
Optimal Bounds for the Predecessor Problem

Paul Beame*
Computer Science and Engineering

University of Washington

Seattle, WA, USA 981952350

beame@cs.washington.edu

Abstract

We obtain matching upper and lower bounds for the amount
of time to find the predecessor of a given element among the
elements of a fixed efficiently stored set. Our algorithms are
for the unit-cost word-level RAM with multiplication and ex-
tend to give optimal dynamic algorithms. The lower bounds
are proved in a much stronger communication game model,
but they apply to the cell probe and RAM models and to both
static and dynamic predecessor problems.

1 Introduction

Many problems in computer science involve storing a set S of
integers and performing queries on that set. The most basic
query is the membership query, which determines whether a
given integer x is in the set. A predecessor query returns the
predecessor pred(x,S) of x in S, that is, the largest element
of the set S that is less than x. If there is no predecessor
(which is the case when x is smaller than or equal to the
minimum element of S), then a default value, for example, 0,
is returned.

Predecessor queries can be used to efficiently perform
range searches (i.e. find all elements of S between given
integers x and x’), They can also be used to obtain certain
information about arbitrary integers (for example, their rank
in S) that is only stored for the elements of S. Priority queues
can be implemented using data structures that support inser-
tion, deletion, and predecessor (or, equivalently, successor)
queries.

‘Research supponed by the National Science Foundation under grants
CCR-9303017 and CCR-9800124

CopyTight ACM 1999 1.58113.067.8/99,05...$5.00

Faith E. Ficht
Department of Computer Science

University of Toronto

Toronto, Ontario, Canada M5S lA4

fich@cs.utoronto.ca

The static dictionary problem is to store a fixed set and
perform membership queries on it; the static predecessor
problem allows predecessor queries. If insertions and dele-
tions may also be performed on the set, we have the dynamic
dictionary problem and the dynamic predecessor problem,
respectively.

The complexities of searching (for example, performing
membership or predecessor queries) and sorting have been
long and well understood, under the assumption that ele-
ments are abstract objects which may only be compared. But
many efficient algorithms, including hashing, bucket sort,
and radix sort, perform word-level operations, such as indi-
rect addressing using the elements themselves or values de-
rived from them.

Often, such algorithms are applied only when the number
of bits to represent individual elements is very small in com-
parison with the number of elements in the set. Otherwise,
those algorithms consume huge amounts of space. For ex-
ample, van Emde Boas trees [25,24] can be used to perform
predecessor queries on any set of integers from a universe of
size N in O(loglogN) time, but they require R(N) space.

However, there have been important algorithmic break
throughs showing that such techniques have more general
applicability. For example, with two level perfect hashing
[16], any n element set can be stored in O(n) space and
constant time membership queries can be performed. Fu-
sion trees fully exploit unit-cost word-level operations and
the fact that data elements need to fit in words of memory to
store static sets of size n in O(n) space and perform prede-
cessor queries in O(e) time 1181.

For the static predecessor problem, it has been widely
conjectured that the time complexities achieved by van Emde
Boas vees and fusion trees are optimal for any data structure
using a reasonable amount of space. We prove that this is
NOT the case. Specifically, we construct a new data struc-
ture that stores n element sets of integers from a universe of
size N in n’(1) space and performs predecessor queries in

0 (min{loglogN/logloglogN, Jlogn/loglogn}) time.

Using recent generic transformations of Andersson and Tho-
rap [4,6], the algorithm can be made dynamic and the space

295

improved to O(n).
We also obtain matching lower bounds, improving Mil-

tersen’s n(m) and fi((logn)‘/‘) lower bounds in
the powerful communication game model [Zl, 221. The
key to our improved lower bounds is to use a more compli-
cqtted input distribution. Unfortunately, this leads to a more.
complicated analysis. However, the understanding we ob-
tained from identifying and working with a hard distribu-
tion in the communication game model directly led to the
davelopment of our algorithm. This approach has also been
used to obtain an Q(loglogd/logloglogd) lower bound for
the approximate nearest neighbour problem over the universe
0% 1Y [91.

2 Related Work

The simplest model in which the dictionary and predecessor
problems have been considered is the comparison model in
which the only operations allowed that involve x are com-
parisons between x and elements of S. Using binary search,
predecessor and membership queries can be performed in
O(logn) time on a static set of size II stored in a sorted array.
Balanced binary trees (for example, Red-Black trees, AVL
trees, or 2-3 trees) can be used in this model to solve the dy-
namic dictionary and predecessor problems in O(logn) time.
A standard information theory argument proves that logzn
comparisons are needed in the worst case even for perform
ing membership queries in a static set.

