used in several subsequent 
lower bound proofs for unbounded fan-in circuits. 

Definition: Let X & { 1,. . . , n}. Define I?: to be 
a probability space of restrictions on K where for a 
random p chosen from RF, independently for each 
i E K, p(i) is * with probability p and p(i) is 0 or 1 
with equal probability (1 - p)/2. 

The outline above is now carried out by proving 
two lemmas. The first tells us that many variables 
remain unset and the second tells us that the degrees 
of the partitions do not increase. 

Lemma 4.1: Let L C {l,...,n} and 0 < p < 1 
such that p( 1 - p) IL1 is at least me for some absolute 
coflstan t me. Choose p at random from Ri. The 
probability that p leaves at least p[L,I inputs unset is 
greater than I/3. 

Lemma 4.2: Let M be a CRCW PRAM just prior 
to a read or write operation, all of whose processor 
and cell partitions have degree at most r 2 1 with 
variables from {q)is~. Let A be either a new pro- 
cessor partition resulting from a concurrent read of 

M or a new cell partition resulting from a concurrent 
write of M. Choose p at random from Rk. For s > 0 
we have 

This is an easy corollary of Lemma 3.3 and the 
following lemma which is the key generalization of the 
main lemma of Hastad [Hal]. 

Lemma 4.3: Let Q be a graded set of DNF formu- 
las on inputs {Zi}ieL with maximum clause length 
bounded byr 11 where L C {l,...,n}. Let F be 
an arbitrary function on (0, l}n. Let p be a random 
restriction chosen from Rf. Then, if (Grp) is thepar- 
tition determined by G rp, for s 1 0 we have 

where p > 0 satisfies 

4P 
5-w +p) 

+ 1)’ = 2. 

Proof: We first note that we only need to consider 
finite graded sets of formulas (i.e. 161 is finite). This 
follows since there are only a finite number of different 
input strings and so only a finite number of ways 
in which some formula in 6 can be satisfied and all 
smaller ones falsified. Also, it is trivial to see that 
the lemma holds for s = 0 or /3 > 1 so we can assume 
that s > 0 and p < 1. 

The rest of the proof proceeds by induction on 
the total number of clauses in the formulas in 9. The 
intuitive idea is that as we work along the clauses one 
by one: if p falsifies a clause, then we are left with 
essentially the same problem as before; if p does not 
then, given the fact that it does not, it is much more 
likely that p satisfies the clause and ensures that the 
remaining partition has only one class than that p 
leaves any input in the clause unset. 

In this proof for readability we will write 6(G) 
instead of 6((G)). 

BASE CASE: There are no clauses in the formulas in 
4. In this case the formulas are all identically 0 and 
so all inputs are equivalent with respect to 6. Thus 
the partition determined by Grp consists of a single 
class so 6(GrP) = 0 and the lemma holds for G. 

INDUCTION STEP: Assume that the lemma holds for 
all graded sets of formulas G’ with fewer clauses than 
the formulas of 0. Let FI be a formula in G which 
has lowest grade among those formulas in G which 
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are not identically 0; let Ci be a clause of Fi. We 
can analyse the probability by considering separately 
the cases in which p does or does not force clause Cl 
to be 0. The failure probability, the probabilit;y that 
S(G[,) 2 6, is an average of the failure probabilities 
in these two cases. Thus 

fr [ Wr,) 1 8 I Frp= 0 1 I 
max( Pr[5(Gr,)> s 1 qp= o~Lir,= 0 1, 

pr[~(Grp)2- I Frp=omrp#oi). 

The first term in the maximum is Pr [ a(<;[,,) 1 
s ] (F V Ci)r,= 0 ] . Let Fl be F:L with clause Ci 

removed; thus FI = Ci V Fi and Fi # FI. Let c be 
the same as G with formula Fr replaced by $1. In this 
case C1 rp= 0 SO Fl rp= Fi rp and thus (G[,) = (&). 
In other words, when Cl rp= 0, the lemma requires a 

bpund on Pr [ S(cr,,) 2 s ] (F V C.)rp= 0 ] . Since 
Q has one fewer clause than Q does, the inductive 
hypothesis implies that this proba’bility is at most 

P’. 

