
Optimal Bounds for Decision Problems on the CRCW PRAM

(Extended Abstract)

Paul Bearnet
Johan Hastadf

Laboratory for Computer Science
Massachusetts Institute of Technology*

545 Technology Square
Cambridge, MA 02139

Abstract

We prove optimal R(log n/log log n) lower
bounds on the time for CRCW PRAM’s with poly-
nomially bounded numbers of processors or memory
cells to compute parity and a number of related prob-
lems. We also exhibit a strict time hierarchy of ex-
plicit Boolean functions of n bits on such machines
which holds up to O(log n/ log log n) time. Further-
more, we show that almost all Boolean functions of
n bits require logn - log log n + Q(1) time when the
number of processors is at most polynomial in n. Our
bounds do not place restrictions on the uniformity of
the algorithms nor on the instruction sets of the ma-
chines.

1. Introduction

One of the most widely used models of parallel
computation is the parallel random access machine
(PRAM). In this model any processor can access
any memory location at given time-step. The most
powerful form of the PRAM, the CRCW PRAM, in
which both concurrent read and concurrent write ac-
cesses are allowed, has received particular attention

t Supported by a University of Toronto Open Fellow-
ship and by NSF grant WI-25800.

t Supported by an IBM Postdoctoral Fellowship and
supported in part by NSF grant DCR MCS-8509905

* Much of this research was done while the first author
was at the University of Toronto.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1987 ACM 0-89791-221-7/87/0006-0083 75c

83

both from designers of algorithms and from those
studying the limitations of parallel machine compu-
tation. Despite the significant interest, the only non-
trivial lower bounds for decision problems on CRC’W
PRAM’s that do not have drastic restrictions placed
on either their processor and memory resources or on
the instruction sets of their processors are due inde-
pendently to Beame [Be21 and to Li and Yesha [LYj.
The lower bounds are for parity and related problems
and are far from optimal. In both of these bounds
no restriction is placed on the instruction set of the
processors, no limitation is placed on how much infor-
mation a single memory location may store, and the
resources allowed are only polynomially bounded. We
will call a machine with these properties an abstract
or ideal PRAM.

In this very general setting we prove the first op-
timal bound for any non-trivial decision problem on
the CRCW PRAM by showing a time lower bound
of Sl(logn/loglog rz) for parity which matches the
known upper bound. This lower bound holds even in
the cases when only one of the two resources, proces-
sors or memory cells, is bounded by a polynomial in
the input size. Because parity constant-depth reduces
to a large number of problems, this SZ(log n/ log log n)
time lower bound for the CRCW PRAM applies to
a wide variety of interesting functions which include
sorting or adding n bits, as well as multiplying two
n-bit integers.

Also, by looking at the so-called ‘Sipser’ func-
tions which are defined by circuits, we obtain a
very sharp time hierarchy for CRCW PRAM’S of
polynomial bounded resources. That is, for ev-
ery time bound T(n) at most log n/(3 log log n) -
O(logn/(loglog n)2) we exhibit a family of functions
which is computable in time bound T with n proces-
sors and memory cells, but which cannot be computed
even 2 steps faster by any machine with a polynomial
bound on the number of processors. A similar sep-

aration holds for machines with a polynomial bound
on the number of memory cells.

The proofs of both these results follow lines sim-
ilar to the proofs in [Bell and [Be21 and involve show-
ing new lemmas which generalize the key lemmas used
in Hastad’s unbounded fan-in circuit lower bounds
([Hal] and [Ha2]).

We also prove a tight O(logn) lower bound on
the time to compute almost all n-bit Boolean func-
tions on CRCW PRAM’s with polynomial numbers
of processors.

2. History of the Problem

Much of the lower bound work for CRCW
PRAM’s has been based on their close relationship
to unbounded fan-in circuits. These were defined by
Furst, Saxe and Sipser [FSS] largely as a tool for try-
ing to get, an oracle to separate the polynomial time
hierarchy from PSPACE. Stockmeyer and Vishkin
[SV] showed that simple CRCW PIRAM’s can sim-
ulate unbounded fan-in circuits with essentially the
same number of processors as the circuit size a.nd the
same time as the circuit depth. In fact, by restricting
the instruction set, of the CRCW PRAM to a limited
set that includes addition, comparison, indirect ad-
dressing and a few related instructions, Stockmeyer
and Vishkin also showed that unbounded fan-in cir-
cuits can easily simulate restricted CRCW PF1AM’s.
The size of the resulting circuit is polynomial in the
number of processors multiplied by the time ;and its
depth is only a constant factor larger than the time.
Using the latter result, and a R(log” n) lower bound
of [FSS] on the depth of polynomial size unbounded
fan-in circuits computing parity, [SV] obtained lower
bounds for this restricted form of CRCW PR,QM.

Because disjunctive normal form formulas are
unbounded fan-in circuits of depth two it follows
that all Boolean functions may be computed in two
steps using exponential resources on the CRCW
PRAM. However, it is not reasonable to be us-
ing exponentially many processors and memory
cells. With polynomial resource bounds, (CRCW
PRAM’s can compute any function with formula size
no(l) in time O(logn/loglogn), using an algorithm
based on an upper bound of size no(l) and. depth
O(log n/ log log n) for unbounded fan-in circuits given
by Chandra, Stockmeyer and Vishkin [CSV].