One can obtain faster algorithms when x or some func-
tion computed from x can be used for indirect addressing.
If S is a static set from a universe of size N, one can triv-
ially perform predecessor queries using N words of memory
in constant time: Simply store the answer to each possible
qyery x in a separate location. This works for more gen-
eral queries and if, as with membership queries, the number
of bits, k, needed to represent each answer is smaller than
the number of bits b in a memory word, the answers can be
packed b/k to a word, for a total of O(Nk/b) words. When
the only queries are. membership queries, updates to the table
can also be performed in constant time.

If the universe size N is significantly less than 2’, where
b is the number of bits in a word, then packed B-trees [18,
3,7,23] can be time and space efficient. Specifically, using
branching factor B < b/(1 + log,N), insertions, deletions,
and membership and predecessor queries can be performed
in O(logn/logB) steps using O(n/B) words.

The most interesting data structures are those that
work for an arbitrary universe whose elements can fit in
a single word of memory and use a number of words that
is polynomial in n, or ideally O(n). The static dictionary
problem has optimal constant-time data structures with
these properties: Constant time membership queries can be
obtained for any set of size n using an O(n’) word hash
table and a hash function randomly chosen from a suitable
universal family [S]. Fredman, Komlbs, and Szemtredi [161
improved the space to O(n) using two level perfect hashing.

Their original algorithm used multiplication and division of
log2N bit words to compute the hash functions. Recently it
was shown that hash functions of the form

for i- 5 [log2 n1 , suffice for implementing the two level per-
fect hashing data structure [11, 131. Notice that the eval-
uation of such functions does not depend on constant time
division instructions; a right shift suffices. These algorithms
can be made dynamic with the same constant time for mem-
bership queries and with constant expected amortized update
time [13, 14, 121, by rehashing when necessary (using ran-
domly chosen hash functions). For the static problem, Ra-
man [23] proves that it is possible to choose such hash func-
tions deterministically in O(n’logN) time.

Although hashing provides an optimal solution to the
static dictionary problem, it is not directly applicable to the
predecessor problem. Another data structure, van Emde
Boas (or stratified) trees [25, 241, is useful for both static
and dynamic versions of the predecessor problem. These
trees support membership queries, predecessor queries, and
updates in O(loglogN) time. The set is stored in a binary
trie and binary search is performed on the log*N bits used
to represent individual elements. The major drawback is the
use of an extremely large amount of space: R(N) words.

Willard’s x-fast trie data structure [26] uses the same ap-
proach, but reduces the space to O(nlogN) by using perfect
hashing to represent the nodes at each level of the trie. In y-
fast tries, the space is further reduced to O(n) by only storing
Q(n/logN) approximately evenly spaced elements of the set
Sin the x-fast trie. A binary search tree is used to represent
the subset of O(logN) elements of S lying between each pair
of consecutive elements in the trie. Both of Willard’s data
structores perform membership and predecessor queries in
worst-case O(loglogN) time, but use randomization (for re-
hashing) to achieve expected O(loglogN) update time.

Fusion trees, introduced by Fredman and Willard [181
use packed B-trees with branching factor O(logn) to store
approximately one out of every (logzn)4 elements of the set
S. The effective universe size is reduced at each node of
the B-tree by using carefully selected bit positions to ob-
tain compressed keys representing the elements stored at
the node. As above. binary search trees are. used to store
the roughly equal-sized sets of intermediate elements and
a total of O(n) space is used. Membership and prede-
cessor queries take O(logn/loglogn) time. Updates take
O(logn/loglogn) amortized time. (The fact that this bound
is amortized arises from the O((logn)4) time bound to up-
date a node in the B-tree.) This data structore forms the
basis of their ingenious O(nlogn/loglogn) sorting algo-
rithm. For n 5 (logzN)(‘o~2’og2N)/36, the time bounds for
fusion trees can be improved to O(e) while retain-
ing O(n) space. This is done by using branching factor
O(2G) in the B-tree and storing 2’(- elements in
each of the binary se@h trees. For the remaining range,
n > (log,N)(‘0~~‘0g2N)/36, Willard’s y-fast tries have query

296

time and expected update time O(loglogN) = O(m).