The estimation of the second term in the maxi- 
mum is more difficult. Let T C_ L be the set of vari- 
ables appearing in clause Cr. By hypothesis ITI 2 r. 

Let pi be the restriction of p to the variables in T. 
The condition that Cl [,# 0 is equivalent to the con- 
dition that Ci rPT # 0. We analyse the cases based on 
the subset Y of the variables in T to which pi assigns 
*; we use the notation +(p~) = Y to denote th.e event 
that the variables in T which are assigned +: by pi 
are exactly those in Y. Then 

pr[WrJ LS I q-,=omrPT#oi 

c 
Pr [ a(qP) 2 s A *(PI-) = Y 

= 
YET I Fr,=ohclr,.,foi. (1) 

Consider the case in which Y = 4. Then pi sets every 
variable in T so the value of Ci is forced by lw. But 
since we already know that Ci rPT f 0 we must have 
Cr rPT = 1. In this case every input satisfies Fl rp and 
since Fr has lowest grade we know that all inputs are 
equivalent with respect to the (G[,). It follows that 
S(Grr,) = 0 so the term corresponding to Y := 4 has 
probability 0. The sum in (1) then becomes 

pr WL) 2 s I Frp= omr,,# 01 

c Pr [ qq,) 2 s A *(PT) = Y = 
YV,Y#6 I Frp=OAclrpT# 01 

c 
Pr[ QTr,) 2 s I Fr,= 0 = 

YCT,Y++ A ClrpT# 0 A *t(m) = Y I 
x Pr[*(m)=Y 

1 Frp=OAGr,,#O] 
(2) 

by simple conditional probability. 

We tackle the latter term in each of these prod- 
ucts first. If we let m(Y) = * denote the event that 
every variable in Y is unset by pi then elementary 
probability yields 

Then as in ]:Hal] we have 

PrfpT(Y) = * ] F[,=OAC&.#O] 5 (&)lyl. 

Now we look at the first term in each product 
in (2). The condition that Ci rPT# 0 A *(pi) = Y 
exactly specifies pT = p[T since it means that every 
variable in T\Y is set to 0 or 1 in the way which does 
not force the value of Cr to 0 and that every variable 
in Y is set to +. We let F’ be F V G where Grp= 0 if 
and only if p sets the variables in T \ Y in the unique 
way that does not force clause Cl to 0. Thus 

Now, the condition *(pi) = Y means that the vari- 
ables in Y are unset by p and that the variables in 
T\Y are all set by Y. The latter part of this condition 
is implied by the condition F’[p 0. Thus we do not 
change the events by rewriting the probability as 

where py is p restricted to the variables in Y. The 
condition *(py) = Y means that every variable in Y 
is unset by p. 

If ]Y] 5 s then, by Lemma 3.1, 

Pr [ wrp) 2 S 1 F’[p= o A *(pY) = y ] 

I Pr [ :b E PvW], a((q4-,) I s - lyl 

1 F’rp= OA*(py) = Y] 

L I: 
- pr r warn 2 s - IYI 

oEP&Y] 1 F’rp= 0 A *(py) = Y ] 

lx 
- pr i wmr,4 2 s - IYI = 

@&Y] 
1 F’r,+= 0 A *(py) = Y ] 

(3) 
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where p’ is the restriction of p to the set L’ = L \ Y. 
This last equality holds because p’ sets exactly the 
same inputs that p does. 

