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Abstract

We obtain matching upper and lower bounds for the amount
of time to find the predecessor of a given element among the
elements of a fixed efficiently stored set. Our algorithms are
for the unit-cost word-level RAM with muitiplication and ex-
tend to give optimal dynamic algorithms. The lower bounds
are proved in a much stronger communication game model,
but they apply to the cell probe and RAM medels and to both
static and dynamic predecessor problems.

1 Introduction

Many problems in computer science involve storing a set S of
integers and performing queries on that set. The most basic
query is the membership query, which determines whether a
given integer x is in the set. A predecessor query returns the
predecessor pred{x,S) of x in S, that is, the largest element
of the set § that is less than x. If there is no predecessor
{which is the case when x is smaller than or equal to the
minimum element of 5, then a default value, for example, 0,
is returned.

Predecessor queries can be used to efficiently perform
range searches (1.e. find all elements of § between given
integers x and x'). They can also be used to obtain certain
information about arbitrary integers (for example, their rank
in S) that is only stored for the elements of S. Priority queues
can be implemented using data structures that support inser-
tion, deletion, and predecessor {(or, equivalently, successor)
queries.
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The static dictionary problem is to store a fixed set and
petform membership queries on it; the static predecessor
problem allows predecessor queries. If insertions and dele-
tions may also be performed on the set, we have the dynamic
dictionary problem and the dynamic predecessor problem,
respectively.

The complexities of searching (for example, performing
membership or predecessor queries) and sorting have been
long and well understood, under the assumption that ele-
ments are abstract objects which may only be compared. But
many efficient algorithms, including hashing, bucket sort,
and radix sort, perform word-level operations, such as indi-
rect addressing using the elements themselves or values de-
rived from them.

Often, such algorithms are applied only when the number
of bits to represent individual elements is very small in com-
parison with the number of elements in the set. Otherwise,
those algorithms consume huge amounts of space. For ex-
ample, van Emde Boas trees [25, 24] can be used to perform
predecessor queries on any set of integers from a universe of
size N in O(loglog N} time, but they require Q{N) space.

However, there have been important algorithmic break-
throughs showing that such techniques have more general
applicability. For example, with two level perfect hashing
[16], any n element set can be stored in O(n) space and
constant time membership queries can be performed. Fu-
sion trees fully exploit unit-cost word-level operations and
the fact that data elements need to fit in words of memory to
store static sets of size n in O(n) space and perform prede-
cessor queries in G(+/logr) time [18].

For the static predecessor problem, it has been widely
conjectured that the time complexities achieved by van Emde
Boas trees and fusion trees are optimal for any data structure
using a reasonable amount of space. We prove that this is
NOT the case. Specifically, we construct a new data struc-
ture that stores n element sets of integers from a universe of
size N in n?" space and performs predecessor queries in

0 (min {1oglogN/ logloglogN, /logn/ loglogn}) time.

Using recent generic transformations of Andersson and Tho-
rup [4, 6], the algorithm can be made dynamic and the space



improved to O{n).

We also obtain matching lower bounds, improving Mil-
tersen’s Q(+/ToglogN) and Q((logn)'/3) lower bounds in
the powerful communication game model [21, 22]. The
key to our improved lower bounds is to use a more compli-
cated input distribution. Unfortunately, this leads to a more
complicated analysis. However, the understanding we ob-
tained from identifying and working with a hard distribu-
tion in the communication game model directly led to the
development of our algorithm. This approach has also been
used to obtain an Q(loglogd/logloglogd} lower bound for
the approximate nearest neighbour problem over the universe

{0,134 (9.

2 Related Work

The simplest model in which the dicticnary and predecessor
problems have been considered is the comparison model in
which the only operations allowed that involve x are com-
parisons between x and elements of S. Using binary search,
predecessor and membership queries can be performed in
O(logn) time on a static set of size n stored in a sorted array.
Balanced binary trees (for example, Red-Black trees, AVL
trees, or 2-3 trees) can be used in this model to solve the dy-
namic dictionary and predecessor problems in O(log#) time.
A standard information theory argument proves that log, n
comparisons are needed in the worst case even for perform-
ing membership queries in a static set.

One can obtain faster algorithms when x or some func-
tion computed from x can be used for indirect addressing.
If S is a static set from a universe of size N, one can triv-
ially perform predecessor queries using N words of memory
in constant time: Simply store the answer to each possible
query x in a separate location. This works for more gen-
eral queries and if, as with membership queries, the number
of bits, k, needed to represent each answer is smaller than
the number of bits b in a memory word, the answers can be
packed b/k to a word, for a total of O(Nk/b) words. When
the only queries are membership queries, updates to the table
can also be performed in constant time.

If the universe size N is significantly less than 28, where
b is the number of bits in a word, then packed B-trees [i8,
3,7, 23] can be time and space efficient. Specifically, using
branching factor B < b/(1 + log, N), insertions, deletions,
and membership and predecessor queries can be performed
in O{logn/log B} steps using O(n/B) words.

The most interesting data structures are those that
work for an arbitrary universe whose elements can fit in
a single word of memory and use a number of words that
is polynomial in #, or ideally O{n). The static dictionary
problem has optimal constant-time data structures with
these properties: Constant time membership queries can be
obtained for any set of size n using an O(n?) word hash
table and a hash function randomly chosen from a suitable
universal family [8). Fredman, Komlds, and Szeméredi [16]
improved the space to O(n) using two level perfect hashing.
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Their original algorithm used multiplication and division of
logy N bit words to compute the hash functions. Recently it
was shown that hash functions of the form

h(x) = ax mod 2[1982¥1 gjy pfloga N1+

for r < [log, n], suffice for implementing the two level per-
fect hashing data structure [11, 13]. Notice that the eval-
uation of such functions does not depend on constant time
division instructions; a right shift suffices. These algorithms
can be made dynamic with the same constant time for mem-
bership queries and with constant expected amortized update
time [13, 14, 12], by rehashing when necessary (using ran-
domly chosen hash functions). For the static problem, Ra-
man [23] proves that it is possibie to choose such hash func-
tions deterministically in O(n*logN) time.