Andersson [3] uses similar ideas to construct another
data structure with O(a) time membership and prede-
cessor queries, expected O(m) update time, and O(n)
space. B-trees with branching factor O(b) can also be used
to obtain a static predecessor data structure with 0(1 +
Iogn/log b) query time that can be constructed in O(n4) time
and space [4] and a dynamic predecessor data structure with
O(I+ log n/ log b) query time and expected update time [23].

The methods used to make these algorithms dynamic de-
pend on the precise details of the underlying static data struc-
tures. Andersson’s exponential search trees [4] can be used
to transform any static data structure that performs member-
ship and predecessor queries in time T(n) into a linear space
dynamic data structure with query and amortized update time
T’(n), where T’(n) 2 T(n’l(‘+‘)) + O(T(n)), provided the
static data structure can be constructed in nk time and space,
for some constant k 2 I. Essentially, this is a recursive tree
with a root of degree O(n’/(k+‘l) that uses the static data
structure to implement the search at the root. Global and
partial rebuilding ax used to update the data structure. Com-
bined with fusion trees, packed B-trees, and x-fast tries, ex-
ponential search trees can be used to obtain a solution to the
dynamic predecessor problem that uses worst case search
time and amortized update time O(min{~,loglogn +
logn/logb}) and O(n) space. Very recently, Andersson and
Thorup (61 have combined a variant of exponential search
trees with eager partial rebuilding to improve the result-
ing dynamic data structure, achieving worst-case instead of
amortized bounds for update time.

One of the most natural and general models for proving
lower bounds for data structures problems, and one that is
ideally suited for representing word-level operations, is the
cell-pmbe model, introduced by Yao [29]. In this model,
there is B memory consisting of cells, each of which is ca-
pable of storing some fixed number of bits. A cell-probe
algorithm is a decision tree with one memory cell accessed
at each node. The decision tree branches according to the
contents of the cell accessed. We only count the number of
memory cells accessed in the data structure; all computation
is free. This means that no restrictions are imposed on the
way data is represented or manipulated, except for the bound
on tbe size of values that each memory cell can hold. Thus,
lower bounds obtained in this model apply to all reasonable
models of computation and give us insight into why certain
problems arc hard.

Ajtai, Fredman, and Komlos [I] showed that, if the word
length is sufficiently large (i.e. n*(t) bits), then any set of
size n can be stored, using a trie, in O(n) words so that pre-
decessor queries can be performed in constant time in the
cell probe model. On the other hand. Ajtai 121 proved that, if
the word length is sufficiently small (i.e. O(logn) bits), and
only no(‘) words of memory are used to represent any set
of n elements, then worst-case constant time for predecessor
queries is impossible.

Miltersen [Zl] observed that a cell-probe algorithm can
be viewed as a two-party communication protocol [28] be-
tween a Querier who holds the input to a query and a Re-
sponder who holds the data structure. In each round of com-
munication, the Querier sends the name of a memory cell to
access and the Responder answers with the contents of that
memory cell. The communication game model is more. gen-
eral, since the response at a given round can depend on the
entire history of the computation so far. In the cell probe
model, the response can depend only on which memory cell
is being probed, so different probes to the same memory cell
must always receive the same response. In fact, for many
problems, the cell probe complexity is significantly larger
than the communication complexity [20].

Miltersen 1211 generalized Ajtai’s proof to obtain an
n(m) lower bound on time in this model for the
problem of finding predecessors in a static set from a uni-
verse of size N. (Independent of our work, Xiao 1271 has
also improved this lower bound.) In [22], it was shown that
for certain universe sizes, Ajtai’s proof and its generaliza-
tion in [2l] also gives an 0((logn)‘/3) lower bound on time.
Furthermore, Miltersen [2 I] provides a general technique for
translating time complexity lower bounds (under restrictions
on memory size) for static data structure problems into time
complexity lower bounds for dynamic data structure prob-
lems. In particular, he shows that the time to perform pre-
decessor queries is a(m) if the time to perform up-
dates is at most 2(“gN)‘-’ for some constant E > 0.

Although the cell probe model is useful for proving the
most generally applicable data structure. lower bounds, it
does not permit one to analyze the particular instructions
necessary for these algorithms.