Because the probabilities on L’ are independent 
of those on Y, the condition on py does not affect 
the probabilities for p’ so it can be eliminated with- 
out changing the probabilities in (3). Furthermore, 
because the probabilities on L’ for p chosen at ran- 
dom from Rp” are the same as those for a p’ chosen 

from RL’ p , the sum in (3) is equivalent to 

c Pr[ W%>M 2 4YI I F’b= 0 1 (4) 
o~P+oj[Y] 

where p’ is a restriction chosen at random from Rt’ 

Because of the fact that cr sets all inputs in Y 
and Ftrpr= 0 we know that IYP’ sets all the inputs 
in T and thus forces the value of Cr. If Cl rppj= 1 
then all inputs in ((G[,,)[pJ) are equivalent and thus 
6((Gr,)[,) = 0 5 ]Y 1 - S. Otherwise Ci rO,,#= 0 and 

then ((Gf&~) = ((i$>r,~) since @l;lop~= FlrcrpJ. 
Thus the sum in (4) is equivalent to 

C pr [ w7r,)rpl) 2 s - iv I qpr= 0 i . 
aeProj[Y] 

Because CT,,, has strictly fewer clauses than E and 
because it only has input variables from L’ we can 
apply the inductive hypothesis to bound the prob- 
abilities in each term in this sum by /3d-lyl, For 
each Y the number of terms in the above sum is at 
most ]Proj[Y]] = 21yl so we obtain a total bound of 
21ylpd-IyI, 

If ]YJ > s then we simply make the pessimistic 
assumption of failure, i.e. that the degree of the 
resulting partition is too large. Since /3 c 1 and 
s - 1Y I < 0 we certainly have I < 21yl/3s-lyl. Thus 

is at most 21ylpJ-lyI. 

Finally, substituting these bounds in (2) we ob- 
tain a total failure probability of at most 

c ($fyI7ls”-IYI 

YCT,Y#+ 

= p” E (‘T’) [/q14; $Ji 
i=l 

4P 
= B”[(p(l +p) 

+ l)lT’ - 11 

5 pd[( p(141 p) + 1)’ - 11 

using the definition of ,0. Thus the lemma holds for 
G and by induction we have proved the lemma. 0 

Proof of Theorem 4.1 (sketch): For part (a), 
we show that the degree of the processor and cell 
partitions can be maintained at log4h(n) by setting 
all but a fraction of at least p = l/log4h(n) of the 
remaining input bits. Lemmas 4.1 and 4.2 imply that 
a restriction chosen randomly from Rp will almost 
certainly work in a given time step for each memory 
cell and processor. We then must check that the 
probability of failure at each step, which is bounded 
by the sum of the failure probabilities in each of the 
h(n) processors and memory cells, is < 1. In order 
to have computed parity in 2” steps the degree must 
be equal to the number of unset bits and the bound 
follows. 

The bound in part (b) follows by similar reason- 
ing and the observation that at each step if the degree 
of a processor is at most s then it only has the poten- 
tial of writing into at most 2d different memory cells. 
Thus the number of memory cells which have to be 
considered at each step is bounded. 

Finally, for part (c) we maintain different bounds 
on the degree of the processor and cell partitions. 
The degree of the cell partitions is still maintained 
at s = log4c(n), however the degree of the processor 
partitions can only be maintained at st for step t of 
the algorithm. This means that many more input bits 
must be set at each step in order to keep down the 
degree of the result of a write operation. For further 
details see [Be3]. 0 

We can restate the resource trade-offs given in 
Theorem 4.1 in terms of the time required by prac- 
tically sized CRCW PRAM’s to compute the parity 
function: 

Corollary 4.1: If M is a CRCW PRAM which com- 
putes the parity function in time T = T(n) then 

(a) if the number of processors P(n) = no(l) then 

T(n) 2 log n log n 

log log n - O( (log log n)” )I 

even if the number of memory cells is infinite 

(b) if the number of memory cells c(n) = no(l) then 

T(n) 2 log n log n 

2 log log n - ‘((log log n)2 ” 