Although hashing provides an optimal solution to the
static dictionary problem, it is not directly applicable to the
predecessor problem. Another data structure, van Emde
Boas (or stratified) trees [23, 24], is useful for both static
and dynamic versions of the predecessor problem. These
trees support membership queries, predecessor queries, and
updates in O(loglogN) time. The set is stored in a binary
trie and binary search is performed on the log, N bits used
to represent individual elements. The major drawback is the
use of an extremely large amount of space: (N} words.

Willard’s x-fast trie data structure {26] uses the same ap-
proach, but reduces the space to O(nlogN) by using perfect
hashing to represent the nodes at each level of the trie. In y-
fast tries, the space is further reduced to Q(r) by only storing
O(n/logN)} approximately evenly spaced elements of the set
S in the x-fast trie. A binary search tree is used to represent
the subset of O(log ) elements of S lying between each pair
of consecutive elements in the trie. Both of Willard’s data
structures perform membership and predecessor queries in
worst-case O(loglog N} time, but use randomization (for re-
hashing) to achieve expected O(loglog N} update time.

Fusion trees, introduced by Fredman and Willard {18]
use packed B-trees with branching factor ®(logn) to store
approximately one out of every (log, n)* elements of the set
§. The effective universe size is reduced at each node of
the B-tree by using carefully selected bit positions to ob-
tain compressed keys representing the elements stored at
the node. As above, binary search trees are used to store
the roughly equal-sized sets of intermediate elements and
a total of O{n) space is used. Membership and prede-
cessor queries take O(logn/loglogn) time. Updates take
O(logn/loglogn) amortized time. (The fact that this bound
is amortized arises from the O((logn)*) time bound to up-
date a node in the B-tree.) This data structure forms the
basis of their ingenious O{nlogn/loglogn) sorting algo-
rithm. For n < (log, N){0821022/)/36 ' the time bounds for
fusion trees can be improved to O(y/logn) while retain-
ing O(n) space. This is done by using branching factor
©(2v1en) in the B-tree and storing 29VI°E") elements in
each of the binary sear¢h trees. For the remaining range,
n > (log, N)10821082M)/36 Willard’s y-fast tries have query



time and expected update time O{loglogN) = O(+/logn).
Andersson {3] uses similar ideas to construct another
data structure with O(y/Togn) time membership and prede-
cessor queries, expected O(+/Togn) update time, and O(n)
space. B-trees with branching factor O(b) can also be used
to obtain a static predecessor data structure with O(1 +
logn/logb) query time that can be constructed in O(n*) time
and space [4] and a dynamic predecessor data structure with
O(1 +logn/logb) query time and expected update time [23].

The methods used to make these algorithms dynamic de-
pend on the precise details of the underlying static data struc-
tures. Andersson’s exponential search trees [4] can be used
to transform any static data structure that performs member-
ship and predecessor queries in time 7'(r) into a linear space
dynamic data structare with query and amortized update time
T'(n), where T'(n) < T(n*%+1)y 1 O(T(n)), provided the
static data structure can be constructed in #* time and space,
for some constant £ > 1. Essentially, this is a recursive tree
with a root of degree ©(n!/(*+1)) that uses the static data
structure to implement the search at the root. Global and
partial rebuilding are used to update the data structure. Com-
bined with fusion trees, packed B-trees, and x-fast tries, ex-
ponential search trees can be used to obtain a solution to the
dynamic predecessor problem that uses worst case search
time and amortized update time Q(min{/logn,loglogn +
logn/logh})} and O(n) space. Very recently, Andersson and
Thorup {6] have combined a variant of exponential search
trees with eager partial rebuilding to improve the result-
ing dynamic data structure, achieving worst-case instead of
amortized bounds for update time.

One of the most natural and general models for proving
lower bounds for data structures problems, and one that is
ideally suited for representing word-leve!l operations, is the
cell-probe model, introduced by Yao [29]. In this model,
there is a memory consisting of cells, each of which is ca-
pable of storing some fixed number of bits. A cell-probe
algorithm is a decision tree with one memory cell accessed
at each node. The decision tree branches according to the
contents of the cell accessed. We only count the number of
memory cells accessed in the data structure; all computation
is free, This means that no restrictions are imposed on the
way data is represented or manipulated, except for the bound
on the size of values that each memory cell can hold. Thus,
lower bounds obtained in this model apply to all reasonable
models of computation and give us insight into why certain
problems are hard.

Ajtai, Fredman, and Komlos [1] showed that, if the word
length is sufficiently large (ie. n*!) bits), then any set of
size #n can be stored, using a trie, in O{(n} words so that pre-
decessor queries can be performed in constant time in the
cell probe model. On the other hand, Ajtai [2] proved that, if
the word length is sufficiently small (i.e. O(logn) bits), and
only n%(1) words of memory are used to represent any set
of n elements, then worst-case constant time for predecessor
queries is impossible.
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Miltersen [21] observed that a cell-probe algorithm can
be viewed as a two-party communication protocol [28] be-
tween a Querier who holds the input to a query and a Re-
sponder who holds the data structure. In each round of com-
munication, the Querier sends the name of a memory cell to
access and the Responder answers with the contents of that
memory cell. The communication game model is more gen-
eral, since the response at a given round can depend on the
entire history of the computation so far, In the cell probe
model, the response can depend only on which memory cell
is being probed, so different probes to the same memory cell
must always receive the same response. In fact, for many
problems, the cell probe complexity is significantly larger
than the communication complexity [20].