Since Stockmeyer and Vishkin’s paper, the
lower bounds for unbounded fan-in circuits have
been significantly improved. The s#eries of improve-
ments ([Aj], pa]) culminated in the work of Hastad

[Hal] who obtained an R(logn/logIogn) depth lower
bound for polynomial size circuits computing parity
which matchies the bound from Chandra, Stockmeyer
and Vishkin’s algorithm mentioned above. However,
the CRCW PRAM lower bounds which follow using
Stockmeyer and Vishkin’s simulation are still not en-
tirely satisfactory since the bounds rely in an essential
way on the speciric restriction whic’h is placed on the
instruction set. Some operations that are prohibited
in this model seem to be perfectly reasonable ones.

Abstract CRCW PRAM’s can be shown to be
much more Ipowerful than these restricted machines;
because of their equivalence with unbounded fan-in
circuits, restricted CRCW PRAM’s with polynomi-
ally many processors require exponential time to com-
pute almost all Boolean functions whereas an abstract
PRAM only takes O(logn) time without even using
its power of concurrent reads or writes. Nevertheless,
for certain s:pecific functions we shall see that, by us-
ing direct techniques, lower bounds as strong as those
derived for these restricted CRCW machines can be
obtained for the most powerful model of CRCW
PRAM.

By applying and modifying the techniques of
[FSS], Beame [Bell derived the first non-trivial lower
bound which applies to the CRCW PRAM model de-
scribed here. He showed that any CRCW PRAM
computing the parity function with no(l) memory
cells and an unbounded number of processors re-
quires time Q(,/ll). Later, using the main
lemma in [Hal], Beame [Be21 obtained the follow-
ing: any CRCW PRAM which computes the par-
ity function with no(l) processors (in fact with as

many as n
2$G

processors for some 6 > 0) and un-
bounded memory requires time a(-. With the
same techniques, an Q(a) lower bound is easily
shown for common-write CRCW PRAM’s (for defini-
tions see section 3) which have no bound on the num-

ber of processors but have a bound of O(n”“=) on
the number of cells for some b > 0.

It was noted by Chor [Ch] and Li and Yesha [LY]
that a simulation of abstract CRCW PRAM’s by un-
bounded fan-in circuits can be combined directly with
Hastad’s circuit lower bound to obtain the a(e)
lower bound. However, this simulation does not yield
the above lower bound for the common-write model
with an unbounded number of processors. The sim-
ulation states that any CRCW PRAM solving a de-
cision problem on n Boolean inputs using p(n) pro-
cessors and T(n) time can be simulated by an un-
bounded fan-in circuit of size ~(n)~‘(“)+~(” and depth

W(n))-

84

Beame [Be21 and Li and Yesha [LY] have also
independently shown optimal bounds on the time
needed by CRCW PRAM’s to compute functions
whose many-bit output is required to appear in a sin-
gle memory cell. However, as was noted in [Be2], such
an output requirement is somewhat artificial and the
lower bounds disappear if each bit of the output is
allowed to appear in a separate memory cell.

3. Definitions and Preliminaries

Definition: A CRCW PRAM is a shared memory
machine with processors 9,. . . , Ppcn) which commu-
nicate through memory cells Cl, . . . , C,(,). The in-
put is initially stored in the first n cells of memory,
Cl,... , C,. Initially all cells other than the input
cells contain the value 0. The output of the machine
is the value in the cell Cr at time T(n).

Before each step t, processor Pi is in state qf . At
time step t, depending on ql, processor Pi reads some
cell Cj of shared memory, then, depending on the
contents, (Cj), and qf, assumes a new state qf+’ and
depending on this state, writes a value v = v(qf+‘)
into some cell.

When several processors are attempting to write
into a single cell at the same time step the one that
succeeds will be the lowest numbered processor. A
CRCW PRAM is defined to be a common-write ma-
chine if the values that these processors are attempt-
ing to write are always the same.

In studying the progress of CRCW PRAM com-
putations, what is important is the set of inputs which
lead to a given value in a memory cell or a given state
of a processor at a particular time step. The compu-
tation then may be viewed as operating not on actual
values so much as on the partitions associated with
them.

Definition: Let M be a CRCW PRAM. For any
processor Pi the processor partition, P(M, i, t), of the
input set at time step t is defined so that two inputs
are in the same equivalence class of P(M, i, t) if and
only if they lead to the same state of processor Pi at
the end of time step 1.

For any cell Cj the cell partition, C(M,j, t), of
the input set at time t is defined so that two inputs
are in the same equivalence class of C(M, j, t) if and
only if they lead to the same contents of cell Cj at
the end of time step t.

We look at a measure of progress which was used
in [Bell and [Be21 to prove lower bounds for CRCW
PRAM’s

Definition: Let f be a Boolean function defined

85

on a set 1 C (0, 1)” A Boolean formula F represents
f on I if the inputs z E I satisfy F exactly when
f(x) = 1. Let the maximum clause length of a DNF
formula F be the maximum number of literals in any
clause of F. The (Boolean) degree off on I, 6(f), is
the smallest maximum clause length of all disjunctive
normal form (DNF) formulas representing f on I. We
extend this definition to sets of functions F by letting
J(3) = maxfe W).