Fich and Miltersen [151 have shown that, for the stan-
dard RAM model (which includes addition, multiplication,
conditional jumps, and indirect addressing instructions, but
not shifts, bitwise Boolean operations, or division), the com-
plexity of performing membership queries in a set of size n
stored using at most N/n*(l) words (of unbounded size) re-
quires R(logn) time. Thus, for this model, binary search is
optimal.

AC0 RAMS allow conditional jumps and indirect ad-
dressing, as well as any finite set of AC’ instructions (such
as addition and shifts, but not multiplication or division).
In this model. Andersson, Miltersen, Riis, and Tborup [5]
proved that the time complexity of membership queries
is O(logn/loglogn). Their algorithm uses O(n) words
(of log,N bits each) and their lower bound holds even if
2(lop”)~~‘~ words are allowed. It is intriguing that the some-
what unusual function describing the time complexity in this
case is the same as the one that we derive in a different con-
text.

3 An Optimal Algorithm

This section presents a new algorithm for the static predeces-
sor problem that matches the time complexity lower bounds

297

in section 4. The key contribution is a new technique that is a
multi-way variant of binary search. At each step, it either re-
duces the number of elements in the set under consideration
or the number of bits needed to represent individual elements
in this set. This technique was motivated by our lower bound
work - our first algorithm was for the restricted class of in-
puts used in our lower bound proof and these inputs provided
us with key intuition.

Let S denote a set of s 5 n strings of length u 5 logzn
over the alphabet [0,2’ - I] and let T denote the trie of
branching factor 2’ and depth u representing this set. Each
node at depth d of T corresponds to the length d prefix of
some element of S, so T contains at most us + 1 nodes.

A node Y in T is said to be heavy if the sub&e rooted at
Y has at least s/r~‘/~ leaves. Any ancestor of a heavy node is
a heavy node. The root of T is always heavy. For 0 < d < u,
there are at most I#’ heavy nodes at depth d.

Lemma 1: If memory words contain b 2 [2(u - 1)2 - l]k
bits, then there is a data structure of size O(n’) that can be
constructed in time O(n’k) and, given a string x of length u
over the alphabet [0,2’- 11, can determine, in constant time,
the longest prefix of x that is a heavy node in T.

Proof Since T has at most n’/’ heavy nodes at depth d, for
0 < d < u, there are hash functions hd : [0,2k - I] + [0,2’-
l] of the form h&) = (ad x z) mod 2” div 2’-‘, where r <
2(log2n)/u and ad E [0,2’- I], such that hd is one-to-one
on the subset

{z E [0,2’- I] 1 yz is a heavy node at depth d

for some heavy node y at depth d - 1).

Each of these u - 1 hash functions can be constructed deter-
ministically in time O(n2/uk) [23]. Note that the function

is one-to-one on the set of heavy nodes of T at depth d.
Given a string x = XI.. .x, of length u over the al-

phabet [0,2k - I], in constant time, we can construct a
word containing the sequence of u - I hashed values,
hf (xl), , h,-1 (xu-t), in its (u - l)r least significant bits,
using the following algorithm.

Here, a string of length I over the alphabet [0,2’ - I] is
represented by b - lk zero bits followed by the concatenation
of the k-bit binary representations of each of the 1 letters.
Tbe symbol (c) denotes an element of [0,2’ - I] and ni x Xj
denotes the string of length 2 over this alphabet formed by
multiplying the values ai and xl.

. Shift x right k bit positions to obtain the string
x, “‘X,-*.

. Multiply x1 .xuml by the string ((O)‘(‘-‘I(I))“-’ to
obtain the string ((0)“-*xl.. .x~~,)~-‘.

. AND with the mask ((0)2”-3(2k - I))“-’ to obtain the
string xt (0)zu-3x~(O)2u~3.. .x,~~(O)*~-~.X,~~.

l Multiply by the string al (O)az(O) .a,-z(0)n,-l to ob-
tain the string (at x XI). (a,-, x ~,)(a, x x*).
,,.(a”-1 x.x.-Z)(Ul xxu-l)...(a.u-~ X&l).