Miltersen [21] generalized Ajtai’s proof to obtain an
Q(/loglogN) lower bound on time in this model for the
problem of finding predecessors in a static set from a uni-
verse of size N. (Independent of our work, Xiao [27] has
also improved this lower bound.) In {22], it was shown that
for certain universe sizes, Ajtai’s proof and its generaliza-
tion in [21] also gives an Q((logn)!/>) lower bound on time.
Furthermore, Miltersen [21] provides a general technique for
translating time complexity lower bounds (under restrictions
on memory size) for static data structure problems into time
complexity lower bounds for dynamic data structure prob-
lems. In particular, he shows that the time to perform pre-
decessor queries is £(y/ToglogN) if the time to perform up-
dates is at most 20°8™'™ for some constant £ > 0.

Although the cell probe model is useful for proving the
most generally applicable data structure lower bounds, it
does not permit one to analyze the particular instructions
necessary for these algorithms.

Fich and Miltersen [15] have shown that, for the stan-
dard RAM model (which includes addition, multiplication,
conditional jumps, and indirect addressing instructions, but
not shifts, bitwise Boolean operations, or division), the com-
plexity of performing membership queries in a set of size n
stored using at most N/n®*(1) words (of unbounded size) re-
quires Q(logn) time. Thus, for this model, binary search is
optimal.

AC® RAMs allow conditional jumps and indirect ad-
dressing, as well as any finite set of ACY instructions (such
as addition and shifts, but not multiplication or division}.
In this medel, Andersson, Miltersen, Riis, and Thorup [5]
proved that the time complexity of membership querics
is ©(+/logn/loglogn). Their algorithm uses O{n) words
(of log, N bits each) and their Jower bound holds even if
20087 ords are allowed. It is intriguing that the some-
what unusual function describing the time complexity in this
case is the same as the one that we derive in a different con-
text.

3 An Optimal Algorithm

This section presents a new algorithm for the static predeces-
sor problem that matches the time complexity lower bounds



in section 4. The key contribution is a new technique that is a
multi-way variant of binary search. At each step, it either re-
duces the number of clements in the set under consideration
or the number of bits needed to represent individual elements
in this set. This technique was motivated by our lower bound
work — our first algorithm was for the restricted class of in-
puts used in our lower bound proof and these inputs provided
us with key intuition.

Let § denote a set of s < n strings of length u < log; n
over the alphabet [0,2* — 1] and let T denote the trie of
branching factor 2% and depth u representing this set. Each
node at depth & of T corresponds to the length & prefix of
some element of 5, so T contains at most #s + 1 nodes.

A node v in T is said to be heavy if the sub-trie rooted at
v has at least s/n'/* leaves. Any ancestor of a heavy node is
a heavy node. The root of T is always heavy. For 0 < d < u,
there are at most 2!/¥ heavy nodes at depth 4.

Lemma 1: If memory words contain b > 2(u — 1)? — 1]k
bits, then there is a data structure of size O(n?) that can be
constructed in time O(n’k) and, given a string x of length u
over the alphabet [0,2* — 1], can determine, in constant time,
the longest prefix of x that is a heavy node in T.

Proof Since T has at most n!/¥ heavy nodes at depth d, for
0 < d < u, there are hash functions h; : [0,2¢ — 1] — [0,2" —
1] of the form hy(z) = (ay x z) mod 2 div 2%, where r <
2(log, n)/u and ay € [0,2% — 1], such that h, is one-to-one
on the subset

{z€[0,2* — 1] | yzis a heavy node at depth d
for some heavy node y at depth d — 1}.

Each of these & — 1 hash functions can be constructed deter-
ministically in time O{n%/“k) [23]. Note that the function

yi-¥d = (h(n)s . ha(ya))

is one-to-one on the set of heavy nodes of T at depth d.

Given a string x = x;---x, of length 1 over the al-
phabet [0,2" — 1], in constant time, we can construct a
word containing the sequence of w — 1 hashed values,
Ri(xr}, ..o Ru—1{xg—1), in its (u — 1)r least significant bits,
using the following algorithm.

Here, a string of length / over the alphabet [0,2% — 1] is
represented by & — [k zero bits followed by the concatenation
of the k-bit binary representations of each of the ! letters.
The symbol {c} denotes an element of [0,2* — 1] and g; x x;
denotes the string of length 2 over this alphabet formed by
multiplying the values a; and x;.

e Shift x right k bit positions to obtain the string
Xy Xpg—1-

e Multiply x;---x, | by the string ({0)24=2({1})*~1 to
obtain the string ({0)*2x; - --x,— )+ 1.

o AND with the mask ({0)%~3(2% — 1)}*~! 1o obtain the
string x1 (0) 23 x2(0) 273 .. x, 2 (0324 3y, 4.
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» Multiply by the string a; (0}a2{0) - - - a,—2{0)a,_| to ob-
tain the string (@ X x1)--- (@u—; X x1){ay X x2)} -
v (au—l X xufz)(al X Iu—-l) e (au—l X -ru—l)-

AND with the mask ((0)24~3{(2" — 1)2¢="})*~1 to ob-
tain the string

(i (e )20 ko (25T (02

+ {2 (- 2) 25OV (et ()27,

Multiply by the bit string (0%¥~"=11)4~! and AND with
the mask 10+~ Dr@E-1=Dk=Ge—1) 1o obtain the bit
string A (x1) -+ Ay 1 (y_y JORE-1P—Dk= (-1

e Finally, shift right (2(« — 1)> — )k — (u — 1)r
bit positions to obtain the (u — 1)r bit string
hl(xl)"'hu—l(xu—l)-

This sequence of u — 1 hashed values can be used to index
an array that contains the name of the (unique) heavy node
¥1...y4 in T whose sequence of hashed values is the longest
prefix of the given sequence. More formally, consider the
u— 1 dimensional array V where V (j1, j2,...; ju—1) =¥1° Ya
if and only if y;---ys is a heavy node in T, h{y;) =
J1,--,ha(ya) = ja, and either d = u— 1 of ka1 (yas1) #
Jas1 for all heavy nodes y; ---ygyg41 in T. The array V has
length 27(*~1 < 2, Each entry of V is in [0,244~ 1 — 1], s0
O(n?) words suffice to store V. To find the heavy node at
greatest depth which is a prefix of x, it suffices to find the
longest common prefix of y; - - - y4 and x, which can be com-
puted in constant time.