The terminology of degree is derived from the
standard way of writing a formula with the Boolean
v as addition and the Boolean A as multiplication and
then viewing the resulting formula as a polynomial.
This should not be confused with the degree of a
polynomial in the finite field of two elements where
the exclusive-or rather than the V is the appropriate
additive operation.

In the notation of many lower bound proofs for
monotone formulae, we could define the prime im-
plicants and prime clauses of a Boolean function f.
(Prime clauses are essentially prime implicants of f.)
These have been described as minterms and max-
terms respectively in the notation used by Yao [Ya] or
Hastad [Hal]. Observe that the degree of a function
and the length of its longest minterm or maxterm
may differ because its longest minterm may be longer
than the longest clause in an optimal DNF formula
representing it.

Definition: Let A be a partition of a set I g
IO, l}-. Define the degree of A, 6(A), to be 6(7~)
on I where 3~ is the set of characteristic functions
of the equivalence classes of A in I.

The major proof technique of the lower bounds
for parity on unbounded fan-in circuits is the use of
restrictions to set some of the input bits. Using re-
strictions permits a simplified description of the re-
sults of computations but does not drastically reduce
the difficulty of the function being computed. The
main idea behind using them is that, although ap-
parently complex operations like the OR of n bits are
computed in one step, by setting relatively few inputs
to 0 or 1 the results of these operations are simple.
In the case of the OR of n bits, setting a single input
to 1 makes it trivial.

Definition: A restriction ?r on IC C_ (1,. . ,,n} is a
function 7r : IC -+ (0, 1, *} where:

1 means zi is set to 1
x(i) = 0 means ti is set to 0

* means 2i is unset

We define the results of applying ai restriction ?r to
a partition, A[=, a function, frlr, and a Boolean for-
mula, Fr,, in the natural way. If u and 7 are re-
strictions then UT is a restriction which is the result
of applying u first and then applying r. For any
K E {l,..., n} define Proj[K] to be the set of re-
strictions which assign 0 or 1 exactby to the inputs in
K.

In several places we will need the following simple
observation.

Lemma 3.1: Let A be a partitio,n of a cube I E
{O, qn. For every K C { 1, . . . , n} there exists a
restriction u E Proj[K] such that S(A) 5 (KI +

G%)*

The hard part in showing that restrictio:ns sim-
plify the results of CRCW PRAM computations is
naturally the very powerful concurrent write opera-
tion since the read operation is sirnply the interac-
tion of individual processors with single cells. It will
be useful to define an abstraction of this operation
in order to be able to describe conveniently the ac-
tions of restrictions on the new cell partitions which
result from the concurrent writes. It also will turn
out that, in describing the effects (of restrictions on
the processor partitions, we use a special case of this
abstraction.

Definition: We say that an input x E {O, 1)”
satisfies a Boolean function F : (0, 1)” ---+ .(O, 1) if
F(x) = 1. We say that x falsifies F if F(x) =: 0.

Definition: A graded set of Boolean functions is
a set G of Boolean functions such that each F E Q
has an associated positive integer grade, y(F) (or has
grade = co) and no two functions of a given grade are
simultaneously satisfiable.

Definition: For any graded set of Boolean func-
tions, G, the parli2ion determined by G, (G), on (0, 1)”
is the partition such that x, y E {O, 1)” are in the
same equivalence class if and only if:

(a) t and y both satisfy some function F E G,
and t and y both falsify all F’ E G with

Y(F’) < Y(F).

or (b) x and y both falsify all fu:nctions F E 6.

The reflexivity and symmetry of the relation
above are obvious. The transitivity is a simple conse-
quence of the fact that the definition of a graded set of
functions excludes the possibility that two functions
of a given grade are simultaneously satisfiable. For
technical reasons the following straightforward lemma
is convenient.

Lemma 3.2: Let Q be a graded set of Boolean
functions. If ?r is a restriction then (G) rx is the same
partition as (GL) on (0, l}“[,.

We note that the above definitions can be carried
over easily to Boolean formulas which represent the
Boolean functions in the obvious way. Observe that
if T represents G on (0, l}“r, then (3)[,= (6) r%,
Also, the notion of degree applies to graded sets of
Boolean functions simply using the natural definition
of degree for sets of functions. It is easy to see that a
graded set of Boolean functions 6 can be represented
on a cube (0, 1)” rX by a graded set of DNF formulas
.T, each with maximum clause length bounded by

~6%)~

Definition: Let M be a CRCW PRAM. Define
G(M, j,t) to be the graded set of Boolean functions
as follows:

(i) For each positive integer i, the functions of grade
i in G(.M, j,t) are the characteristic functions of
those equivalence classes in P(M, i, t) on which
Pi writes into cell Cj during time step 1.

(ii) The functions of grade 00 in G(M, j, 2) are all the
characteristic functions of the equivalence classes
in C(M,j,i - 1).

Lemma 3.3: Let M be a CRCW PRAM.
(G(M, j, t)) is a refinement of C(M, j, t) on (0, 1)“.

