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Abstract 

WC study the complexity of proving unsatisfiability for ran- 
dom k-CNP formulas with clause density A = m/n where 
111 is number of clauses and n is the number of variables. 
We prove the first nontrivial general upper bound, giving 
algorithmo that, in particular, for k = 3 produce refutations 
almost certainly in time 20t”iA). This is polynomial when 
m z n2/ logn. 

We ohow that our upper bounds are tight for certain 
natural classes of Davis-Putnam algorithms. We show fur- 
ther that random 3-C!W formulas of clause density A al- 
most certainly have no resolution refutation of size smaller 
than 2ntnlA4t”), which implies the same lower bound on any 
Davis-Putnam algorithm. We also give a much simpler ar- 
gument based on a novel form of self-reduction that yields a 
slightly weaker 2*t”lA5te) lower bound. 

1 Introduction 

The random GCNF model has been widely studied for sev- 
eral good reasons. First, it is an intrinsically natural model, 
analogous to the random graph model, that sheds light on 
fundamental structural properties of the satisfiability prob- 
lem. Second, for appropriate choice of parameters, randomly 

‘Rcxtuch cuppoltcd by NSF pt CCR-9303017. Computer Science 
and En&xring, Univemity of W~bington, Box 352350. Seattle, WA 
9R195, booms&n .urashington.edu 

ttimputer Science and En~$~eering, University of Wosbington Box 
352350, Scnltlc, WA 98195, kargQco .washington. eclu 

* Rexurch oupported by NSF @uQ CCR-9457782 and US-Israel BSF 
Omnt 95-00238. Computer Science Depmiment, University of Arizona, 
Tuceon, AZ 85721, toni@cs , arizona. eau 

1 Research ouppotted by NSF &rant CCR-9700239. Dept- 
msnt of Matbcmntiw, Rutgers University, New Bnmswick, NJ. 
aakoOmath, rutgorn . eau. This work was done while on sabbatical 
nt Unlvcmlty of W~hin@on. 

chosen formulas are empirically difficult for satisfiability, 
and are a commonly used benchmark for testing satisfiabil- 
ity algorithms. (See, for example, the encyclopedic survey of 
the SAT problem in [GPFW97].) Lastly, the random model is 
important for proving lower bounds for propositional proof 
systems. Lower bounds for random IKNF formulas attest 
to the fact that the proof system in question is ineffective on 
average. 

A fundamental conjecture about the random k-CNF 
formula model, (see [CSSS, BFU93, CF90, CR92, FS96, 
KKK96J) says that there is a constant q, the sutisfiability 
threshold, such that a random k-CM formula of clause den- 
sity A is almost certain!y satisfiable for A < ck (as n gets 
large), and almost certainly unsatisfiable if if A > ck. There 
is considerable empirical and analytic evidence for this. Re- 
cently Friedgut [Fri] showed that for each n there is a thresh- 
old Q(n) with the above property, but he does not rule out the 
possibility that c&r) varies with n. It is known that c2 = 1 is 
independent of n [CR92, Goe96], and that for each k CR(n) is 
bounded between two constants bk and dk that are indepen- 
dent of n, e.g., and 3.003 < a(n) < 4.598 fFS96, KKK96]. 

The threshold indicates three distinct ranges of clause 
density for investigating complexity. For A at the threshold, 
an effective algorithm must be able to distinguish between 
unsatisfiable and satisfiable instances. Below the threshold, 
a random formula is almost certainly satisfiable and the prob- 
lem of interest is to find a satisfying assignment qui&!y. 
Above the threshold, the formula is almost certainly unsatis- 
fiable and we have the hvo closely related questions (i) what 
is the typical size of the smallest unsatisfiability proof? and 
(ii) how quickly can an algorithm find a proof? 

Our attention here is restricted to the class of algo- 
rithms commonly known as Davis-Putnam procedures, and 
on unsatisfiabihty proofs using genera! resohtion. A Davis- 
Putnam procedure, run on an unsatisfiable formula, produces 
a resolution proof for F. Therefore, the minimum size res(F) 
of a resolution proof for F, is a lower bound on the running 
time of any Davis-Putnam procedure on F, and, conversely, 
an upper bound on the running time of some Davis-Putnam 
algorithm on F provides an upper bound on res(F). 
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Several empirical studies of Davis-Putnam procedures 
on random 3-CNF formulas have been done, e.g., by Sel- 
man, Mitchell, and Levesque [SML96] and Crawford and 
Auton [CA96]. The former applies a simple Davis-Putnam 
procedure to random 3-CNF formulas for various values of 
the clause density A. The curves in [SML96, CA961 show 
very Iow complexity for A below the threshold, a precipitous 
increase in complexity at the threshold, and a speedy decline 
to low complexity above the threshold. 

Much has been made of the analogy with statistical 
physics [KS94], and there has been a suggestion that the 
computational complexity at the threshold is evidence of a 
critical phenomenon in complex systems and based on un- 
derlying chaos present only near the threshold. The empir- 
ical observation that satisfiability is easy below threshold is 
supported by analytical work. The proofs of the aforemen- 
tioned lower bounds on Ck were obtained by showing that an 
appropriate version of the Davis-Putnam algorithm almost 
certainly finds a satisfying assignment in linear time, pro- 
vided that A is below some specified constant. 

The case of A above threshold is less well understood 
and is the focus of the present paper. In this case, there 
seem to be no previously known non-trivial upper bounds on 
the running time of algorithms on random instances. There 
are Iower bounds, which are provided by Iower bounds on 
res(F). In a seminal paper which provides much of the inspi- 
ration for our work, Chvatal and Szemerbdi [CSSS] showed 
that for any fixed A above the threshold there is a constant 
&j > 0 such that reS(F) 2 2XAn almost Certainly if F iS a ran- 
dom XI-CNF formula of clause density A. On the other hand, 
Fu lFu95] showed that res(F) is almost certainly polynomial 
in n for A = Q(nk-*). These results, and the empirical work 
discussed above, raise the question of understanding the typ- 
ical behavior of res(F) for random formulas F as a func- 
tion of A. The lower bound in [CSSS] as presented does not 
give bounds on the dependence of KA on A, but rough esti- 
mates show that for 3-CNF formulas the bound decreases 
as l/A *CA’). This implies that the lower bound declines 
extremely quickly and becomes trivial at very small non- 
constant clause densities, even density O(log’/4n), leaving 
a huge gap between the upper and lower bounds. Fu [Fu95] 
extended the lower bounds to higher A in the case k 2 5, 
and Beame and Pitassi [BP961 improved the bounds further. 
In particular, for random 3-CNF they gave an almost certain 
~(2J;;l;\~/~+” ) lower bound on res(F), which gives a non- 
trivial lower bound for clause density A = O(ntl(5f2E)). The 
transition between the bounds of [CSSS] and these bounds 
as A increases is very abrupt, leaving open the possibility 
that res(F) drops off precipitously as A increases beyond the 
threshold. 

In this paper, we give the first asymptotic analysis of 
res(F) for random k-CNF formulas as a function of A for 
A above the threshold. We prove upper and lower bound re- 
sults showing that KA decays as a fixed power of A, showing 

that there is not an isolated point of complexity at the thresh- 
old, but rather a slow and gradual decline in complexity as A 
increases. 