The construction of the array V' can be done by first ex-
plicitly constructing the trie 7", which contains at most O{nu)
nodes. Depth first search can be used to determine which
nodes are heavy. The heavy nodes are inserted into the array
V., in order of increasing depth. p

Lemma 2: If memory words contain b > {2(z — 1)* — 1}k
bits, u¥ < n,s < n®" and k = u¢, for non-negative integers
a < u and c, then there is a static data structure for represent-
ing a set of s integers from the universe [1,2¥] that supports
predecessor queries in O(a + ¢) time, uses O{csn?) words,
and can be constructed in O(kcsn?) time.

Proof The proof is by induction on g and ¢. If a=0or
¢ = 0, then s < 2 and it suffices to store the elements in a
sorted table of size s. Therefore, assume that a,c > 0.

Consider any set S of s integers from [1,2*] and let T de-
note the trie of branching factor 2%/% and depth u represent-
ing it. For every node v in 7', let ming(v) denote the smallest
element of § with prefix v and maxs(v} denote the largest el-
ement of S with prefix v. The data structure consists of the
following parts:

» the data structure described in Lemma 1

o for each node v in T that either is heavy or has a heavy
parent:

- maxs(v}, mins(v), and pred{ming(v),5)



e for each heavy node v in T with at least two children:

— a perfect hash table containing the non-heavy
nodes that are children of v

— the data structure for the set
S, = {v €[0,2%% —1] | v-V' is a child of v}
of size at most s in a universe of size 2¥, where
K =kju<u!

o for each non-heavy node w in T with a heavy parent and
at least two leaves in its subtree:

- the data structure for the set
S, ={V €S| wis aprefix of v'}
of size at most s/n!/% < nl@=1}/% in the universe of
size 2%,

To find the predecessor of x € [0,2 — 1] in the set S, first
determine the longest prefix v of x that is a heavy node in T,
as described in Lemma 1. Suppose that v is at depth d.

If v has at most one child, then

__ [ pred(ming(v),§) if x < ming(v)
pred(x,$) = ming(v) if x > mins(v).

Now consider the case when v has at least two children.
Determine whether some child of v is a prefix of x, using
the hash table containing all of v’s non-heavy children. By
definition of v, if there is such a child, then it is not heavy.

If no child of v is a prefix of x, then

pred{ming(v),$ if x < ming(v
pred(x,S) = {maxs((v : pr(ea)'(xjﬂ,SL)) ifx > minggvg.
Find pred(xgsy1,5,) using the data structure for the set 5.
Note that v- pred{(x,.1,S,) is either a non-heavy child of the
heavy node v or is itself heavy, so the largest element of S in
the subtree rooted at this node is stored explicitly.

Now consider the case when some child w of v is a prefix
of x. If w has exactly one leaf in its subtree, then

[ pred(ming(w),5) if x < ming(w)
pred{x,5) = {mins(w) if x > ming(w).
Otherwise,

_ | pred(ming(w),5) if x < ming(w)
pred(x,S) = {pred(x, S if x > ming(w).

Find pred(x,S.,) using the data structure for the set S,

Next, we analyze the storage requirements of this data
structure. First consider the storage required at the top level
of the recursion. There are most un'/* < n?/* heavy nodes
at that top level and at most 5 < n non-heavy nodes that are
children of heavy nodes associated with the top level, since
the trie has at most s leaves. Except for the the data structure
from Lemma | and the hash table containing v’s non-heavy
children, which require O(n?) words, there is only a con-
stant amount of storage for each of these nodes. Thus the
total storage for the top level of the data structure is O(n?).
To bound the storage for the whole data structure we simply
multiply this cost by the number of sets §;, and ), that appear
at all levels of recursion.

Observe that any set ), (or S,) can be identified with a
partial sub-trie of the binary trie representing S that consists
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of a path from some node r in this trie to the node v and then
the full sub-trie for S below w to some fixed depth so that the
total depth of the partial sub-trie rooted at r is a power of «.
Also note that, given the node w and this power of u, the set
S/, is uniquely determined. This immediately gives a bound
of csk on the number of such sets since the binary trie for §
has at most sk internal nodes and there are only ¢ choices of
the power of u. However, consider two nodes v and w with
w below v on a path segment in the trie for § (a part where
no branching occurs) and fix the choice of a power of u at
which they are both candidates to have sub-data structures
associated with them. If v and w are in different sub-data
structures at this level of granularity then v has only one leaf
in its sub-data structure, so it does not have an associated set
S,. If v and w are in the same sub-data structure then they
correspond to the same set of leaves so at most one of them
will have an associated sub-data structure. (If v and w are
both heavy then v will only have one child and if w is non-
heavy then so is its parent because its parent is a descendant
of v.) Since the trie for § has s leaves, it has at most 2s such
segments; so, in total, there are at most 2s such nodes. This
gives a bound of 2¢s on the total number of sets that occur.
The construction cost analysis follows similarly.

Theorem 3: There is a static data structure for repre-
senting n integers from the universe [1,N] that takes

0 (min {log logN/logloglogN, \/logn/}oglogn})

for predecessor queries and can be constructed in O{n*)
time and space.

time

Proof It n < 2(log2 logs N)2/(log, log, loga ¥) ,
then (logan)/log, b < (logyn)/log;loga N <
V2logyn/loglogan < \/iiogz log, N/log,log; logs N. In
this case, we use Andersson’s static data structure [4] that
supports predecessor queries in O(1 +logn/logh) time and
can be constructed in O(n*) time and space.