Proof: The way in which a partition is determined
by a graded set of functions imitates the priority write
operation of the CRCW PRAM. Condition (b) in the
definition of the partition determined by a graded set
of function cannot occur here since every input sat-
isfies the characteristic function of some equivalence
class in C(M, j,i - 1). Condition (a) in this defini-
tion corresponds to one of two cases. Either the input
causes processor Pi to write and Pi is guaranteed to
succeed since no lower numbered processor attempts
to write, or no processor writes and thus the previ-
ous value in the cell remains (we view this as the cell
writing its old value back to itself). [7

The general method we employ for showing lower
bounds on CRCW PRAM computations for decision
problems is as follows. We show that after certain re-
strictions (which set more inputs as time progresses)
are applied to the inputs, the processor and cell par-
titions have only small degree relative to the degree
required to solve the problems. In using restrictions
to obtain our lower bounds we must maintain a bal-
ance between the amount of simplification that a re-
striction achieves and the number of inputs it sets.

86

4. Tight Lower Bounds for Parity

We now state our main result.

Theorem 4.1: If M is a CRCW PRAM which com-
putes the parity function in time T = T(n) then for
sufficiently large n

(4

(bl

(4

the total hardware h(n) = p(n) + c(n) must be
at le& 2[hn”T-21,

the number of processors p(n) must be at least
21 &n w-4 even if the number of memory cells is
infinite, and

the number of memory cells c(n) must be at least
2[M”lT! PT -21 even if the number of Processors
is infinite.

For the proofs of each of the parts of this theorem
we define restrictions rrt for each step t of the compu-
tation such that after step t and after rt is applied,
the cell (and processor) partitions all have degree less
than the number of unset variables. The lower bound
follows since setting variables of parity just leaves a
smaller parity function and any representation of par-
ity in DNF has clauses which depend on all the unset
variables.

In order to prove the existence of restrictions
that satisfy these properties we need an appropriate
probability space from which to choose restrictions.
This distribution was introduced by Furst, Saxe, and
Sipser [FSS] and has been used in several subsequent
lower bound proofs for unbounded fan-in circuits.

Definition: Let X & { 1,. . . , n}. Define I?: to be
a probability space of restrictions on K where for a
random p chosen from RF, independently for each
i E K, p(i) is * with probability p and p(i) is 0 or 1
with equal probability (1 - p)/2.

The outline above is now carried out by proving
two lemmas. The first tells us that many variables
remain unset and the second tells us that the degrees
of the partitions do not increase.

Lemma 4.1: Let L C {l,...,n} and 0 < p < 1
such that p(1 - p) IL1 is at least me for some absolute
coflstan t me. Choose p at random from Ri. The
probability that p leaves at least p[L,I inputs unset is
greater than I/3.

Lemma 4.2: Let M be a CRCW PRAM just prior
to a read or write operation, all of whose processor
and cell partitions have degree at most r 2 1 with
variables from {q)is~. Let A be either a new pro-
cessor partition resulting from a concurrent read of

M or a new cell partition resulting from a concurrent
write of M. Choose p at random from Rk. For s > 0
we have

This is an easy corollary of Lemma 3.3 and the
following lemma which is the key generalization of the
main lemma of Hastad [Hal].

Lemma 4.3: Let Q be a graded set of DNF formu-
las on inputs {Zi}ieL with maximum clause length
bounded byr 11 where L C {l,...,n}. Let F be
an arbitrary function on (0, l}n. Let p be a random
restriction chosen from Rf. Then, if (Grp) is thepar-
tition determined by G rp, for s 1 0 we have

where p > 0 satisfies

4P
5-w +p)

+ 1)’ = 2.

Proof: We first note that we only need to consider
finite graded sets of formulas (i.e. 161 is finite). This
follows since there are only a finite number of different
input strings and so only a finite number of ways
in which some formula in 6 can be satisfied and all
smaller ones falsified. Also, it is trivial to see that
the lemma holds for s = 0 or /3 > 1 so we can assume
that s > 0 and p < 1.

The rest of the proof proceeds by induction on
the total number of clauses in the formulas in 9. The
intuitive idea is that as we work along the clauses one
by one: if p falsifies a clause, then we are left with
essentially the same problem as before; if p does not
then, given the fact that it does not, it is much more
likely that p satisfies the clause and ensures that the
remaining partition has only one class than that p
leaves any input in the clause unset.

In this proof for readability we will write 6(G)
instead of 6((G)).

BASE CASE: There are no clauses in the formulas in
4. In this case the formulas are all identically 0 and
so all inputs are equivalent with respect to 6. Thus
the partition determined by Grp consists of a single
class so 6(GrP) = 0 and the lemma holds for G.

INDUCTION STEP: Assume that the lemma holds for
all graded sets of formulas G’ with fewer clauses than
the formulas of 0. Let FI be a formula in G which
has lowest grade among those formulas in G which

87

are not identically 0; let Ci be a clause of Fi. We
can analyse the probability by considering separately
the cases in which p does or does not force clause Cl
to be 0. The failure probability, the probabilit;y that
S(G[,) 2 6, is an average of the failure probabilities
in these two cases. Thus

fr [Wr,) 1 8 I Frp= 0 1 I
max(Pr[5(Gr,)> s 1 qp= o~Lir,= 0 1,

pr[~(Grp)2- I Frp=omrp#oi).