In section 3, we give the first non-trivial general upper 
bound for random k-CNF formulas by showing that a very 
simple Davis-Putnam-like procedure achieves a 20(“lA”“-“) 
running time almost certainly, which implies the same up- 
per bound on res(F). In particular, this is polynomial when 
A = Q((n/ logn)k-2), which is a slight improvement on Fu’s 
result. The basic idea we use is to leverage the unsatisfiabil- 
ity properties of the well-understood 2-CNF formulas, We 
extend the analysis to show that similar upper bounds hold 
for the extremely simple algorithm used in [Sh/IL96]. 

In section 4, we prove lower bounds on the size of Davis- 
Putnam proofs for 3-CNF formulas. For the particular al- 
gorithm used by [SML96] we essentially match the upper 
bound of section 3 for all values of A. For large A, of size 
Q(n3/*logEn), we prove, more generally, that a similar lower 
bound holds for any Davis-Putnam procedure whose split- 
ting rule is independent of the particular formula. A key part 
of the analysis is to bound the number of unit clauses that 
can be generated in any Davis-Putnam procedure. 

In section 5, we prove more general, but weaker, lower 
bounds on res(F) for random kC!NF formulas; these lower 
bounds thus apply to the running time of any Davis-Putnam 
procedure. We show that res(F) = 2”(nlA4tE) almost cer- 
tainIy for a random 3-CNF formula with clause density A. 
This uniformly subsumes and improves all previous lower 
bounds for such formulas. We first give a simple argument of 
a slightly weaker bound of 2”(“@+‘) via a novel form of ran- 
dom self-reduction. This proof follows the structure of the 
the lower bound proof from [BP96], but replaces random re- 
strictions by a technique called random augmentation, where 
we add randomly chosen clauses to the formula. This tech- 
nique may be of independent interest. The stronger bound of 
2a(n/A4t’) is obtained by extending [BP961 in another direc- 
tion, and is considerably more complicated. As this article 
was going to press, we learned of a recent result of Ben Sas- 
son and Wigderson which, by a simple modification of an 
algorithm in [CEI96, BP961 for constructing proofs, leads to 
a simple proof of the latter bound. 

For the purposes of this abstract, we concentrate on the 
most interesting case for our results, namely that of random 
3-CIW formulas, 

2 Preliminaries 

For the purpose of generating test formulas, the most natu- 
ral model of a random k-CNF formula on II variables with 
clause density A is to choose m = An clauses independently 
with replacement. This distribution, which we denote %?, 
is the one analyzed in [CSSS]. Another model, which is 
used in [Fri], is to choose to include each of the possible 
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clauses independently with probability p = m/(;t)2k; call 
this !Fkl”(p). An easy argument shows that when consid- 
ering properties that are monotone (or anti-monotone) with 
respect to sets of clauses, the almost certain properties un- 
der both distributions are the same up to a change from m 
to 111 f o(m). This is just a natural extension of the similar 
(and mom precise) equivalences for the random graph model 
us shown for example in [AV79]. We generally assume the 
distribution !&” but will sometimes switch to the @‘Q) 
distribution to simplify analysis. Also, when k = 3 we typi- 
cally omit the superscript k. 

In general, WC write F N !F to mean F is a random for- 
mula selected according to distribution JF. 

WC make frequent use of two well-known tail bounds for 
the binomial distribution (see [ASE92], Appendix A). If Y 
is a random variable distributed according to the binomial 
distribution B(n,p) then 

Pr[Y < np/4] 5 2+p)/2 (1) 

Pr[Y > Cnp] I ($c”p 

Following usual parlance we call partial assignments to vari- 
ables restrictions and apply them in the usual way, writing 
F [,-, for the result of applying p to F. We often wish to refer 
to the underlying set of litcrals set to true by a restriction p 
or contained in some clause C. We will abuse notation and 
write p or C for these sets of literals, respectively. We use 
v(p), v(C) to refer to the set of variables that underly p, Cre- 
npectiveiy and extend this in a natural way to sets of clauses. 

A resolution refutation of a k-CNF formula F is a se 
qucncc of clauses, where each clause is either a clause from 
F, or follows from two previous clauses by the resolution 
(cut) rule - from A V x and B V lx, derive cut,(A V x, B V 
TX) =AVB- and the final clause is the empty (false) clause, 
A, The size of a resolution refutation is the number of clauses 
in the proof, Each resolution refutation can be thought of 
as a natural directed acyclic graph whose nodes are labelled 
by the clauses, with each source node labeiied by an input 
clause, with each non-source node of in-degree 2 labelled by 
the resolvent of its predecessors, and with a single sink node 
labeiied by A, 

The most widely used satisfiability algorithms are com- 
monly called Davis-Putnam procedures, but, in fact, these 
procedures are derived from a system devised by Davis, Lo- 
gcmann and Loveland [DLL621 and so we will refer to them 
as DLL procedures. A DLL procedure is a form of recursive 
search for a satisfying assignment which on input F oper- 
ates as follows: If F contains the empty clause A, it termi- 
nates reporting failure. Otherwise, a variablex is chosen and 
the procedure is applied recursively to F rXt-e and F rx+l. In 
choosing x, we always choose a variable that appears in some 
unit ciausc (clause of size 1) of F if one exists. 

The recursive calls of the DLL procedure naturally in- 
duce a binary tree, each of whose internal nodes is labelled 

by a variable, with the out-edges of a node labelled by the 
2 possible assignments to its associated variable. Each path 
in the tree corresponds to a partial assignment (restriction) 
and, if F is unsatisfiable, each leaf is labelled by a clause of 
F that becomes an empty clause under the restriction corre- 
sponding to the path to the leaf. This execution tree is a DLL 
refutation of F and its size is the number of recursive calls of 
the procedure on F. 

It is not hard to show that the DLL refutation tree can be 
converted into a resolution proof of F of no larger size by 
working upwards from the clauses labelling the leaves and 
replacing each node labelled x by a cut on X. 

If a node in a DLL tree is labelled by a variable x cho- 
sen because of a unit clause C then one child will falsify 
C so we can immediately proceed with the other recursive 
call. This is called unit pmpagution. When no unit clauses 
are present there may be different strategies for choosing the 
next variable to branch upon. Much of the work on DLL al- 
gorithms has been on refining the heuristics, called splitting 
rules, for making this choice. Usually there are trade-offs 
between the size of the proof produced and the time spent 
making this decision. One extremely simple splitting role is 
the ordered DLL. procedure [Mit95], used in the empirical 
studies of [SML96], where one begins with a fixed variable 
ordering and always chooses the next unset variable in that 
ordering. 

3 Upper Bounds 

In this section we show that two different algorithms, when 
run on 3-CNF formulas selected from F$ produce resolution 
refutations of size 2°(n2/ml with high probability. Both algo- 
rithms work with respect to a fixed ordering, x1 ,x2,. . . ,x, of 
the variables. One is ordered DLL, the other, called Algo- 
rithm A, is more complicated but simpler to analyze. The 
analysis generalizes to k-CT-IF formulas. 

Algorithm A. Let t = Sn2/m. If t > n/10 then run or- 
dered DLL. If t 5 n/10, run ordered DLL recursively until 
xl,. . . ,g are all assigned values. Let p denote the assignment 
along the current path, and C2(F, p) denote the set of clauses 
of size 2 in Frp. Run the (polynomial-time) algorithm for 
ZSAT with input Cz(F,p). The algorithm succeeds (finds 
a resolution refutation of F) if Cz(F,p) is unsatisfiable for 
each p. 