Now assume that n > 22{log21082N)?/(logz loga 1022 ¥) Then
Viogan/logylogon > logylog, N/(v21og; log, log, N).
Let u = 2(log,log, N)/(log; log, logy N), so /n > u* >
log; N. The data structure in this case has two parts. The first
part consists of the top 1 +2{log, #] levels of Willard’s x-fast
trie [26]. This reduces the problem of finding the predeces-
sor in a set of size » from a universe of size N to finding the
predecessor in a set of size at most n from a universe of size
2k, where & = (log, N)/2! 21084l < (log, N)/2u? < w2
and [2(x — 1)? ~ 1]k < log,N < b. The data structure
of Lemma 2 is used for each resulting subproblem. The
total number of elements in all of these sets is at most
21+2lozaul y — O(u?n) and each set has size at most 7.

By Lemma 2, the data structures for the subproblems
use total space O(u’n®) = O(n*) and can be constructed
in time O(kn*1®) = O(n*). The truncated x-fast trie uses
space O(nlogN) = O(n?) and can be constructed in time
O(n*(logN)t) = 0(n*).

Combined with exponential search trees {4, 6], we get a
linear size, dynamic data structure,




Corollary 4: The dynamic predecessor problem for a
set of up to n integers from the universe [I,N] can be
solved on a RAM with O(n) words of log, N bits, in time

0 (min {loglognloglogN/log loglogN, \/logn/logIogn}).

4 Lower Bounds for the Predecessor Problem

Let the static {N,n) predecessor problem be the stalic pre-
decessor problem restricted to sets S C [1,N] of size n. For
technical reasons, we insist that, for such a data structure
the answer be determined solely by the sequence of memory
locations accessed and their contents. (This extra condition
can be established using O(n) additional memory cells and
at most one additional time step: Simply add a perfect hash
table for the set S and, when the value of the predecessor is
determined, access the appropriate location in the hash ta-
ble.}

Our results are more general than for the predecessor
problem. In fact, our lower bounds also hold for the rank and
even simpler problems, including prefix-parity (the lower or-
der bit of the rank). In the full version of the paper, we prove,
more generally, lower bounds for the prefix problem for any
strongly-indecisive regular language [21]. Here, we give the
argument for the predecessor problem since the details are
somewhat easier in this case. Our main technical theorem is
the following:

Theorem 5: There is a constant ¢ > 0 such that if (ckbt)* <
n < (ckbt)® and N > n'®)' then there is no ¢ round cell-
probe communication protocol for the static (N, n) predeces-
sor problem using n* memory cells of b > 8 bits each.

Before discussing the proof of this theorem, we derive its
two main corollaries.

Theorem 6: Any cell-probe data structure for the static pre-
decessor problem that stores any set § from a universe of size
N using |5]°1) memory cells of 2008M'™™" pits requires
query time Q(loglog N/ logloglog N} in the worst case.

Proof More precisely, we show that for any positive inte-
ger &, and any positive constant €, there exists a function
n(N) < N such that any cell-probe data structure for the static
(N,n(N)) predecessor problem using (n(N))* memory cells
of 200N ~¢ bitg requires time Q(loglog N/ logloglogN) per
query.

Fix k,e > 0 and choose the largest integer r such
that {logN)® > (ckt)® where ¢ is the constant from
Theorem 3. Clearty ¢'loglogN/logloglogh > ¢ >
c’loglogN/logloglogN for some constants ¢’,c” > 0 de-
pending only on £ and € (and the constant ¢). Lel & =
200eM)"™ and set n = (cbke)*. Then (ckt)' < (logN)¥* and

—g loghk (logN)r‘/‘
plek) < [(IogN)EZ‘“J (gt %] <N
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for N sufficiently large. Therefore, by Theorem 5, any cell-
probe data structure for the static {N,n) predecessor problem
requires time at least 7 + | using #* memory cells of 5 bits
cach.

Theorem 7: Any cell-probe data structure for the static pre-
decessor problem that stores any set § from a universe of
size N using |S|°) memory cells of (log N)?1) bits requires

query time Q(+/log|S|/loglog|S|} in the worst case.

Proof More precisely, we show that for any positive inte-
gers k. k, there is a function N(n) such that any celi-probe
data structure for the static (N(n),n) predecessor problem
using #¥ memory cells of (logN(n))* bits requires time
€(+/logn/loglogn) per query.

Fix & and &’ and consider the largest integer ¢ for which
n > (ckt)** " +4 (log n)*" where ¢ is the constant from The-
orem 5. Then t > ¢'\/logn/loglogn where ¢/ > 0 is a
constant depending only on & and &' (and the constant c).
Set N = nl®) and b = (logN)¥ = [(ckt) logn}¥. Clearly
n > (cbke)¥ and, by the choice of ¢, one can also check that
that n < (cbkt)*. Thus, by Theorem 5, any cell-probe data
structure for the static (¥,n) predecessor problem requires
time at least ¢ + 1 using #¥ memory cells of b bits each.

We now proceed to prove Theorem 5. Let Z(N,n) de-
note the set of all subsets of [I,N] of size n. We prove lower
bounds on the complexity of the static (N,n) predecessor
problem using an adversary argument. As discussed in the
introduction, Miltersen [21] observed that one can phrase
a static data structure algorithm in the cell-probe model in
terms of a communication protocol between between two
players: the Querier, who holds the input to a query, and
the Responder, who holds the data structure. Each probe that
the Querier makes to the data structure, a cell name, consists
of log, m bits of communication, where m is the number of
memory cells, and each response by the Responder, the con-
tents of that named cell, consists of exactly & bits of commu-
nication. The number of rounds of alternation of the players
is the time ¢ of the cell-probe communication protocol. The
technical condition that the sequence of locations and their
values determine the answer is equivalent to the condition
that the bits communicated alone determine the answer.