l AND with the mask ((0)*um3((2r- l)2k-r))u-*, to ob-
tain the string
(h~(x,)2’-‘)(0)2U-‘(h~(~~)2k-‘)(0)2u-’...
~~~(hu-2(~u-~)2~-~)(0)**-‘(h~_,(~~-,)2~-~). 

l Multiply by the bit string (OzL*-‘-’ I)“-’ and AND with 
the mask I(U-‘)rO(‘(U--I)*-‘)‘-(U--L)’ to obtain the bit 
string hl(xt) . ..h._,(x,_,)0(2(U~‘)2-‘)‘-(U-‘)r. 

l Finally, shift right (2(u - 1)2 - 1)k - (u - 1)r 
bit positions to obtain the (u - 1)r bit string 
hth)...hu-1(x,-1). 

This sequence of u - I bashed values can be used to index 
an array that contains the name of the (unique) heavy node 
yt .yd in T whose sequence of hashed values is the longest 
prefix of the given sequence. More formally, consider the 
~-1dimensionalarrayVwhereV(jl,j2,...,j,-t)=yt...yd 
if and only if yt . ..yd is a heavy node in T, hl(yl) = 
jl,...,hd(yd) = jd, and either d = u- 1 or hd+t(yd+l) # 
jd+l for all heavy nodes y, .ydyd+t in T. The array V has 
length 2’(“-‘1 < n2, Each entry of V is in [0,2k(ym’) - I], so 
O(n’) words suffice to store V. To find the heavy node at 
greatest depth which is a prefix of x, it suffices to find the 
longest common prefix of yt .yd and x, which can be com- 
puted in constant time. 

The construction of the array V can be done by first ex- 
plicitly constructing the trie T, which contains at most O(nu) 
nodes. Depth first search can be used to determine which 
nodes are heavy. The heavy nodes are inserted into the array 
V. in order of increasing depth. 0 

Lemma 2: If memory words contain b 2 [2(u - I)* - ljk 
bits, u” 5 n, s < I&‘, and k = 8, for non-negative integers 
a 5 u and c, then there is a static data structure for represent- 
ing a set of s integers from the universe [ 1, 2k] that supports 
predecessor queries in O(a + c) time, uses O(csnz) words, 
and can be constructed in O(kcsr?) time. 

Proof Tbe proof is by induction on a and c. If a = 0 or 
c = 0, then s 5 2 and it suffices to store the elements in a 
sorted table of size s. Therefore, assume that a, c > 0. 

Consider any set S of s integers from [ 1,2”] and let T de- 
note the trie of branching factor 2’1’ and depth u represent- 
ing it. For every node v in T, let minx(v) denote the smallest 
element of S with prefix Y and maxs(v) denote the largest el- 
ement of S with prefix Y. Tbe data structure consists of the 
following pats: 

. the data structure described in Lemma 1 

. for each node Y in T that either is heavy or has a heavy 
parent: 

- maxs(v), m&(v), and pred(mins(v),S) 

298 



l for each heavy node v in T with at least two children: 

- a perfect hash table containing the non-heavy 
nodes that are children of Y 

- the data structure for the set 
Sk = {v’ E [0,2klu - I] 1 Y. Y’ is a child of v} 
of size at most s in a universe of size 2ti, where 
k’ = k/u 5 C-l 

l for each non-heavy node w in T with a heavy parent and 
at least two leaves in its subtree: 

- the data structure for the set 
Si = {Y’ E S 1 w is a prefix of v’} 
of size at most sfn’l” 5 n(U-‘l/U in the universe of 
size 2’. 

To find the predecessor of x E [0,2’ - I] in the set S, first 
determine the longest prefix Y of x that is a heavy node in T, 
as described in Lemma I. Suppose that Y is at depth d. 

If Y has at most one child, then pred(x> S) = pred(mins(v),S) ifx < m&(v) mins(v) if x > m&(v) 
Now c&da thd case when Y has at least.two children. 

Determine whether some child of Y is a prefix of x, using 
the hash table containing all of v’s non-heavy children. By 
definition of v. if there is such a child, then it is not heavy. 

If no child of v is a prefix of x, then 

pred(x, S) = 
pred(mins(v),S) if x 5 mins(v) 
maxs(v. pred(xd+l,SL)) ifx > mins(v) 

Find pred(xd;l,SL) using the data &cture for the set Sh. 
Note that Y pred(xd+l , SL) is either a non-heavy child of the 
heavy node v or is itself heavy, so the largest element of S in 
the subtree rooted at this node is stored explicitly. 

Now consider the case when some child w of Y is a prefix 
of x. If w has exactly one leaf in its subtree, then 

p40’) = 
pred(mins(w),S) if x 5 m&(w) 
mins(w) if x > mins(w) 

Otherwise. 

m4xJ) = 
pred(mins(w),S) if x 5 mins(w) 
pred(x s, ) 1 “, if x > m&(w) 

Find pred(x,?i) us& the data structure for the skt S:. 