The first term in the maximum is Pr [a(<;[,,) 1
s] (F V Ci)r,= 0] . Let Fl be F:L with clause Ci

removed; thus FI = Ci V Fi and Fi # FI. Let c be
the same as G with formula Fr replaced by $1. In this
case C1 rp= 0 SO Fl rp= Fi rp and thus (G[,) = (&).
In other words, when Cl rp= 0, the lemma requires a

bpund on Pr [S(cr,,) 2 s] (F V C.)rp= 0] . Since
Q has one fewer clause than Q does, the inductive
hypothesis implies that this proba’bility is at most

P’.

The estimation of the second term in the maxi-
mum is more difficult. Let T C_ L be the set of vari-
ables appearing in clause Cr. By hypothesis ITI 2 r.

Let pi be the restriction of p to the variables in T.
The condition that Cl [,# 0 is equivalent to the con-
dition that Ci rPT # 0. We analyse the cases based on
the subset Y of the variables in T to which pi assigns
*; we use the notation +(p~) = Y to denote th.e event
that the variables in T which are assigned +: by pi
are exactly those in Y. Then

pr[WrJ LS I q-,=omrPT#oi

c
Pr [a(qP) 2 s A *(PI-) = Y

=
YET I Fr,=ohclr,.,foi. (1)

Consider the case in which Y = 4. Then pi sets every
variable in T so the value of Ci is forced by lw. But
since we already know that Ci rPT f 0 we must have
Cr rPT = 1. In this case every input satisfies Fl rp and
since Fr has lowest grade we know that all inputs are
equivalent with respect to the (G[,). It follows that
S(Grr,) = 0 so the term corresponding to Y := 4 has
probability 0. The sum in (1) then becomes

pr WL) 2 s I Frp= omr,,# 01

c Pr [qq,) 2 s A *(PT) = Y =
YV,Y#6 I Frp=OAclrpT# 01

c
Pr[QTr,) 2 s I Fr,= 0 =

YCT,Y++ A ClrpT# 0 A *t(m) = Y I
x Pr[*(m)=Y

1 Frp=OAGr,,#O]
(2)

by simple conditional probability.

We tackle the latter term in each of these prod-
ucts first. If we let m(Y) = * denote the event that
every variable in Y is unset by pi then elementary
probability yields

Then as in]:Hal] we have

PrfpT(Y) = *] F[,=OAC&.#O] 5 (&)lyl.

Now we look at the first term in each product
in (2). The condition that Ci rPT# 0 A *(pi) = Y
exactly specifies pT = p[T since it means that every
variable in T\Y is set to 0 or 1 in the way which does
not force the value of Cr to 0 and that every variable
in Y is set to +. We let F’ be F V G where Grp= 0 if
and only if p sets the variables in T \ Y in the unique
way that does not force clause Cl to 0. Thus

Now, the condition *(pi) = Y means that the vari-
ables in Y are unset by p and that the variables in
T\Y are all set by Y. The latter part of this condition
is implied by the condition F’[p 0. Thus we do not
change the events by rewriting the probability as

where py is p restricted to the variables in Y. The
condition *(py) = Y means that every variable in Y
is unset by p.

If]Y] 5 s then, by Lemma 3.1,

Pr [wrp) 2 S 1 F’[p= o A *(pY) = y]

I Pr [:b E PvW], a((q4-,) I s - lyl

1 F’rp= OA*(py) = Y]

L I:
- pr r warn 2 s - IYI

oEP&Y] 1 F’rp= 0 A *(py) = Y]

lx
- pr i wmr,4 2 s - IYI =

@&Y]
1 F’r,+= 0 A *(py) = Y]

(3)

88

where p’ is the restriction of p to the set L’ = L \ Y.
This last equality holds because p’ sets exactly the
same inputs that p does.

Because the probabilities on L’ are independent
of those on Y, the condition on py does not affect
the probabilities for p’ so it can be eliminated with-
out changing the probabilities in (3). Furthermore,
because the probabilities on L’ for p chosen at ran-
dom from Rp” are the same as those for a p’ chosen

from RL’ p , the sum in (3) is equivalent to

c Pr[W%>M 2 4YI I F’b= 0 1 (4)
o~P+oj[Y]

where p’ is a restriction chosen at random from Rt’

Because of the fact that cr sets all inputs in Y
and Ftrpr= 0 we know that IYP’ sets all the inputs
in T and thus forces the value of Cr. If Cl rppj= 1
then all inputs in ((G[,,)[pJ) are equivalent and thus
6((Gr,)[,) = 0 5]Y 1 - S. Otherwise Ci rO,,#= 0 and

then ((Gf&~) = ((i$>r,~) since @l;lop~= FlrcrpJ.
Thus the sum in (4) is equivalent to

C pr [w7r,)rpl) 2 s - iv I qpr= 0 i .
aeProj[Y]

Because CT,,, has strictly fewer clauses than E and
because it only has input variables from L’ we can
apply the inductive hypothesis to bound the prob-
abilities in each term in this sum by /3d-lyl, For
each Y the number of terms in the above sum is at
most]Proj[Y]] = 21yl so we obtain a total bound of
21ylpd-IyI,

If]YJ > s then we simply make the pessimistic
assumption of failure, i.e. that the degree of the
resulting partition is too large. Since /3 c 1 and
s - 1Y I < 0 we certainly have I < 21yl/3s-lyl. Thus

is at most 21ylpJ-lyI.