The lower bound, in the style of [19], works ‘top down’,
maintaining, for each player, a relatively large set of inputs
on which the communication is fixed. Unlike [19], we ac-
tually have non-uniform distributions on the Responder’s in-
puts, so our notion of ‘large’ is with respect to these distri-
butions. The distributions get simpler as the rounds of the
communication proceed.

If Z is a probability distribution on a set Z and B C Z,
we define uz{B) = Prz[B|. Let U{N,n) be the distribution
which chooses aset S C [1, N] of size n uniformly at random.
The following is the base case of our lower bound.

Lemma8: Let N>n >0, 0>0 and B > ™. Con-
sider any set of positions A C [1,N], with |4} > oN +1, and



any collection of subsets B C Z(N,n), with pgyn »)(B) = B.
Then there exist integers @,a’ € A and a set S € B such that
pred(a,S) # pred(d’,S).

Proof Observe that the only way that pred(a,$) is the same
forall @ € A is if there is no element j € § with min{A) < j <
max(A). Since this region contains at least o elements of
[1,N], this probability is at most (1 — ) < e~®" < B since
o> 0

We define a sequence of distributions on Z(N, n) and use
it to demonstrate that no cell-probe communication protocol
using n* memory cells of b bits can solve the static (N,n)
predecessor problem in f rounds. Given integers b, &, t, N,
and n we will define two sequences of integers N; and #; for
i=0,...,t — 1 with Np = N, and np = n. The general idea
of the lower bound argument is to find, after each round, a
portion of the Querier’s and Responder’s inputs on which the
cell-probe communication protocol has made little progress.
After i rounds, the possible values of the Querier’s input will
lie in an interval of length N; and, within this interval, the
Responder’s input § will have at most n; elements. Thus, the
Responder’s input can be viewed as an element of Z(N;, n;).

More precisely, let b, &, t, N, and » be positive integers
and define

o o=/

o =8kt

r=16bu/c
f=8rujo = 128hu% /o

No=N;ng=mrnand

fori=0,...,1 — 1, define Nipy = (N;/ £)1/" and mzy ) =
nif(ru).

We say that the tuple of parameters (b, k,,N,n) satisfies the
integrality condition if 1/ois an integer greater than 1 and,
for every integer | € [0,2], N; and n; are integers and N; > n;,

If 1 is the 4r-th power of an integer larger than 1, then
{/o is an integer greater than 1 and f and r are also in-
tegers. Since f > ru and & > 1, the condition Ny >
is sufficient to imply that N; > »; for i € |0,¢]. Further-
more, if N; and n; are both integers, then n; = (ru)*~'n, and
N; = @' =D/=DNE™ are integers for i € [0,1). In particu-
lar, the integrality condition will hold for {b,k,t,N,n} ifnis
the 4¢-th power of an integer larger than ! and there are inte-
gers Ny > n; such that n = (ru¥n, and N = f‘("'—l)/(“—l)]\lt“l.

Suppese that the integrality condition helds for
(b,k,t,N,n). Foreach i, i =t,...,0, we define a probability
distribution Z; on Z(N;, n;) inductively, beginning with Z,
which is the distribution TU{M,,n,). For every i < t, each set
in Z{N;,n;) can be thought of as marking the leaves of a tree
T; with depth u + 1, having fan-out f at the root and a com-
plete N;oy-ary tree of depth u at each child of the root. We
choose a random element of Z; as the set of marked leaves
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of the tree T;. which we choose using the distribution 2y,
as follows: First, choose r nodes uniformly from among all
the children of the root. For each successively deeper level,
excluding the leaves, choose r nodes uniformly among the
nodes at that [evel that are not descendants of nodes cho-
sen at higher levels, (Notice that, since the root of T; has
[ = ruchildren, it is always possible to choose enough nodes
with this property at each level.} Independently, for each of
these ru nodes, v, choose a set §, € Z(Niy1,n;41) accord-
ing to Ziy1. A leaf below v is marked if it is the rightmost
descendant of the j-th child of v for some j € §,.

Lemma 9: Suppose (b,k,t,N,n) satisfies the integrality
condition and b > 3. Let A C [1,N,] with |A| > o, and
B C Z(N;,n;) with pz,(B) > B = 2-2~!. Suppose there is a
¢ — i round cell-probe communication protocol, using m < n*
memory cells of b bits, that correctly computes pred{J,S)
forall j € A and § € B. Then there exist A’ C [1,Nj4q] with
|4’ = aNis1, B' C Z(Nigi,#ier) with gz, (B') > P and a
t — i — | round cell-probe communication protocol, using m
cells of b bits, that correctly computes pred(j’,8") for all
jeA and 8 c B

Proof We first sketch the argument. This argument isolates
a node v in T; with the property that we can fix one round
of communication in the original ¢ — { round cell-probe com-
munication protocol (o obtain a new ¢ — i — 1 round commu-
nication protocol that still works well in the subtree rooted at
V.

To find this node v, we first find a level of the tree T; from
which to choose v. A node is a good candidate for v if there is
some fixed communication ¢ by the Querier such that many
of its children (at least an o fraction) have descendants cor-
responding to inputs consistent with communication c. By a
lemma of Ajtai [2], we show that, no matter how the com-
munication of the Querier is determined, there is a level with
many nodes that are good candidates for v, In fact, there
are so many that there will be (b) such nodes among the r
nodes at that level involved in the definition of Z;.