To analyze Algorithm A we need: 

Lem,ma 1: Let F be a random 2-CNF formula chosen from 
552. Then the probability that F is satisfiable is o(2-“ig). 

Proof Observe that the expected number of satisfying as- 
signments for a 2-CNF formula with m’ clauses and n’ vari- 
ables is 2”1(3/4)“1 which is 0(2-d/9) for m’ > 2.67Sn’. 
(This bound can be reduced below 2 by using the techniques 
of [KKK96].) Cl 
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Theorem 2: Let A be at least the threshold c&z) and m = 
An. If F N J?$, then, with probability 1 - o( 1) in n, Algo- 
rithm A produces a resolution refutation in time 2°(n2/“‘)n0(1). 

Proof Algorithm A clearly runs in time 2°t”2/m)n0(1). Let 
t = Sn2/m and assume without loss of generality that t < 
n/10. To see that Algorithm A almost certainly yields a 
refutation of F, we show that almost certainly, for all as- 
signments p to (51 , . . . J’}, Cz(F,p) is unsatisfiable. (Other 
variables may be set by unit propagation but this only would 
improve the situation.) 

Fix p and consider the size of Cz(F,p) for random F. 
This size is a binomial random variable B(m,q) where q is 
equal to the probability, for a random 3-clause C, that C[, is 
a 2-clause: 

Pr[C[,, is a Zclause] 
= 1/2Pr[]v(p)nv(C)I = l] 

= i-(z-Pr[]v(p)nv(C)] > 11) 

1 (3t -. -- 
=2 n 

3wN;~+G))>t,n 
(3 - 

using (l), it follows that Pr[]C2(F,p)] 5 2n] _< 2-l”. By 
Lemma 1 and the fact that the clauses in G(F,p) are 
distributed uniformly at random on the remaining n’ = 
n - d variables, Pr[Q(F, p) is satisfiable ] ]C2(F,p)] > 2n] is 
0(2-“‘i9). Since there are 2’ choices for p, the total failure 
probability is 2’ . (0(2-(“-‘)/~) + 2-“), which is o(I) since 
(n-$)/9>tfort 5n/lO. q 

Next we consider ordered DLL. At a point in the exe- 
cution of DLL, say that a variable is critical if setting that 
variable either to 0 or 1 and then applying unit propagation 
creates the empty clause. Thus, if the splitting rule chooses 
that variable the current branch will terminate simply by unit 
propagation. 

A point in the execution of DLL corresponds to some re- 
striction p. We give a sufficient condition for a variable to 
be critical in terms of the set Cz(F,p) of induced 2-clauses 
on the remaining set of n’ variables. Define the standard di- 
rected graph G(F, p) on 2 n’ vertices, one for each literal, that 
has directed edges (YX,~), and (Y~,x) corresponding to each 
2-clause (xVp) in Cz(F,p). It is easy to see that a sufficient 
condition for the variables’ to be critical is that there be di- 
rected paths from xi to 1.~’ and from lx’ to .r’, i.e., that xi and 
~.vj lie in the same strongly connected component. 

Lemma 3: There exists a constant c such that if F N ?,, and 
p is a fised restriction oft variables with n/2 1 t 2 cn2/m, 
then with probability at least 1 - 2-“, for at least half of the 
11’ = n - t variables Xi of C2(F, p), Xi and 7x’ belong to the 
same strongly connected component of G(F, p). 

Proof Clearly, it suffices to show that with probability at 
least 1 - 2-“, G(F, p) has a strongly connected component 

of size at least 3n’/2. Let Cr ,C2,. . . , C, be the strongly con- 
nected components ordered so that all edges between com- 
ponents go from lower to higher numbered components, nnd 
consider the first j such that ]Ct U . , . U Ci] 1 n’/4. We will 
show that the probability that ]Cj] < 3n’/2 is at most 2-“. If 
ICjl C 3n’/2 then the set S = Ct U . . . U Cj satisfies n’/4 C: 
IS] < 7n’/4 and there is no edge from 3 to S. 

So to upper bound the probability that [Cl] C 3n’/2 it 
suffices to upper bound the probability that there is a set S 
with n’/4 5 IS] <_7n’/4 which is bud in the sense that there 
is no edge from S to S. Fix S of size s, with n’/4 s s <: 
7n’/4. The probability that a randomly chosen 3 clause C, 
when restricted by p gives an edge from f to S is at least 
s(n’-s- I)t/S (3 2 Pt/n, for some constant p > 0. Hence 
the probability that none of the nr clauses of F gives such an 
edge is at most (1 - Pt/n)” 5 e-Pfnrl’l 5 c-@” < 2-3’i for c 
chosen greater than 3p. There are at most 22t” such sets S, so 
the probability that there is a bad set S of size between n’/4 
and 7n’/4 is at most 2~“. 0 

Theorem 4: Let A be at least the threshold C.&r) and nt = 
An. If F N !$W, then ordered DLL will produce a resolution 
refutation for F in time 2°(“&0(‘) with probability 1 - u( 1) 
in n. 

Proof Without loss of generality we may assume that “11 
4cn where c is tbe constant of the previous lemma and let 
t = cn2/m, so that t < n/4. 

Fix a restriction p of the first t variables. We claim that 
the probability that there is a branch of the DLL tree consis- 
tent with p that is still active (not terminated) after the first 
4t variables are set and the resulting unit propagations are 
processed is at most 2 -2r. Since there are 2’ choices for p, 
this will imply that with probability I- 2-*, every branch of 
ordered DLL is completed after at most the first 4r variables 
are fixed and all resulting unit propagntions are done, and so 
the tree has at most n2” nodes (including nodes from unit 
propagation). 

To prove the claim, condition on the size r of the set of 
critical variables for Frp. By lemma 3, the probability thnt 
r < n’/2 is at most 2~” 2 2-j’, so we assume r 2 d/2. The 
set of critical variables is equally likely to be any r-subset 
of the n’ = n - t unset variables, and so the probability that 
none of the next 3f variables in order are critical is at most 
(“‘;L) / (n:) < (1 - 3t/n’)’ 5 eB3’j2. Hence the probability 
that some branch consistent with p is unfinished after king 
the next 3t variables is at most 2’“’ f eW3’i2 5 2-a. Cl 

4 Davis-Putnam lower bounds 

In this section, we obtain lower bounds for certain natural 
classes of Davis-Putnam procedures. These lower bounds 
nearly match the upper bounds proven in the previous section 
and also provide a fairly precise analytical characterization 
of the behavior of the empirical results in [SML96]. 
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Tbcorcm 5: For F N !Jj$ with probability 1 -o(l), the size 
of the refutation produced by ordered DLL is 2*(“‘/“). 

Proof Fix t < $$ and let S be the first t variables with respect 
to the given ordering. If p is an assignment to S such that Fr,, 
has no A clause or unit clauses then the DLL tree for F will 
have a unique node corresponding to p. We will show that 
with probability 1 - o( 1) (as a function of t), F N r has 
the property that for at least 2’i2 of the 2’ assignments to p, 
that F[a has no A clause or unit clauses. This implies that 
the DLL tree has size at least 2’12, proving the theorem. 