Finally, substituting these bounds in (2) we ob-
tain a total failure probability of at most

c ($fyI7ls”-IYI

YCT,Y#+

= p” E (‘T’) [/q14; $Ji
i=l

4P
= B”[(p(l +p)

+ l)lT’ - 11

5 pd[(p(141 p) + 1)’ - 11

using the definition of ,0. Thus the lemma holds for
G and by induction we have proved the lemma. 0

Proof of Theorem 4.1 (sketch): For part (a),
we show that the degree of the processor and cell
partitions can be maintained at log4h(n) by setting
all but a fraction of at least p = l/log4h(n) of the
remaining input bits. Lemmas 4.1 and 4.2 imply that
a restriction chosen randomly from Rp will almost
certainly work in a given time step for each memory
cell and processor. We then must check that the
probability of failure at each step, which is bounded
by the sum of the failure probabilities in each of the
h(n) processors and memory cells, is < 1. In order
to have computed parity in 2” steps the degree must
be equal to the number of unset bits and the bound
follows.

The bound in part (b) follows by similar reason-
ing and the observation that at each step if the degree
of a processor is at most s then it only has the poten-
tial of writing into at most 2d different memory cells.
Thus the number of memory cells which have to be
considered at each step is bounded.

Finally, for part (c) we maintain different bounds
on the degree of the processor and cell partitions.
The degree of the cell partitions is still maintained
at s = log4c(n), however the degree of the processor
partitions can only be maintained at st for step t of
the algorithm. This means that many more input bits
must be set at each step in order to keep down the
degree of the result of a write operation. For further
details see [Be3]. 0

We can restate the resource trade-offs given in
Theorem 4.1 in terms of the time required by prac-
tically sized CRCW PRAM’s to compute the parity
function:

Corollary 4.1: If M is a CRCW PRAM which com-
putes the parity function in time T = T(n) then

(a) if the number of processors P(n) = no(l) then

T(n) 2 log n log n

log log n - O((log log n)”)I

even if the number of memory cells is infinite

(b) if the number of memory cells c(n) = no(l) then

T(n) 2 log n log n

2 log log n - ‘((log log n)2 ”

= P”
even if the number of processors is infinite.

89

A close look at the algorithm given by Chandra,
Stockmeyer, and Vishkin [CSV] for computing func-
tions with polynomial formula size, shows that par-
ity can be computed by CRCW PRAM’s with poly-
nomially many processors and memory cells in time
log n/ log log n - c log n/(log log n)2, where the con-
stant c depends on the exponent in the polynomial
bound on the number of processor:s and cells. The
only difference between our bound (a) and this one
is that this constant c is smaller relative to the expo-
nent of the polynomial which boun,ds the number of
processors and cells than is the constant in our lower
bound.

Using the constant-depth reductions given in
[FSS] and [CSV], th ese same tight lower bounds for
parity can be obtained for a large number of func-
tions. We assume that the reader is familiar with the
definitions of most of these problems; the terminology
is from [CSV].

Corollary 4.2:[FSS], [CSV] IF A4 is a CRCW
PRAM camp u ting any of the following decision prob-
lems, the bounds in Corollary 4.1 hold:
THRESHOLD, MAJORITY, UNDIRECTED 'GRAPH
CONNECTIVITY, UNDIRECTED CYCLE DETECTION
IN GRAPHS, BI-PARTITE MATCHING, CIRCUIT
VALUE PROBLEM
The bounds in Corollary 4.1 also hold for computing
all the bits of the following function problems:
hluLTIPLICATXON, SORTING, BIT SORTING,
MULTIPLE-ADDITION, BIT SUM, F~ETWORK FLOW
WITH UNARY CAPACITIES

The MULTIPLE-ADDITION problem is just the in-
teger addition problem discussed in [Be21 and [LY].
This corollary shows that when the output is permit-
ted to be represented as bits, the time complexity
is @(log n/ log log n) for machines with polyn~omially
bounded hardware. This complements the previous
results which showed that, when the output is re-
quired to be in a single cell, the time complcexity is
O(logn) for such machines.

The functions listed in this corollary are by no
means all the natural functions to which our parity
lower bound applies but merely a representative sam-
ple of the variety of problems involved.

5. The Sipser Functions a.nd a CRCW
Time Hierarchy

In [Si], Sipser defined a set of functions l’$m on
mk inputs for k 2 2 which are described by alter-
nating unbounded fan-in circuits of depth Ic and size

O(mk). He obtained a strict hierarchy of polynomial-
size unbounded fan-in circuits by showing that these
functions required more than polynomial size cir-
cuits of depth k - 1. Sipser’s function Fkm was de-
scribed by an alternating tree of depth k of A and
V gates with an A at the root, with fan-in m at ev-
ery level, and with distinct inputs at every leaf. We
modify it somewhat by defining fp to be a func-

tion having fan-in ak = [JGl from the

leaves, fan-in at the root and fan-in

m everywhere else. The resulting function has n =

puts in total.