= P” 
even if the number of processors is infinite. 
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A close look at the algorithm given by Chandra, 
Stockmeyer, and Vishkin [CSV] for computing func- 
tions with polynomial formula size, shows that par- 
ity can be computed by CRCW PRAM’s with poly- 
nomially many processors and memory cells in time 
log n/ log log n - c log n/(log log n)2, where the con- 
stant c depends on the exponent in the polynomial 
bound on the number of processor:s and cells. The 
only difference between our bound (a) and this one 
is that this constant c is smaller relative to the expo- 
nent of the polynomial which boun,ds the number of 
processors and cells than is the constant in our lower 
bound. 

Using the constant-depth reductions given in 
[FSS] and [CSV], th ese same tight lower bounds for 
parity can be obtained for a large number of func- 
tions. We assume that the reader is familiar with the 
definitions of most of these problems; the terminology 
is from [CSV]. 

Corollary 4.2:[FSS], [CSV] IF A4 is a CRCW 
PRAM camp u ting any of the following decision prob- 
lems, the bounds in Corollary 4.1 hold: 
THRESHOLD, MAJORITY, UNDIRECTED 'GRAPH 
CONNECTIVITY, UNDIRECTED CYCLE DETECTION 
IN GRAPHS, BI-PARTITE MATCHING, CIRCUIT 
VALUE PROBLEM 
The bounds in Corollary 4.1 also hold for computing 
all the bits of the following function problems: 
hluLTIPLICATXON, SORTING, BIT SORTING, 
MULTIPLE-ADDITION, BIT SUM, F~ETWORK FLOW 
WITH UNARY CAPACITIES 

The MULTIPLE-ADDITION problem is just the in- 
teger addition problem discussed in [Be21 and [LY]. 
This corollary shows that when the output is permit- 
ted to be represented as bits, the time complexity 
is @(log n/ log log n) for machines with polyn~omially 
bounded hardware. This complements the previous 
results which showed that, when the output is re- 
quired to be in a single cell, the time complcexity is 
O(logn) for such machines. 

The functions listed in this corollary are by no 
means all the natural functions to which our parity 
lower bound applies but merely a representative sam- 
ple of the variety of problems involved. 

5. The Sipser Functions a.nd a CRCW 
Time Hierarchy 

In [Si], Sipser defined a set of functions l’$m on 
mk inputs for k 2 2 which are described by alter- 
nating unbounded fan-in circuits of depth Ic and size 

O(mk). He obtained a strict hierarchy of polynomial- 
size unbounded fan-in circuits by showing that these 
functions required more than polynomial size cir- 
cuits of depth k - 1. Sipser’s function Fkm was de- 
scribed by an alternating tree of depth k of A and 
V gates with an A at the root, with fan-in m at ev- 
ery level, and with distinct inputs at every leaf. We 
modify it somewhat by defining fp to be a func- 

tion having fan-in ak = [JGl from the 

leaves, fan-in at the root and fan-in 

m everywhere else. The resulting function has n = 

puts in total. 

Theorem 5.1: If hf is a CRCW PRAM which com- 
putes the function f$’ of n inputs in time T - 2 then 
for m sufficiently large 

line 

the total hardware h(n) = p(n) + c(n) must be 

at least 2Ih(” lq&7&)-2], 

the number of processors p(n) must be at least 

2[&A” 1"3T/G)-2] even if the number ofmem- 
ory cells is infinite, and 

the number ofmemory cells c(n) must be at least 

2[dT(” "'774iqY)-21 even if the number of pro- 
cessors is infinite. 

Because of space considerations we merely out- 
the argument. Its general pattern is similar to 

the proofs for parity. For further details of the proofs 
see [Be3]. 

To prove this theorem we define restrictions rt 
for each step t of the computation just as we did for 
parity such that after step 1 and after 7rt is applied, 
the cell (and processor) partitions all have degree less 
than m and yet the function to be computed is fFmt. 