Let cP denote the set of maximal size subclauses of F 
of oize two or three that are contained within S, and let I($,1 
denote the number of such clauses. The expected value of 
jC$( is mt2/tt2 < t/4 by our bound on r. Call F good if (1) 
ICj?l4 t/2 and (2) C$ is satisfiable. The probability of (1) is 
1 - o( 1) by tail bounds on the binomial distribution. Assum- 
ing (1) holds, C$ consists of a collection of 5 t/2 run&m 
clauses of size two or three on set S of size t. Therefore the 
probability of (2) given (1) also goes to 1 because a random 
2-CNF formula with (1 - &)t variables on a set of size t is 
satisfiable almost certainly [Goe96, CR92]. (The fact that 
there arc some 3-clauses as well as 2-clauses only makes Ci 
easier to satisfy.) Thus, F is good with probability 1 - o( 1). 
Since there is a satisfying assignment for C$, there must be 
a partial truth assignment setting at most t/2 variables that 
also satisfies C’$ For each of the at least 2’j2 assignments 
p obtained by extending this partial truth assignment to all 
the variables of S, Fr,, will not contain any unit clauses or 
zero clauses (since all clauses in Cj$ have been satisfied by 
PI* 0 

This lower bound is tight and we would like to extend it 
to a wider class of DLL procedures. The proof showed that 
along many paths in the DLL tree, unit clauses play no role. 
To gencralizc it, we first show that, for any DLL procedure, 
with probability 1 - o( 1) the number of variables set along 
any path by unit clause propagation is at most a small mul- 
tiple of the number of variables set by splitting rules. More 
precisely, let F be a 3-CNF formula and let p be a partial 
truth assignment to some t variables. Then the unit clauses 
generated by p with respect to F are the unit clauses that we 
come across when setting p in F, and then setting all of the 
unit clauses that result from this restriction, and then setting 
all unit clauses resulting from this extended restriction, etc., 
until finally no more unit clauses are generated. 

Lcmmn 6: Let t > 0 and w = max(t,log2 (r)). There exists 
a constant c such that, for F N J$l with m < cn2/w, the prob- 
ability that them exists a partia1 assignment p to t variables 
such that p generates at least w unit clauses with respect to 
F ill o(l), 

Proof We show that if F is a bad formula-that is, a formula 
cuch that there exists a partial assignment to r variables cre- 

ating at least w unit clauses, then F can be described very 
succinctly. Thus, the total number of bad F’s must be small. 

We view an arbitrary formula F w 3;f: as an ordered 
sequence of m clauses. Thus F is uniformly chosen from 
@(;)I” P ossr e ‘bl f ormulas. Suppose there is a partial truth 
assignment p of size f that generates at least w unit clauses 
with respect to F. To encode F, we first encode p, the clauses 
of F that generate these w unit clauses, as well as their po- 
sitions in F, and show that the number of such encodings 
is significantly smaller than (8 (!$)“; the remaining m - w 
clauses are encoded as before so we ignore them in calculat- 
ing the savings. 

IA Yl , . . . ,yr be the literals set to true by p in order of 
increasing variable indices. Define yI+r , . . . ,Y~+~ to be the 
literals appearing in the w unit clauses in the order they were 
generated (when several were generated by a single assign- 
ment, break ties arbitrarily). There are only (~)JP~‘“” pos- 
sibilities for these literals. 

Call the clauses of F that become unit clauses under p, 
Cl , . . ..C., where Ci is the clause corresponding to the literal 
yt+i. The two remaining literals of each Ci are negations of 
literals in {yr , . . . ,yr+i-r }. Let the indices of the variables 
in the two literals be denoted by ri and si, ri < ri. Since a 
unit clause is generated as soon as two literals in a clause 
of F have been falsified, it follows from the order in which 
we chose the literals that 1 5 sr 5 . . . < .r, < r-l- 1~. Thus, 
the total number of choices for specifying all of the q’s is 
at most c’,). In a more straightfonvard manner, the total 
n!mber of choices for the ris is at most (t 9 1~)~. Finally, 
there are at most mw possible positions of these clauses in F. 

Therefore the fraction of such F is at most 

($w2r+wC+F) (f + w)wmw/(S (;))” 5 (f) (cmw/n2)‘Y 

for some constant c > 0 since NJ 2 t. For w 5 n2/(3cm) this 
probability is o( 1) in n since w 2 log2 (y) and is w( 1) in n. 
0 

We say that a DLL procedure is oblivious if its splitting 
rule only depends on (1) the sequence of literals along the 
current path, and (2) the set of those clauses of F that only 
involve these variables. It is easy to argue that, for random 
formulas, the expected size of the refutation produced by any 
oblivious DLL algorithm is the same as for ordered DLL. 
However, this does not rule out the possibility that one such 
algorithm may be better than others on most inputs. Using 
Lemma 6, we can produce lower bounds for the more general 
class of oblivious DLL algorithms that are almost the same 
as those of Theorem 5 for large values of m. 

Theorem 7: For any E > 0 with probability 1 - o( 1) in n. 
any oblivious DLL procedure for a random m clause 3-m 
formula requires size 2ntn2/m’osn) if m > n3/210gE/2n, and 
size 2WW3~og’+e4 form < n3/210gE12n. 
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Proof We can define the branching depth of a node v in a 
DLL refutation tree to be the number of degree 2 nodes on 
the path from the root of the tree to v after pruning any leaf 
that could be avoided by unit propagation. 

Fix a formula F. Modify the oblivious DLL algorithm 
so that it the ignores the empty clause stopping rule. Tnm- 
cate each branch when all the unit propagations have been 
done after a node of branching depth t is reached. Observe 
that we obtain a tree which contains precisely 2’ leaves of 
branching depth t. We want to show that most of these paths 
do not terminate early-i.e., most paths at branching depth 
t have not yet set F to false. By Lemma 6 we may as- 
sume without loss of generality that F is good in that all 
paths of branching depth t are of length at most t + w where 
w= max(t,logz (y)). F IX such a path of length at most t + w. 

Qbserve that all unit clauses encountered along the path 
have been satisfied and that all other clauses have not been 
used in the choice of branching decisions or examined in any 
other way. Therefore, other than the fact that they are not unit 
clauses at the time that the leaf is reached, we know nothing 
about them. This only rules out a small number of poten- 
tial clauses and we see that the probability that the formula 
is set to false by this path is at most the espected number 
of such clauses set to false which is at most m(t + w)3/n3. 
Therefore, the expected number of paths that are falsified 
after t levels of bra&rings is at most 2’m(t + w)~/,,~. For 
m(t + w)3/n3 5 1 / logE n, the expected number of paths that 
are falsified after t levels of branching is at most 2’/log’n. 
Thus by Markov’s inequality, the probability that there are 
more than 2’/2 paths that are falsified after t levels of branch- 
ings is at most 2/logcn. Thus, with probability going to 1 as 
n goes to infinity, the proof size is at least 2l- 2’12 = 2’12. 

Note that we required m 5 c’n*/w for Lemma 6, and 
nt 5 n3/(t + tip)3 logEn in the above calculation. Thus, we 
obtain a 2’/2 bound if nz c min(c’n2/w,n3/(t + ~)~log”n). 