Theorem 5.1: If hf is a CRCW PRAM which com-
putes the function f$’ of n inputs in time T - 2 then
for m sufficiently large

line

the total hardware h(n) = p(n) + c(n) must be

at least 2Ih(” lq&7&)-2],

the number of processors p(n) must be at least

2[&A” 1"3T/G)-2] even if the number ofmem-
ory cells is infinite, and

the number ofmemory cells c(n) must be at least

2[dT(” "'774iqY)-21 even if the number of pro-
cessors is infinite.

Because of space considerations we merely out-
the argument. Its general pattern is similar to

the proofs for parity. For further details of the proofs
see [Be3].

To prove this theorem we define restrictions rt
for each step t of the computation just as we did for
parity such that after step 1 and after 7rt is applied,
the cell (and processor) partitions all have degree less
than m and yet the function to be computed is fFmt.

Parity is a very nice function which treats 0 and
1 equally, so it is possible to use restrictions from
the probabi.lity distribution R!: and leave the parity
function urrchanged in character, The functions .fp
which we have just described treat 0 and 1 very differ-
ently, depending upon whether Ic is even or odd. Also,
they are not symmetric so that treating all variables
equally and independently as Ri does is inappropri-
ate. The functions fr do have some symmetry: in-
puts which appear at leaves that are joined to the
same bottom level gate are symmetric with respect
to each other. (We call such a set of inputs a block.)
Also, blocks which fan in to the same second level gate
are symmetric with respect to each other. These sym-

90

metries motivated the following restrictions of Hastad
[IIa2]:

Definition: Let L 5 {l,...,n} and let C =
{Li}fzl be a part,ition of L into blocks. Define RL,
to be a probability space of restrictions on L where
for a random p chosen from RzL and independently
for every i E {l,...,I),
1. A parameter s; is chosen such that Pr [si = *] =
q and Pr [si = 0] = 1 - q
2. Independently for each j E Li, Pr [p(j) = si] =
q and Pr [p(j) = 1] = 1 - q
Similarly R,, is a probability space of restrictions
defined as above except that the positions of 1 and 0
are reversed.

Note that restrictions from RLL never assign +
and 0 to inputs from the same block and restrictions
from Rit never assign * and 1 to the same block. The

restrictions from Rzr. are likely to set most inputs to
1 and are used for &” when the bottom level gates
are A; the restrictions from Ri, are likely to set most
inputs to 0 and are used for f$ when the bottom level
gates are V.

Definition: For a restriction p chosen from Rzt let

g+(p) be the restriction which agrees with p every-
where p sets inputs and which assigns 1 to all but the
variable of least index in each block which is given
a * by p. Similarly, for a restriction p chosen from
Ri,t let g-(p) be the restriction which agrees with p
everywhere p sets inputs and which assigns 0 to all
but the variable of least index in each block which is
given a + by p.

The definitions of g+ and g- are intended to be
cleaned up versions of the original restrictions. The
idea of this lower bound is that when fp has p applied
to it, there is a copy of frel sitting inside it. In this
process most of the bottom level gates will end up
with more than one variable and to keep degrees small
while retaining the copy of frwl it will be essential to
apply the gf and g- to reduce these to one variable.

As in the case of the parity function we need
two lemmas, one making sure that the function we
are trying to compute remains complicated after a
restriction and one which controls the degree of the
partitions.

Lemma 5.1: Let f > q >_
m

and let C =

{Li)fzl be the partition of the input set off? into
blocks which are the sets of inpu ts which fan in to each
of its bat tom level gates.

(i) If k is odd then, for p chosen at random from

91

(ii)

J&t the circuit that defines frrg+(,,) contains
a &cuit that defines fpel with probability at
least 2/3 for all m > ml where ml is a constant
independent of k and q.

If k is even then, for p chosen at random from
R;,, the circuit that defines fr[g-(p) contains
a iircuit that defines frel with probability at
least 2/3 for all m > ml where ml is a constant
independent of k and q.

Lemma 5.2: Let M be a CRCW PRAM just prior
to a read or write operation, all of whose processor
and cell partitions have degree at most r > 1 with
variables from {zi}icL. Let A be either a new pro-
cessor partition resulting from a concurrent read of
h4 or a new cell partition resulting from a concurrent
write of M. Let l = (Li}f,l be a partition of L.
Choose p at random from Rzc. For s > 0 we have

The same result holds if + replaces - throughout.

As it stands, our functions f+’ are defined only
for certain numbers of inputs depending on T and
m; call this number UT,~. Let T be a function of
n. We extend our functions to all numbers of inputs
by defining fT(.) on n inputs to be .fFin, computed
on the first VT(,),~ inputs, where m 1s the largest
index such that VT(~),+ < n. We now can restate the
resources required to reduce the time for computing
f-q.) on machines with reasonable resource bounds.

Corollary 5.1:

(a) For any function T such that

T(n) = log n
3 log log n

there is a function fTc.1 of n inputs which can
be computed on a CRCW PRAM with rz pro-
cessors and memory cells in time T(n) but can-
not be computed by any CRCW PRAM with
a polynomially bounded number of processors,
p(n) = no(‘), running in time T(n) - 2.