By the bound on [3, for at least one of these Q(b) nodes,
call it v, the p-measure of the possible values for the portion
of the set S that lies below v is at least 1/2, Now we fix v, fix
the associated communication ¢ of the Querier, and its most
popular (with respect to the portion of the set § lying be-
low v) response ¢’ by the Responder. Since v was one of the
nodes chosen by distribution Z;, only the rightmost descen-
dants of its children are potentially marked, so the answer to
the predecessor problem does not depend on which of those
descendants below a given child of v is the input. Thus we
identify the portion of the set § below v with an element in
Z(Ni1,ni41), and the input below v with the position of its
ancestor among the children of v. 1t is not hard to see that we
can remap the answers in a simple deterministic way using
this reduction. We now follow through on this sketch, after
stating a couple of preliminaries.



Preliminaries

The following form of the Chernoff-Hoetfding bound fol-
lows easily from the presentation in [10].

Proposition 10: Fix H C U with |H| > p|U| and let SC U
with |§| = s be chosen uniformly at random. Then Pr[[H N
S| < ps/a] < (V2]e¥HPs < 27P5/2,

The next result is a small modification and rephrasing of
a combinatorial lemma that formed the basis of Ajtai’s lower
bound argument in {2].

Suppose we have a tree T of depth 4 such that all nodes
on the same level have the same number of children, For any
node v € T, let leaves(v) denote the set of leaves of T that
are descendants of v and, for v not the root of T, let parent(y)
denote the parent of v. Let A(1),...,A(m) be disjoint sets
of leaves of T and let A = | JI | A(c). The leaves in A(c)
are said to have colour ¢. A non-leaf node v has colpur ¢
if leaves(v) contains a node in A(c). Fore=1,...,m, let
A'(c) = {v | leaves(v) NA(c} # ¢} denote the set of nodes
with colour ¢. Note that the sets A’(1),...A’(m) are not nec-
essarily disjoint, since a non-leaf node may have more than
one colour.

A non-leaf node v is 8-dense (where 0 < 8 < 1) if there is
a colour ¢ such that at least a fraction 8 of v's children have
colour c.

Lemma 11: (Ajtaif2]} Let T be a tree of depth d > 2 such
that all nodes on the same level of T have the same number
of children. Suppose that at least a fraction o of all the leaves
in T are coloured (each with one of m colours). Then there
exists a level £, | < ¢ <d —1, such that the fracti(;n ?f nodes
on level £ of T that are 8-dense is at least %

Finding the node v

We examine the behaviour of the Querier during the first
round of the original cell-probe communication protocol to
find a set of candidates for the node v. For each value of
J € A, the Querier sends one of m messages indicating which
of the m memory cells it wishes to to probe. Colour the jth
leaf of T; with this message.

Since |A| = oN;, it follows from Ajtai’s Lemma that there
exists a level £ such that | < £ < u and the fraction of -
dense nodes in level £ of T; is at least (0t — mo) /u. By the
integrality condition, ot < 1 /2. Furthermore, u > 6 and m <
n* = o~* = o~ % Therefore

(oL— mo) fu 2 ol —ad ™1 fu > 30/ (4u).

We now argue that there is a sufficiently large set of candi-
dates for v among the o-dense nodes at level £ and a way
of marking the leaves of 7; that are not descendants of these
candidates so that the probability of choosing a set in B re-
mains sufficiently large.

Note that in the construction of Z; from Z;1, the r nodes
chosen on level £ are not uniformly chosen from among all
nodes on level £. The constraint that these nodes not be de-
scendants of any of the r(£— 1) nodes chosen at higher levels
skews this distribution somewhat and necessitates a slightly
more complicated argument.

Consider the different possible choices for the r(£— 1)
nodes atlevels 1,...,£— 1 of T; in the construction of Z; from
Zyy1. By simple averaging, there is some such choice with
#z(B) = B, where Z; is the probability distribution obtained
from Zy conditioned on the fact that this particular choice
occuired. Fix this choice.

Let R be the randorm variable denoting the set of » nodes
chosen at level £. Since the choice of nodes at higher levels
has been fixed, there are certain nodes at level £ that are no
longer eligible to be in R. Specifically, each of the r nodes
chosen at level i < £ eliminates its Nf;lh descendants at level
£ from consideration. In total, there are

-1

£—-h £—1
S N <2r-N
h=1

nodes eliminated from consideration at level £. There are
fo; 11 nodes at level £, so the fraction of nodes at level £
that are eliminated is less than 2r/f = o./{4u). Thus, of the
nodes at level £ that have not been eliminated, the subset D
of nodes which are ¢t-dense constitutes more than a fraction
3o/ (4u) — o/ (4u) = oo/ (2u).

We may view the random choice R of the r nodes at level
{ as being obtained by choosing r nodes randomly, without
replacement, from the set of nodes at level £ that were not
eliminated. Applying Proposition 10 with p = o/(2u) and
Rl =1,

PriDNR| < rou/(8u)] < 277%/(4) — 3=4,

Since b > 1, this probability is smaller than B/2. Let E be
the event that at least ot/ (8u) = 2b of the r elements of R
are oi-dense. Then p z:r(B) > B—PB/2=PB/2, where Z/' is the
probability distribution obtained from Z; conditioned on the
fact that eveni E occurred.

Assume that event E has occurred. Then |[DNR| > 2b.
Let V be the random variable denoting the first 26 nodes
chosen for R that are also in D. By simple averaging, there
is some choice for V' with pzw (B) > B/2, where Z{" is the
probability distribution obtained from Z' conditioned on the
fact that this particular choice for V occurred. Fix some such
choice.

Finally, consider the different possible choices W for the
portion of the set S that marks leaves which are not descen-
dants of nodes in V. By simple averaging, there is some
choice for W with pz- (B) > B/2, where Z{ is the probabil-
ity distribution obtained from Z;” conditioned on the fact that
this particular choice for W occurred. Fix some such choice.