When w = J-T n/c’log n, these two quantities are roughly 
equal. Using t 5 w < tlogn, we obtain a lower bound of 
2R(“s2~m*o~n) when m > n3i210gE/2n and a lower bound of 
p2(n/m3/310g1+yI) when m < n3j2 logEi n. Cl 

For nt > n3i2 logEi n, the lower bound from Theorem 7 
is very nearly tight but below this value it weakens substan- 
tially. In the next section, we consider the much more gen- 
eral class consisting of all resolution proofs. We give lower 
bounds for these more general proofs that are actually larger 
than those of Theorem 7 bounds for values of m near n, in 
particular for ni < itr2/t1+. 

5 General Resolution Lower Bounds 

Let F be a Boolean formula. If F is unsatisfiable, define 
res(F) to be the minimum number of clauses in a shortest 
resolution refutation of F. If F is satisfiable, define res(F) 
to be 00. The results of the previous section imply that for 

F N $$ res(F) 5 2”(“lm)no(‘) with probability 1 - o( 1) for 
m above the satisfiability threshold. In this section WC prove 
lower bounds of a similar form: 

Theorem 8: For each y > 0, there exists a constant a., such 
that for all m 2 n, if F N Fl then with probability 1 - o(l), 
res(F) > 2aP(dm)4+7. 

Note that for m = o(n5/(“+u)), the bound is non-trivial, 
and for m = O(n), the bound is 2Q(“). Thus it includes 
the Chvatal-Szemeredi bound and it uniformly improves tho 
Beame-Pitassi bounds. Our proof of this bound is fairly com- 
plicated, but we can obtain a somewhat weaker result (with 
the 4 replaced by a 5) via a significantly simpler argument. 
A key idea in our proof and that of [BP961 (which originates 
in [CSSS]) is a result that provides a condition on a formula 
F so that any resolution proof of F has at least one large 
clause. We describe this in the next subsection. 

5.1 Guaranteeing a Large Clause 

A set of clauses is b-bounded if all clauses in the set have 
at most b literals. A formula F or a resolution proof 4 is b- 
bounded if its underlying set of clauses is b-bounded. For a 
real number cr, a set of clauses C is <r-sparse if 1 Cl < ojv( C)l 
where v(C) is the set of variables appearing in C. For s 2 1 
and E E (0, l), the following properties are defined for for- 
mulas F: 

Property A(s): Every set of r 5 s clauses of I: is 
l-sparse. 

Property Z&(S): For r satisfying s/2 < r 5 s, every 
set of r clauses of F is &-sparse where k is the 
size of the largest clause of F. 

The following result is essentially due to Chvlital and 
Szemeredi. 

Proposition 9: Let s > 0 be an integer and F be a CNF for- 
mula. If properties A(s) and &(s) both hold for F, then F 
has no a.s/Zbounded proof. 

Proof The result holds trivially if F is satisfiable, so as- 
sume that F is unsatisfiable and let 4 be a resolution proof. 
View T as a DAG and for each clause (vertex) of T, de- 
fine sources(D) = sources@) to be the set of those clauses 
of F that have a path to D. Define the boundary of a set 
C of clauses, p(C) to be the set of variables that appear 
in exactly one clause of C. It is easy to see that for nny 
clause D E T, D contains p(sources(D)). We will prove two 
claims: (i) F satisfies A(s) implies that there is a clause C E T 
with s/2 < Isources(C)I I: s. (ii) F satisfies BE(r) implies 
that for any subset C of clauses of F with s/2 < ICI 5 s, 
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Ij3( C)l 2 e]CI, Applying (ii) with C = sources(C) where C 
comes from (i), WC conclude that ICI > 13/2, as required. 

To prove (i), we first note that if C is a set of clauses such 
that any subset is l-sparse, then it is satisfiable. Indeed, the 
apareity condition is equivalent to the hypothesis of the Hall 
theorem on systems of distinct representatives and the con- 
clusion of the theorem is that there is a one-to-one mapping 
sending each clause C E C to a variable vc E C. We can thus 
ontisfy each clause C by appropriately fixing vc. 

sources(h) is an unsatisfiable set of clauses (since A is 
derived from it), so A(s) implies Isources( > s. Among’ 
clnuscs D E p with sources(D) > s choose a clause 0’ with 
]aources(D’)I minimum. Consider the two clauses Ct , Ca that 
hnve edges into D’; clearly (sources( 5 Isources( -f- 
Isources and hence one of Ct or C2 satisfies the require- 
mcnt of C in (i). 

To prove (ii), consider a subset of clauses C, and let B, N 
be the sets of boundary and nonboundary variables, respec- 
tively, Let k be the size of the largest clause in F. The sum of 
the sizes of all the clauses is at most k] Cl and is also at least 
lSl+2lNI=2]v(C)I-]BI,Hence]B]>2h~(C)]-klC].Since 
s/2 < ] Cl 4 s, property Be(s) implies Iv(C)] >, (k+ &)I C(/2, 
and hence ]Ol> rr/2, Cl 

5,2 The formula augmentation approach 

We now give a simple proof of a weakening of Theorem 8: 

Thcorcm 10: For each y > 0, there exists a constant 9 such 
that for all tn 2 n, if F N J?$ then with probability 1 -o(l), 
res( F) 2 2fi,ddd5+u, 

The approach closely resembles the random restriction 
appronch in [BP96], with one big difference: instead of ap- 
plying a random restriction to F, we augment F by adding 
random clauses. 

WC say that a clause C subsumes a clause D if C C D. 
Suppose that !/? is a proof of F and let FAG be an aug- 
mentation of F where G is a CNP formula. We can obtain 
a proof of F A G, which we call !P[G, as follows: For each 
clause D E !P, if there is a clause C in G such that C sub- 
sumes D, remove the part of the derivation that produced D 
and replnce D by C. Propagate this simplification through the 
root of the proof by (possibly) shortening clauses that were 
produced using D, 

Suppose now that F is a “suitably sparse” function that 
has a “small” proof rP. If we apply a random augmentation 
G from some suitable distribution G, then, because the proof 
la small, with high probability G will subsume all “large 
enough” clauses in !.? and hence pro will be a proof for 
FAG with no large clauses. If F A G is suitably sparse with 
high probability, then we obtain a contradiction by applying 
Proposition 9 to say that F A G has no such proof. This mo- 
tivatcs what follows. 

We say that 9 satisfies property g(b,M), for b,M > 0 if 
for any clause C of size at least b, the probability that G N G 
does not subsume C is at most l/M. We now formulate a 
criterion for ies(F) to be large: 

Proposition 11: Let F be a k-bounded formula. Let s,M > 
1 and E > 0, and let G be a distribution over CNF formulas 
that satisfies g(&r/2,M). Then res(F) > 
M x prC,si[F A G satisfies both A(s) and B,(s)]. 

Proof The conclusion follows immediately from the chain 
of inequalities: 

res(F)/M 
2 prGN&?r~ is not &s/2 bounded] 
1 Prc,.,g[F A G satisfies both A(s) and Be(s)]. 

The second inequality is immediate from Proposition 9. For 
the first inequality, if I is a proof of F of size res(F), it has 
at most res(F) clauses of size at least &r/2, and by property 
g(z3/2, M) the probability that G does not subsume all such 
clauses is at most res(F)/M. Cl 

For distributions over formulas we have: 

Theorem 12: Let F be a distribution over k-bounded for- 
mulas. Let s,M >_ 1 and E > 0 and suppose that g is a 
distribution over formulas that satisfies g(&r/2,M). Then 
PrF,+[res(F) < M/2] 

5 2(l?r~,.,~,,~+[F A G does not satisfy A(s) ] 
+ prFN~p+,s;[F A G does not satisfy BE(s)]). 