(b) For any function T such that

T(n) = logn
5 log log n - w ((lo:f,“njz)

there is a function fT(.) of n inputs which can be
computed on a CRCW PRAM with n processors
and memory ceJJs in time T(n) but any CRCW

PRAM computing it in time T(n) - 2 requires
both the number of memory cells and the number
of processors to exceed any poJ,ynomiaJ in n .

This implies that the class of functions which
can be computed in time bound T(.) - 2 on machines
with reasonable resource bounds is strictly contained
in the class of functions which can be computed in
time T(e). This yields a strict time hierarchy among
CRCW PRAM%.

6. Almost all Boolean functions

We can get larger lower bounds on the time com-
plexity of Boolean functions than .those in the pre-
vious sections by considering the class of almost all
Boolean functions.

Lemma 6.1: Almost all Boolean functions require
unbounded fan-in circuit size Q(2”i2).

Proof: To see this, use the following argument due
to Ruzzo [Ru]: Without loss of generality the nega-
tions can be pushed to the inputs by De Morgan’s
laws so we assume free access to inputs and their
negations. The number of unbounded fan-in. in cir-
cuits with s gates is then just 2”(“-t2”+‘) since each
gate can be described by its operation (either A or V)

and by the subset of the inputs and gates to which
it is attached. Since there are 22” 13oolean functions
of n inputs, it easy to see that most functions require
size 0(2n/2).Cl

Using the simulation of CRCW PRAM’s by cir-
cuits given by [LY’J and [Ch] (cf. $2) along with this
lemma yields:

Theorem 6.1: Almost all Boolean functions of n
inputs require time logn - loglogp(n) + n(l) on a
CRCW PRAM with p(n) processors.

Proof: Substituting directly in the simulabtion we
see that any CRCW PRAM takin,g at most logn -
loglogp(n) - w(1) t ime can be simulated by an un-
bounded fan-in circuit of size o(2”/“). But by Lemma
6.1, almost all Boolean functions of n inputs require
unbounded fan-in circuits of size R(2”i2). The theo-
rem follows immediately. D

Because of the upper bound in [Be21 of logn -
log log[p(n)/n] + O(1) for computing any function on
Boolean inputs, this bound is nearly optimal. This
optimality suggests that no general improvement in
the simulation of CRCW PRAM’s by unbounded fan-
in circuits is likely to be obtained.

7. Further Research

The R(log n/ log log n) time lower bounds for
computing specific Boolean funct.ions given in sec-
tions 4 and 5 are tantalizingly close to the logn -
loglog 72 + @(I) t ime bounds for almost all Boolean
functions on CTLCW PRAM’s with a polynomial
number of processors, However, finding a specific
problem in NP for which we can close this gap ap-
pears to be a formidable though fundamentally in-
teresting task. This is because the work of Chandra,
Stockmeyer and Vishkin ([SV], [CSV]) implies that
such a prob’lem would not be in NC’ (would not have
O(log n) depth combinational circuits).

References

I41

WI

[Be21

[Be31

[CSVI

[Chl
[FSSI

WI

[Ha21

[Ku1

BJYI

Ajtai, hl. Xi-Formulae on Finite Sfruciures,
Annals of Pure and Applied Logic, vol. 24,
1983, pp. l-48.

Beame, P.W. Lower Bounds for very Pow-
erful Parallel Machines, manuscript, 1985.

Beame, P.W. Limits on the Power of
Concurrent- Write Parallel Machines, Proc.
18th ACM-STOC 1986, pp. 169-176.

Beame, P.W. Lower Bounds in Parallel Ma-
ch.ine Computation, Ph.D. Thesis, Univer-
sity of Toronto, 1986.

Chandra, A.K., Stockmeyer, L.J., and
V:ishkin, U. Constant Depth Reducibility,
SIAM J. Computing, vol 13(2), 1984, pp.
45!3-439.

C’hor, B. private communication, 1986.

Furst, M., Saxe, J .B., and Sipser, hf. Parity,
Circuits, and the Polynomial Time Hierar-
ch y, Mathematical Systems Theory, vol. 17,
no. 1, 1984, pp. 13-28.

Hastad, J. Improved Lower Bounds for
Small Depth Circuits, Proc. 18th ACM-
STOC 1986, pp. 6-20.

Hastad, J. Computational Limitations for
Small Depth Circuits, Ph.D. Thesis, M.I.T.,
1!386.

K.ucera, L. Parallel Computation and Con-
flicts in Memory Access, Information Pro-
cessing Letters, vol. 14, no. 2, 1982, pp.
93-96.

Li, M., and Yesha, Y. New Lower Bounds
for Parallel Computation, Proc. 18th ACM-
STOC 1986, pp. 177-187.

92

IW
[Si]

Ruzzo, W.L. private communication, 1986.

Sipser, M. Bowl Sels and Circuit Complez-
i2y, Proc. 15th ACM-STOC 1983, pp. 61-
69.

WI

WI

Stockmeyer, L.J., and Vishkin, U. Simula-
lion of Parallel Random Access Machines
by Circuits, SIAM J. Computing, vol 13(2),
1984, pp. 404-422.

Yao, A.C. Separating the Polynomial-Time
Hierarchy by Oracles: Part I, Proc. 26th.
IEEE-FOCS 1985, pp. l-10.

93