Parity is a very nice function which treats 0 and 
1 equally, so it is possible to use restrictions from 
the probabi.lity distribution R!: and leave the parity 
function urrchanged in character, The functions .fp 
which we have just described treat 0 and 1 very differ- 
ently, depending upon whether Ic is even or odd. Also, 
they are not symmetric so that treating all variables 
equally and independently as Ri does is inappropri- 
ate. The functions fr do have some symmetry: in- 
puts which appear at leaves that are joined to the 
same bottom level gate are symmetric with respect 
to each other. (We call such a set of inputs a block.) 
Also, blocks which fan in to the same second level gate 
are symmetric with respect to each other. These sym- 
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metries motivated the following restrictions of Hastad 
[IIa2]: 

Definition: Let L 5 {l,...,n} and let C = 
{Li}fzl be a part,ition of L into blocks. Define RL, 
to be a probability space of restrictions on L where 
for a random p chosen from RzL and independently 
for every i E {l,...,I), 
1. A parameter s; is chosen such that Pr [ si = * ] = 
q and Pr [ si = 0 ] = 1 - q 
2. Independently for each j E Li, Pr [ p(j) = si ] = 
q and Pr [p(j) = 1 ] = 1 - q 
Similarly R,, is a probability space of restrictions 
defined as above except that the positions of 1 and 0 
are reversed. 

Note that restrictions from RLL never assign + 
and 0 to inputs from the same block and restrictions 
from Rit never assign * and 1 to the same block. The 

restrictions from Rzr. are likely to set most inputs to 
1 and are used for &” when the bottom level gates 
are A; the restrictions from Ri, are likely to set most 
inputs to 0 and are used for f$ when the bottom level 
gates are V. 

Definition: For a restriction p chosen from Rzt let 

g+(p) be the restriction which agrees with p every- 
where p sets inputs and which assigns 1 to all but the 
variable of least index in each block which is given 
a * by p. Similarly, for a restriction p chosen from 
Ri,t let g-(p) be the restriction which agrees with p 
everywhere p sets inputs and which assigns 0 to all 
but the variable of least index in each block which is 
given a + by p. 

The definitions of g+ and g- are intended to be 
cleaned up versions of the original restrictions. The 
idea of this lower bound is that when fp has p applied 
to it, there is a copy of frel sitting inside it. In this 
process most of the bottom level gates will end up 
with more than one variable and to keep degrees small 
while retaining the copy of frwl it will be essential to 
apply the gf and g- to reduce these to one variable. 

As in the case of the parity function we need 
two lemmas, one making sure that the function we 
are trying to compute remains complicated after a 
restriction and one which controls the degree of the 
partitions. 

Lemma 5.1: Let f > q >_ 
m 

and let C = 

{Li)fzl be the partition of the input set off? into 
blocks which are the sets of inpu ts which fan in to each 
of its bat tom level gates. 

(i) If k is odd then, for p chosen at random from 
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(ii) 

J&t the circuit that defines frrg+(,,) contains 
a &cuit that defines fpel with probability at 
least 2/3 for all m > ml where ml is a constant 
independent of k and q. 

If k is even then, for p chosen at random from 
R;,, the circuit that defines fr[g-(p) contains 
a iircuit that defines frel with probability at 
least 2/3 for all m > ml where ml is a constant 
independent of k and q. 

Lemma 5.2: Let M be a CRCW PRAM just prior 
to a read or write operation, all of whose processor 
and cell partitions have degree at most r > 1 with 
variables from {zi}icL. Let A be either a new pro- 
cessor partition resulting from a concurrent read of 
h4 or a new cell partition resulting from a concurrent 
write of M. Let l = (Li}f,l be a partition of L. 
Choose p at random from Rzc. For s > 0 we have 

The same result holds if + replaces - throughout. 