By construction, the distribution Z; is isomorphic to a
cross-product of 25 independent distributions, Z;.1, one for
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each of the nodes in V. Specifically, for each v € V, the
selection of the set of children of v that have marked de-
scendants is made according to Z;y and only the rightmost
descendants of such children are marked. Forve V and §
chosen from Z7, let ,(S) denote the subset of [1,Ni] in-
dicating which children of v have marked descendants. In
other words, & € m,(5) if and only if the &’th child of v has
a marked descendant. Let B, = {m,(5) | S € B is consistent
with W}. Then

B/2 SFZ;‘ (B) < H]#&H (Bv)-
VvE

Hence, there is some v € V such that
Bz, (By) 2 (uz (B)) W1 > (B/2)!/% =2~ G+2/PR) > y o

since b = 2. Choose that node v.
Fixing a round of communication for each player

Since v is o-dense, there is some message ¢ that the Querier
may send in the first round such that |A’| /Ny > o, where

A" = {j' € [1,Niy1] | the j'-th child of v is coloured ¢};

i.e., there is some input j corresponding to a descendant of
the j'-th child of v on which the Querier sends message ¢ in
the first round. We fix the message sent by the Querier in the
first round to be c.

Fix a function 1 that maps sets ' € B, into sets S € B
such that 1, (1(S")) = §’. In other words, \(5’) witnesses the
fact that § € B,.

There are only 2? different messages the Responder can
now send, Therefore, there is some fixed message ¢’ for
which

Mz, (B) = 276 = B,

where B’ is the collection of sets §' € B, such that, in round
one, given the input 1(S} and the query ¢, the Responder
sends ¢’. We fix the message sent by the Responder in the
first round to be ¢’

Constructing the  —{ — 1 round protocol

Consider the following new ¢ — i — 1 round protocol: Given
inputs /' € A’ and §' € B', the Querier and the Responder
simulate the last # — i — 1 rounds of the original ¢ — i round
protocol, using inputs j € A and § = 1(5') € B, respectively,
where j is the index of some leaf in T; with colour ¢ that is a
descendant of the j'-th child of node v. Note that it doesn’t
matter which leaf of colour ¢ in the subtree rooted at the j'-th
child of v is chosen. This is because every jeaf in this subtree,
except the rightmost leaf, is not marked so pred(J,S) is the
same no matter which leaf in the subtree is indexed by j.

It follows from the definitions of A’ and B that, for inputs
j and S, the original protocol will send the fixed messages ¢
and ¢’ during round one. By construction, the new protocol
computes pred(j,$). If this value is not a descendant of v
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then this is interpreted as 0; otherwise, if it lies in the subtree
below the #'-th child of v the answer is interpreted as /.

We now combine Lemma 8 and Lemma 9 to prove The-

orem 5:
Proof of Theorem 5 Let ¢ = 64. Suppose that there is
a ¢ round cell-probe communication protocol for the static
(N,n) predecessor problem using m < »* memory cells of
b bits. Let n' = (ckbt)* < n and k' = 2k. Then #’ < n and
m < (n),

Let u = 8Kr, o = (w) V4, r = 16bujo, f =
1286u* /0%, No = N, n)y = 1’ and let Niyy = (Ni/f)* and
n, . =nlf/(ruyfori=0,...,0— L.

Note that £ = 128b x 64(k')t*(n')!/%* < n. One can now
easily check that since N > ni64)' Ny > n>n. Asnoted
above, N; > N/(f¥).

Therefore (b, k' z,N,n') satisfies the integrality condition
and the algorithm works correctly for all inputs j € A =[1,N]
and S € B=Z(N,n"). Since b > 2, Lemma 9 can be applied
f times to obtain A’ C [1,N,] with |4'| > aN,, B' C Z(N;,n))
with pz,(B") > B =271, and a 0 round cell-probe com-
munication protocol such that the protocol correctly com-
putes pred{f,S) for all j € A" and § € B’. This implies that
pred(}j,S) is the same forall j € A’ and S € B'.

Since o = (#)~V®) and ¢ > 1, e > (#')~1/2. Also,
n > (32bK't)* so
on’ nol+
(ru — (16bu2)

Vi Vb
[L6b(8K' Y2~ (32bk/}* ~

!
on,r

> b

since t > 1. Therefore, e~ < e~? < 27~ since b > 3, and
so by Lemma 8, there exist integers a,a’ € A’ andaset S € B’
such that pred{a,S) # pred{da’,S). This is a contradiction.
a One can translate the arguments of this section to the dy-
namic case, using a translation argument given by Miltersen
[21]. This requires work since the bound applies even with-
out the polynomial restriction on the size of the data struc-
ture. The basic idea of Miltersen’s translation is to observe
that dynamic algorithms that have small cost per query and
do not run for very long can access only a small number of
memory cells from a moderate size set of potential memory
cells. Using static dictionary techniques from [17], one can
obtain an efficient solution to the static problem by begin-
ning with the empty set and inserting elements one by one,
recording the changes made to the memory in the dictionary.
One then obtains:

Theorem 12: Any cell-probe data structure for the dynamic
predecessor problem on |1, N] for a set of size at most »# using
(log N}°(1) bits per memory cell and n%1) worst-case time

for insertions requires Q(+/logn/loglogn) worst-case query
time.

We can obtain a lower bound solely in terms of the uni-
verse size with an even larger allowed word size. We do not



state this version explicity but we siate its extension to amor-
tized costs provided the memory is not too large: 1f words
are b bits long then a bound of 29(6} on the number of mem-
ory cells is reasonable; it is the number of different celis that
can be accessed when performing indirect addressing.

Theorem 13: Any cell-probe data structure using 200)
memory cells of b = 2008 )= biits to solve the dynamic
predecessor problem on [1,N] using 2098M' ™" amortized
time per update, requires Q(loglogN/logloglogN) worst-
case time for queries.
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