Proof For a formula F, let p(F) denote the sum of &[F A 
G does not satisfy A(s)] and Prc[F A G does not satisfy 
BE(s)]. By Proposition 11, res(F) > (1 - p(F))M. Thus 
Pr&es(F) <M/2] 5 P~&I(F) > l/2] <2&@(F)], where 
,?![+I denotes expectation. This last quantity is equal to the 
right hand side of the claimed inequality. Cl 

We apply this Theorem to the case Y = J$ by choosing 
fIj = JF. Note that FAG - yY&. We fist want to argue that 
FAG satisfies both A(s) and B,(s) almost certainly for some 
suitable s. 

Lemma 13: For any E with 0 < E < 1 there is a constant 
cE > 0 such that the following holds. Let F - E, where 
m > n. Ifs 5 c&/m)2/(‘-‘) then F satisfies both A(s) and 
BE(s) with probability 1 - o( 1) in s. 

This lemma is a special case of a lemma proved 
in [BP96]. (Note also that Lemma 16 below strengthens 
this.) Applying this lemma with m replaced by 2m we 
conclude that for any E > 0 and for some constant be > 0, 
if s 2 b,n(n/m) 2 /( ‘4 then F A G satisfies A(s) and k&(s) 
with probability 1 - o( 1). Next, we want to determine as 
large an M as possible so that G satisfies g(&r/2,M). For 
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a clause C of size at least &s/2, there are S(=p) clauses 
of size 3 that subsume C. If G N G, then the proba- 
bility that none of its m clauses subsume C is at most 
(1 - (U12)/(!$)m < 2-bcmr3/n3 for some constant b,. Sub- 
stituting s = bEn(n/m)2/(1-E), we have that, for sufficiently 
small & G satisfies g(&s/2,2de”t”~m)S+7E) for some constant 
de. Hence with probability 1 - o(l), res(F) 2 2”(“(“/@+9 
for any y > 0. 

An Open Problem The upper bound on s in the state- 
ment of Lemma 13, as we show in proving the more gen- 
eral Lemma 16 below, is needed for the analysis of property 
BE(s). For property A(s), s 5 cn2/m suffices. As far as we 
know, property BE(s) may also hold for some s = sZ(n2/m). 
Showing this would improve the bound in Theorem 8 to 
p-+3/4. 

5.3 The Deletion Argument 

In this subsection, we present another variant of the Beame- 
Pitassi approach, which leads to the bound stated in Theorem 
S. Their argument used restrictions instead of augmentation 
to remove large clauses. Given a resolution proof 4 and a 
restriction p, a resolution proof !P[,-, is obtained by replacing 
each clause C E T by C[, and then, removing any clause C[, 
that is set to 1, and contracting to edges all paths in the proof 
whose internal nodes have in-degree 1. It is easy to verify 
that if T is a resolution proof for F then fpr,, is a resolution 
proof for Frp. Observe that a restriction p corresponds natu- 
rally to an augmentation G with only unit clauses, and there 
is a close correspondence between the proofs !qG and 5?[p. 

If $ is a probability distribution over restrictions, we say 
that !R- has pruperty R(b,M) for b,M > 0 if for any clause C 
on X of size at least b, Pr[p does not satisfy C] 5 l/M. 

Theorem 14: Let !F be a distribution over k-bounded for- 
mulas. Let s, M 2 1 and E > 0 and suppose that TL is a 
distribution over restrictions that satisfies R(&s/2,M). Then 
PrF,&es(F) < M/2] 

< 2(PrF,.,F,,,-R[F [,, does not satisfy A(s) ] 

+ PrFwF,,p-R[F[p does not satisfy BE(s) I). 

While not stated explicitly in [BP!361 this theorem cap- 
tures the essence of their approach. We now sketch its ap- 
plication to lower bounding res(F) for F - 9$. Let !& de- 
note the distribution over restrictions where we first choose 
v(p) 2 X by selecting each variable independently with prob- 
ability t/n and then set the selected variables uniformly at 
random. Applying Theorem 14 involves two steps. The first 
step is a generalization of Lemma 13 which shows that A(s) 
and BE(s) also hold almost certainly for F[,, for F - z, 
p N !&, and t ,< fi(n/m)1/2+s. The second step is to de- 
termine as large an M as possible such that the distribution 
R.t satisfies R(&s/2,M), where s and t are the largest num- 
bers for which the previous lemma applies. Once this is 

done, Theorem 14 immediately implies that with probabil- 
ity 1 - o(l), res(F) 1 M/2. Now, for a fixed clause C and 
for p N !&, a variable x that is in C is fixed by p to snt- 
isfy C with probability t/2n so the probability that p doesn’t 
satisfy a given clause C is at most (1 - t/2rt)lcl 5 ~-l~l’/~~, 
Thus, 5& satisfies R(Es/~,~~‘/~“). Applying Theorem 14 
gives that for any y> 0, res(F) 1 2Rtn”2(n~m)5’2+y) with prob- 
ability 1 - c( 1) in n. 

A major bottleneck in the Beame-Pitassi argument is the 
upper bound on the size t of the restriction needed to es- 
tend Lemma 13. Indeed, fort much larger than n/,/Z, there 
is a substantial probability that A(s) fails for F rp. For ex- 
ample, an easy computation shows that the probability FrP 

has no empty clauses is e-0(mr3/n3) and since the presence 
of an empty clause in F[,, violates A(s), we have that t = 
o(n/m1/3). (Considering the effect of the unit clauses cre- 
ated by the restriction constrains t even further). 

To overcome this limitation, we want to avoid the cre- 
ation of clauses of size 0 or 1 in F [,-,. We do this by allowing 
our restriction distribution to depend on F. Thus for each 
formula F, we will specify a distribution R(F) over restric- 
tions, tailored to F so as to avoid the creation of clauses of 
size 0 or 1. This will complicate the argument because we 
lose independence both between !F and p and also within p. 
Before defining the restriction distributions, we give an easy 
generalization of Theorem 14 to handle this situation. 

Theorem 15: Let $r be a distribution over formulas. Sup- 
pose that for each formula F, K(F) is a distribution over 
restrictions and lets, M > 1 and E > 0. Then: 

PrF,g[res(F) <M/2] 

5 2 x (Pr~~~,pNR[F[p does not satisfy A(s) ] 

+ Pr~~~,,p-~[F[p does not satisfy &(s) I) 
+ PrF*g[!R(F) does not satisfy R(&s/2,M)] 

Instead of proving our lower bound with respect to the 
distribution Fz, we will prove it for the distribution T’(p) 
with p = m/S (3. As noted earlier, lower bounds on res(F) 
for the latter distribution imply essentially the same lower 
bounds for the former. 