Next, we analyze the storage requirements of this data 

structure. First consider the storage required at the top level 
of the recursion. There are most un’l” 5 n2/’ heavy nodes 
at that top level and at most s < n non-heavy nodes that are 
children of heavy nodes associated with the top level, since 
the trie has at most s leaves. Except for the the data structure 
from Lemma I and the hash table containing v’s non-heavy 
children, which require O(n’) words, there is only a con- 
stant amount of storage for each of these nodes. Thus the 
total storage for the top level of the data structure is O(n*). 
To bound the storage for the whole data structure we simply 
multiply this cost by the number of sets SL and 5’: that appear 
at all levels of recursion. 

Observe that any set SL (or S’J can be identified with a 
partial sub-trie of the binary uie representing S that consists 

of a path from some node r in this trie to the node Y and then 
the full sub-& for S below w to some fixed depth so that the 
total depth of the partial sub-trie rooted at r is a power of u. 
Also note that, given the node w and this power of u. the set 
Sk is uniquely determined. This immediately gives a bound 
of csk on the number of such sets since the binary trie for S 
has at most sk internal nodes and there are only c choices of 
the power of u. However, consider two nodes Y and w with 
w below Y on a path segment in the trie for S (a part where 
no branching occurs) and fix the choice of a power of u at 
which they are both candidates to have sub-data structures 
associated with them. If Y and w are in different sub-data 
structures at this level of granularity then v has only one leaf 
in its sub-data structure, so it does not have an associated set 
SL. If v and w are in the same sub-data structure then they 
correspond to the same set of leaves so at most one of them 
will have an associated sub-data structure. (If v and w are 
both heavy then Y will only have one child and if w is non- 
heavy then so is its parent because its parent is a descendant 
of v.) Since the trie for S has s leaves, it has at most 2s such 
segments; so, in total, there are at most 2s such nodes. This 
gives a bound of 2cs on the total number of sets that occur. 

The construction cost analysis follows similarly. 0 

Theorem3: There is a static data structure for rcpre- 
sating n integers from the universe [l,N] that takes 

0 (min{loglogN/logloglogN, &gn/loglogn}) time 

for predecessor queries and can be constructed in O(n4) 
time and space. 

Proof < 2(LOg*loglN)~/(log*lag210glN) 

then (log, n:f/ logznb 5 (log~n)/logzlogzN <’ 
,/210g,n/log210g2n < JilogzlogzN/logzlog,log2N. In 
this case, we use Andersson’s static data structure [4] that 
supports predecessor queries in O(1 + lognllogb) time and 
can be constructed in O(n4) time and space. 

Now =ss”,,,~ ,,,at n 2 22(1092log2N)‘/(log2loglloglN), Then 

~og2n/log210g2n 2 log,log,N/(v’%og,log~log,N). 
Let u = 2(log210g2N)/(log,logzlog,N), so J;; 2 u” 2 
log2N. The data structure in this case has two parts. The first 
part consists of the top It 2 [log, ul levels of Willard’s x-fast 
trie 1261. This reduces the problem of finding the predeces- 
sor in a set of size n from a universe of size N to finding the 
predecessor in a set of size at most n from a universe of size 
2’, where k = (log,N)/2’+2~‘0@’ < (log2N)/2u2 < u’-’ 
and [2(u - l)z - Ilk < log,N 5 b. The data structure 
of Lemma 2 is used for each resulting subproblem. The 
total number of elements in all of these sets is at most 
2’+2r’0g2uln = O(u*n) and each set has size at most n. 

By Lemma 2, the data structures for the subproblems 
use total space O(u3n3) = O(n4) and can be constructed 
in time O(kn3u3) = O(&). The truncated x-fast trie uses 
space O(nlogN) = O(n’) and can be constructed in time 
O(nZ(logN)2) = O(n4). 0 

Combined with exponential search trees [4,61, we get a 
linear size, dynamic data structure. 



Corollary4: The dynamic predecessor problem for a 
set of up to n integers from the universe [I,N] can be 
solved on a RAM with O(n) words of log, N bits, in time 

0 min loglognloglogN/logloglogN, ( { ~ ’ $ogn/lagIogn}). 

4 Lower Bounds for the Predecessor Problem 