As it stands, our functions f+’ are defined only 
for certain numbers of inputs depending on T and 
m; call this number UT,~. Let T be a function of 
n. We extend our functions to all numbers of inputs 
by defining fT(.) on n inputs to be .fFin, computed 
on the first VT(,),~ inputs, where m 1s the largest 
index such that VT(~),+ < n. We now can restate the 
resources required to reduce the time for computing 
f-q.) on machines with reasonable resource bounds. 

Corollary 5.1: 

(a) For any function T such that 

T(n) = log n 
3 log log n 

there is a function fTc.1 of n inputs which can 
be computed on a CRCW PRAM with rz pro- 
cessors and memory cells in time T(n) but can- 
not be computed by any CRCW PRAM with 
a polynomially bounded number of processors, 
p(n) = no(‘), running in time T(n) - 2. 

(b) For any function T such that 

T(n) = logn 
5 log log n - w ( (lo:f,“njz) 

there is a function fT(.) of n inputs which can be 
computed on a CRCW PRAM with n processors 
and memory ceJJs in time T(n) but any CRCW 



PRAM computing it in time T(n) - 2 requires 
both the number of memory cells and the number 
of processors to exceed any poJ,ynomiaJ in n . 

This implies that the class of functions which 
can be computed in time bound T(.) - 2 on machines 
with reasonable resource bounds is strictly contained 
in the class of functions which can be computed in 
time T(e). This yields a strict time hierarchy among 
CRCW PRAM%. 

6. Almost all Boolean functions 

We can get larger lower bounds on the time com- 
plexity of Boolean functions than .those in the pre- 
vious sections by considering the class of almost all 
Boolean functions. 

Lemma 6.1: Almost all Boolean functions require 
unbounded fan-in circuit size Q(2”i2). 

Proof: To see this, use the following argument due 
to Ruzzo [Ru]: Without loss of generality the nega- 
tions can be pushed to the inputs by De Morgan’s 
laws so we assume free access to inputs and their 
negations. The number of unbounded fan-in. in cir- 
cuits with s gates is then just 2”(“-t2”+‘) since each 
gate can be described by its operation (either A or V) 

and by the subset of the inputs and gates to which 
it is attached. Since there are 22” 13oolean functions 
of n inputs, it easy to see that most functions require 
size 0(2n/2).Cl 

Using the simulation of CRCW PRAM’s by cir- 
cuits given by [LY’J and [Ch] (cf. $2) along with this 
lemma yields: 

Theorem 6.1: Almost all Boolean functions of n 
inputs require time logn - loglogp(n) + n(l) on a 
CRCW PRAM with p(n) processors. 

Proof: Substituting directly in the simulabtion we 
see that any CRCW PRAM takin,g at most logn - 
loglogp(n) - w(1) t ime can be simulated by an un- 
bounded fan-in circuit of size o(2”/“). But by Lemma 
6.1, almost all Boolean functions of n inputs require 
unbounded fan-in circuits of size R(2”i2). The theo- 
rem follows immediately. D 

Because of the upper bound in [Be21 of logn - 
log log[p(n)/n] + O( 1) for computing any function on 
Boolean inputs, this bound is nearly optimal. This 
optimality suggests that no general improvement in 
the simulation of CRCW PRAM’s by unbounded fan- 
in circuits is likely to be obtained. 

7. Further Research 

The R(log n/ log log n) time lower bounds for 
computing specific Boolean funct.ions given in sec- 
tions 4 and 5 are tantalizingly close to the logn - 
loglog 72 + @(I) t ime bounds for almost all Boolean 
functions on CTLCW PRAM’s with a polynomial 
number of processors, However, finding a specific 
problem in NP for which we can close this gap ap- 
pears to be a formidable though fundamentally in- 
teresting task. This is because the work of Chandra, 
Stockmeyer and Vishkin ([SV], [CSV]) implies that 
such a prob’lem would not be in NC’ (would not have 
O(log n) depth combinational circuits). 
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