We now define the restriction distributions. First, we as- 
sociate to a formula F a graph J?(F) on vertex set X with two 
variables joined by an edge if there is a clause of F that con- 
tains them both. We refer to the set of variables adjacent to 
x E X as the F-neighbors of x and the number of such vari- 
ables as the F-degree of x. Given a 3-CNP formula F on 11 
variables, and t, U E [O,n] we define the distribution KY(F) 
over random restrictions as follows: First, choose a rcstric- 
tion pbinom N Rt. Then, delete any assignment pb”if’nr makes 
to variables with more than U F-neighbors, obtaining a re- 
striction psma”. Finally, delete any assignment psnUdl makes 
to a variable that has any F-neighbor assigned a value by 
p-l’. Then p N R?(F) is the resulting restriction. 
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TO apply Theorem 15 we upper bound, as a function of 
11, 111, s, e, t, U, M, the three probabilities that occur on the 
right hand side, and choose s, t, U, A4 so that all three prob- 
abilities arc o( 1). The crux of the argument is contained in 
three main Icmmas, The first of these lemmas upper bounds 
the probability that FrP fails to satisfy A(s) and BE(S). 

Lcmmo 16: Let F N F’Q) and p N $,7(F). 
1. There is a constant Cc such that if s,t < C-&/m) ‘then, 

with probability 1 - o( 1) in s, F [a satisfies A(s). 

2, For any e with 0 < e < 1 there is a constant cE > 0 such 
that if s,t < c&~/rn)~/(r’~), with probability 1 - o( 1) 
as a function of s, F [a satisfies property BE(s). 

Next we upper bound the probability with respect to F 
that #(F) fails to satisfy R(rr/2,M), by showing that for 
most F, and for any clause C of size &r/2, if p N KY(F), 
then p satisfies C with high probability. This reduces easily 
to showing that Iv(p) tl v(C)1 is large as follows. Say that 
II distribution $ is fair if when conditioned on the set of 
variables assigned, it is uniform over the set of assignments 
lo those variables, Note that the distributions Ry(F) are fair. 
For any clause C, conditioned on Iv(C) nv(p)l 2 IV, a fairly 
distributed p fails to satisfy C with probability at most 2-w. 

Say that !#(F) satisfies R*(b,w) if for any B E X of 
size nt least b, and for p N Ry(F), the probability that p fixes 
fewer than IY variables of B is at most 2+‘. A fair distribution 
thnt satisfies R*(b,w) is easily seen to satisfy R(b,2W-1). 

So we will show that #(F) almost certainly satisfies 
R*(b, w) for some appropriate b, w. 

Uhg a simple analysis as in [BP96], one can show that 
!& has property X*(b, w), where w is Cbt/n for some con- 
stant C. We would like a similar result for LX.:(F), and to 
do this WC must show that not too many of the variables of 
B ftxcd by p~“r”“’ are unset in going to p. One crude way 
to do this is to show that with high probability at most w/2 
variables overall are unset, and this can be done by suitably 
constraining f. Completing this analysis leads to a bound 
matching the one obtained in section 5.2. 

To obtain the bound of Theorem 8 a subtler argument is 
necessary - one that takes advantage of the fact that for each 
D we only care about the way the deleted variable assign- 
ments occur in B. WC first give a rough sketch. Based on 
F nnd a fixed set B, we classify the variables of F-degree at 
most CJ as bnd or good, where a bad variable is one which, 
if assigned by pb’JJont, could cause many assigned variables 
inside B to be unset, The sets of bad and good variables are 
denoted Bu&(B) and Go&(B). We prove that a random 
F satisfies certain structural properties: not many variables 
have F-degree greater than I/ and for every B, not many vari- 
ables are in Bad&I). For fixed F satisfying these properties 
nnd any 13, we show that, with exponentially small failure 
probability, the number of variables of B tl Coo&(B) hav- 
ing no bad neighbors that are set by pbinom is at least IBj/4. 

Conditioning on this, we can show that, with exponentially 
small failure probability, a constant fraction of the variables 

.of B tl Coo&(B) that are set by pbiM” remain set in p. This 
is enough to conclude that R*(b,w) is satisfied. 

We now define the structural conditions on the formula 
F, and show that, for suitable values of the relevant param- 
eters, any formula F that satisfies these conditions satisfies 
R*(b,w). We need some definitions. We say that a variable 
is large if its F-degree is more than U and is small other- 
wise. For a subset B of variables we define a set of variables 
B&(B) to consist of all small variables x such that either 
(i) x #B and x has at least 2 F-neighbors in B, or 
(ii) x E B and x has at least 48 F-neighbors in B. 
Any small variable x not in B&(B) is in Goocl~(B). We 
introduce three parameterized properties that may hold for a 
formula F: 

Fl(b, U): There are at most b/4 large variables. 

F2(b): For all sets B of size b, B contains at most 
b/4 variables in B&(B). 

l3(b,C): For all sets B of size b, X \ B contains at 
most Cb variables in B&F(B). 

Lemma 17: For any constant C > 0 we can choose con- 
stants p,p > 0 so that the following holds. If 12, b, f, U are 
positive integers satisfying b,t < /3n/U and F is a formula 
satisfying Fl(b,U), F2(b) and J?3(b,C), then R:(F) satis- 
fies R*(b,pbf) and hence also R(b,2pb+‘). 

Lemma 18: Let M 1 n and F N P(p) where p = m/8(;). 

1. For some constant Cr > 0, if b < n/2 and U > 
Cl (m/n)log(n/b) then F satisfies Fl(b, U) with proba- 
bility at least 1 - o( 1) in b. 

2. If b < n(n/m)2/20, then F satisfies F2(b) with proba- 
bility 1 - Q( 1) in b. 

3. If a3 > 0, Cs(es) is sufficiently large and t&(e3) > 0 is 
sufficiently small, then for b < cqn(n/m)2+E3, F satis- 
fies M(b, C3) with probability 1 - o( 1) in b. 

We can put this all together to prove Theorem 8. Given 
y E (0, l), set e = y/2. Let n,m 2 0 be given, and set t = 
s = h,n(n/m)2sv2, where hE is suitably small (depending 
only on e). Set b = ES/~ and U = Cln/mlog(n/b) where 
Ct is suitably large. We apply Theorem 15 for F”(p) and re- 
striction distributions R:(F). By Lemma 16, the probability 
that FrP fails to satisfy A(s) and B,(S) is o( 1) as a function 
of s. For the given parameters, F satisfies Fl(b,U), E(b), 
F3(b, Ca) for some suitably large C3 with probability 1 - o( 1) 
by Lemma 18. By Lemma 17 KY(F) satisfies R*(b,pt/n) 
and hence R(b,2mln - 1) where p is a suitably small con- 
stant. Thus, for suitably small q and for M = 219qn(nlm)4+y, 
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all three terms on the right hand side of the inequality in The- 
orem 15 are o( 1). Theorem 8 follows. 

So it remains to prove the lemmas. Due to space con- 
siderations, we omit the proof of Lemma 18, noting that the 
proof is a generally straightforward exercise in combinatorial 
probability. 

Proof of Lemma 16 We may view our probability space 
as the set of pairs (F, pbimm) where F is chosen according 
to F”(p) and pbinom is chosen independent of F from R,; 
note that p is determined by (F, pbimm). We will condition 
on v(pbi”“) = Y for fixed Y s X, which does not bias the 
distribution of F. By standard Chemoff-Hoeffding bounds, 
Pr[lv(pbimm)I > Zt] = e -@@ which is o( 1) in n. Thus it suf- 
fices to show that for any fixed Y with IYI 2 2t, the probabil- 
ities over !Fn(p) that F rp fails to satisfy A(s) and Z&(s) with 
these parameters, conditioned on v(pbinum) = Y, is o( 1). 