Let the static (N,n) predecessor problem be the static pre- 
decessor problem restricted to sets S C [I, N] of size n. For 
technical reasons, we insist that, for such a data structure 
the answer be determined solely by the sequence of memory 
locations accessed and their contents. (This extra condition 
can be established using 0(n) additional memory cells and 
at most one additional time step: Simply add a perfect hash 
table for the set S and, when the value of the predecessor is 
determined, access the appropriate location in the hash ta- 
ble.) 

Our results are more general than for the predecessor 
problem. In fact, our lower bounds also hold for the rank and 
even simpler problems, including prefix-parity (the lower or- 
der bit of the rank). In the full version of tbe paper, we prove, 
more generally, lower bounds for the prefix problem for any 
strongly-indecisive regular language [2 I]. Here. we give the 
argument for the predecessor problem since the details are 
somewhat easier in this case. Our main technical theorem is 
the following: 

Theorem 5: There is a constant c > 0 such that if (ckbt)4L < 

n 5 (ckbt)” and N > n W)’ then there is no f round cell- 
probe communication protocol for the static (N,n) predeces- 
sor problem using nil memory cells of b > 8 bits each. 

Before discussing the proof of this theorem, we derive its 
two main corollaries. 

Theorem 6: Any cell-probe data structure for the static pre- 
decessor problem that stores any set S from a universe of size 

N using /SJ’(‘) memory cells of 2(“‘g”)‘-nc” bits requires 
query time R(loglogN/logloglogN) in the worst case. 

Proof More precisely, we show that for any positive inte- 
ger k, and any positive constant E, there exists a function 
n(N) 5 N such that any cell-probe data structure for the static 
(N,n(N)) predecessor problem using (n(N))’ memory cells 
of2(“‘gNl’~” bitsrequirestime~(loglogN/logloglogN) per 
query. 

Fix k,e > 0 and choose the largest integer I such 
that (10gN)~ 2 (ckt)4r where c is the constant from 
Theorem 5. Clearly c’loglogN/logloglogN 2 t 2 
cNloglogN/logloglogN for some constants c’,c” > 0 de- 
pending only on k and E (and the constant c). Let b = 

2(‘@)‘-” and set n = (cbkt)4’. Then (ckt)’ 5 (logN)E/4 and 

for N sufficiently large. Therefore, by Theorem 5, any cell- 
probe data structure for the static (N,n) predecessor problem 
requires time at least t + I using nk memory cells of b bits 
each. n 

Theorem 7: Any cell-probe data structure for the static pre- 
decessor problem that stores any set S from a universe of 
size N using ISlo memory cells of (logN)@‘l bits requires 
query time S2( d/log ISl/loglog ISI) in the worst case. 

Proof More precisely, we show that for any positive inte- 
gers k,k’, there is a function N(n) such that any cell-probe 
data structure for the static (N(n),n) predecessor problem 
using an memory cells of (logN(n))’ bits requires time 
S2(Jlogn~loglogn) per query. 

Fix k and k’ and consider the largest integer t for which 
n 2 (ckf)4’r”+4r(logn) ‘iif where c is the constant from Tbe- 
orem 5. Then t > c’~logn/loglogn where c’ > 0 is a 
constant depending only on k and k’ (and the constant c). 
Set N = &‘) and b = (IogN)’ = [(ckt)‘lognlti, Clearly 
n > (cbkt)” and, by the choice oft, one can also check that 
that n 5 (cbkt)8’. Thus. by Theorem 5, any cell-probe data 
structure for the static (N,n) predecessor problem requires 
time at least t + I using nk memory cells of b bits each. 0 

We now proceed to prove Theorem 5. Let Z(N,n) de- 
note the set of all subsets of [I, N] of size II. We prove lower 
bounds on the complexity of the static (N,n) predecessor 
problem using an adversary argument. As discussed in the 
introduction, Miltersen [2l] observed that one can phrase 
a static data structure algorithm in the cell-probe model in 
tams of a communication protocol between between two 
players: the Querier, who holds the input to a query, and 
the Responder, who holds the data structure. Each probe that 
the Querier makes to the data stmcture, a cell name, consists 
of log, m bits of communication, where m is the number of 
memory cells, and each response by the Responder, the con- 