For integers r, q, let Q(r, q) denote the probability (condi- 
tioned on v(pbjnom) = Y) that there exists a set S of r variables 
that contains at least q clauses of F rr,. Note that the proba- 
bility that A(s) does not hold for FrP is at most CL2 Q(r, r-k 
1) and the probability that B,(s) does not hold is at most 
I&,-Q Q(r, or> where 0 = 2/(3 + &). We will upper bound 
these probabilities by upper bounding Q(r,q). 

Let S C X with ISI = r. In order for a clause C of F to 
be contained in S after p is applied, it is necessary that either 
all of its variables are in S or two of its variables are in S and 
one is in Y and p sets that variable to the value that does not 
satisfy C. Let N denote the number of such cIauses; triviahy 
N < S(i) +41YI(i) 5 S(j) + St({). The distribution of the 
number of clauses that are contained in S is then given by the 
binomial distribution, B(N, p). The probability that at least q 
clauses of F are contained in S after p is applied is bounded 
above by: 

for some constant Ct > 0. Since the number of r element 
subsets of X is (:) < (en/r)‘, we conclude 

As noted above, the probability that A(s) does not hoId 
is at most cse2 Q(r, r-i- 1). For r < s we have: 

for constants Ca, C3 > 0, provided that s,t 5 C$Z~, for some 
appropriately chosen constant G > 0. Thus the probability 
that FrP does not satisfy A(s) is at most i XL2 r/2’ < 3/2n 
which is cIearIy o( 1). This proves part 1. 

To upper bound the probability that Fr,-, does not satisfy 
Z&(s), we first upper bound Q(r, or) for s/2 < r 5 s: 

= 

( 

(ne)Wlmr(t + r) a’ 
dun3 ) 

C4mr”‘lb(r + t) ar 
s n3-l/o < 2-O’ 

for appropriate constant C4, provided that 

C4mr1-1~u(rf t) 1 
n3-I/U s 5’ 

For Q = 2/(3 + E) this is satisfied if both s and t are at 
most cEn - (fi)2/(1-E), for some constant ce. Now the total 
failure probtbility for property BE(s) is at most c&z 2-c’ 
which is clearly o( 1) for non-constants and Part 2 is proved. 
cl 

Proof of Lemma 17 Fix F satisfying Fl (b, U),F2@) and 
F3(b,C) and fix B E X of size b. We need to show that for 
s0rneZ.f > 0, Pr[lB fl v(p)1 5 pnzbt/nJ 5 2-pbr/1a, 

Let S c X be the set of smaI1 variables, i.e. those hav- 
ing at most U F-neighbors. For the variables .Y E S, s E 
v(p”“““) independently with probability t 

I 
n and for s $ S, 

x $ v(p”*“). Also, given that x E v(psma I), s will be in p 
if and only if none its at most U F-neighbors is in psnml’. 
Thus if x E S, Pr[x E v(p)] 1 i( 1 - %) 1 &, where the last 
inequality requires p ,< l/2. 

ByFl(b,U), IBM] > 3b/4 soEI]v(p)nB]] 2 $$. If the 
events x E v(p) were independent for x E B tl S, or if B f7 S 
had a large (constant fraction) subset that was independent, 
we could use binomial tail bounds to reach the desired con- 
clusion. Now, for a subset I of S, it is easy to see that for 
x E I, the events x E v(p) will be independent if and only if 
no hvo variables of 2 are F-neighbors and no two variables 
in I share the same F-neighbor. In other words, I is an in- 
dependent set of vertices with respect to the graph P2(F), 
where two vertices are adjacent if they are within distance 
2 in T(F). In general, unfortunately, there will not exist a 
large enough subset of independent variabbles in B tl S. To 
overcome this problem, we will only consider variables in 
B tl Go&(B) (which is contained in B tl s> and condition 
on the choice of piyd$Bj, i.e., the projection of p s”dl on the 
variables of B&(B). 

Let J E B n Go&(B) be the set of variables in B n 
Good@?) that have no F-neighbor in ~(p~~~~~~), By 
definition, variables in .? do not share any F-neighbors in 
GO&F(B) \ B. Thus, conditioned on the choice of p$~$to), 
the only dependence forx,y E J, between the eventss E v(p) 
and y E v(p) occurs if x and y are F-neighbors or if they share 
a common F-neighbor in Bn Go&(B). Let P(F,B) denote 
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the graph induced by r(F) on Brl Go&(B). It follows that 
if I C J is an independent set in the graph (r)2(F,B), then 
the events x c v(p) for x E I are indeed independent random 
variables (with respect to this conditional distribution). We 
now make two claims: 
(i) The subgraph of (p)2 induced on the set J has maximum 
degree less than 2500, and 
(ii) Pr[(Jj < b/4] 5 2’1t/n, 

Assuming these claims, we finish the proof. The proba- 
bility that 1Bt-l v(p)1 <@t/n is at most 

P’p;yt$) [PI < WI 
+ p’p;$$@) P fl dP)l5 /wn I VI 2 WI 

The first probability is at most 2-btln by the second claim. 
To bound the second probability, fix J with IJI 2 b/4. The 
choice of p$$Fo is independent of J since it is indepen- 
dent of p$$$,, It is well known that a graph with v vertices 
and maximum degree A has an independent set I of size at 
Icaat v/(A+ 1) (e.g., construct I by a sequential greedy algo- 
rithm), So there is an independent I of (p)2 of size at least 
lr/lOOOO, Conditioned on IJI 2 b/4, the events x E v(p) for 
x E I is n set of mutually independent random variables with 
Pr[x E v(p)] 1 $p so the expectation of their sum is at least 
bt/Z!OOOOrt, Using binomial tail bounds, if p < l/80000, 
the conditional probability that lZnv(p)l < $bt/n is at most 
2-j’t’/“‘1. Thus Pr[lBfl v(p)1 5 @t/n] is at most 2-yb’l”-t + 
2”“1i1r 4 2-pbtfrr as required, 

It remains to prove the two claims. 

For the first claim, fix a variable x E Brl Goody; we 
bound the number of (p)2-neighbors of x in Bn Go&(B). 
By definition, there are at most 48 F-neighbors of x in 
B fl Goo&(B), and each has at most 47 F-neighbors in 
an Go&(B) other than x, giving an upper bound of 
(48)2 < 2500 on the number of (f”)2-neighbors of x inside 
B n Go&(B). 

For the second claim, note that IJI 1 IBnGoodP(B)I -N, 
where N is the total number of F-neighbors of v(p~!$l). 
Now Fl(b,II) and F2(b) imply that IEn Goo&(B)I 2 b- 
2’ b/4 = b/2, Since each variable in &d&3) has at most U 
F-neighbors, INI 5 U l Iv(p~$&$l. Thus IJI < b/4 implies 

that Iv(p~$$,)l> b/(411), so it suffices to upper bound the 
probability of the latter event. Now Iv(pi!$sl)l is a sum 
of independent Bernoulli random variables with probability 
t/n, By P2(b) and F3(b,C), IBudp(B)I 5 (C-I- l/4)& and so 
by binomial tail estimates we have 

Pr[lv(p$$,!col)I > b/(4U)] 5 (8e(C+ 1/4)Ur/n)bl(4Ul. 

Using t 2 ptt/U and assuming j3 is small enough (depending 
only on C), this is at most (Se(C+ l/4)p)b’/49” 5 2-bfln. 
This proves the claim and the lemma. Cl 
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