tents of that named cell, consists of exactly b bits of commu- 
nication. The number of rounds of alternation of the players 
is the time t of the cell-probe communication protocol. The 
technical condition that the sequence of locations and their 
values determine the answer is equivalent to the condition 
that the bits communicated alone determine the answer. 

The lower bound, in the style of [ 191, works ‘top down’, 
maintaining, for each player, a relatively large set of inputs 
on which the communication is fixed. Unlike [l9], we ac- 
tually have non-uniform distributions on the Responder’s in- 
puts, so OUT notion of ‘large’ is with respect to these distr- 
butions. The distributions get simpler as the rounds of the 
communication proceed. 

If Z is a probability distribution on a set Z and B G Z, 
we define pz(B) = Pr&]. Let ‘U(N,n) be the distribution 
which chooses a set S C [ 1, N] of size n uniformly at random. 
The following is the base case of our lower bound. 

Lemmas: Let N > n > 0, a > 0, and b 2 e?“. Con- 
sider any set of positions A C [ 1, N], with IA / 2 mV + I, and 



any collection of subsets B i Z(N,n), with pqN,,,)(B) > b. 
Then there exist integers a,a’ E A and a set S E B such that 
pred(a,S) #pred(a’,S). 

Proof Observe that the only way that pred(a,S) is the same 
for all a E A is if there is no element j E S with min(A) 5 j < 
ma(A). Since this region contains at least an elements of 
[l,N], this probability is at most (I - a)n < e-w < p since 
a>o. fl 

We define a sequence of distributions on Z(N,n) and use 
it to demonstrate that no cell-probe communication protocol 
using nk memory cells of b bits can solve the static (N,n) 
predecessor problem in t rounds. Given integers b, k, t, N, 
and n we will define two sequences of integers N, and ni for 
i = 0,. ,f - 1 with No = N, and no = n. The general idea 
of the lower bound argument is to find, after each round, a 
portion of the Querier’s and Responder’s inputs on which the 
cell-probe communication protocol has made little progress. 
After i rounds, the possible. values of the Querier’s input will 
lie in an interval of length Ni and, within this interval, the 
Responder’s input S will have at most n: elements. Thus, the 
Responder’s input can be viewed as an element of Z(N;,ni). 

More precisely, let b, k. t, N, and n be positive integers 
and define 

. a = n-w4f) 

. u = 8kt 

. r = 16buja 

. f = Sru/a = 128buZ/a2 

. N,, = N; n,, = n and 

. for i = 0,. ,f - I, define N;+, = (N;/J”)‘/” and nj+t = 
4l(ru). 

We say that the tuple of parameters (b,k,t, N,n) satisfies the 
integrality condition if I /a is an integer greater than 1 and, 
for every integer i E [O,t], Ni and ni are integers and Ni > ni. 

If n is the 4r-tb power of an integer larger than I, then 
l/a is an integer greater than I and f and r are also in- 
tegers. Since f 2 rrc and u 2 1. the condition N, 2 n, 
is sufficient to imply that Ni 2 ni for i E [O,t]. Furtber- 
more, if N, and n, are both integers, then n; = (i-u)‘-‘n, and 
N; = f(Ul~i~‘)l(U-‘)N;‘ei are integers for i E [O,t]. In particu- 
lar, the integrality condition will hold for (b,k,t,N,n) if n is 
the /It-th power of an integer larger than I and there are inte- 
gers N, > n, such that n = (ru)fnl and N = f’“‘-“/‘“-“N;‘. 

Suppose that the integrality condition holds for 
(b,k,t, N,n). For each i, i = t,. ,O. we define a probability 
distribution Z, on Z(N;,ni) inductively, beginning with a;, 
which is the distribution U(N,,n,). For every i < t, each set 
in Z(N;,ni) can be thought of as marking the leaves of a tree 
T, with depth u + I. having fan-out f at the root and a com- 
plete N;+t-ary tree of depth u at each child of the root. We 
choose a random element of Z, as the set of marked leaves 

of the tree E, which we choose using the distribution ,7&t 
as follows: First, choose r nodes uniformly from among all 
the children of the root. For each successively deeper level, 
excluding the leaves, choose r nodes uniformly among the 
nodes at that level that are not descendants of nodes cho- 
sen at higher levels. (Notice that, since the root of z has 
J 2 ru children, it is always possible to choose enough nodes 
with this property at each level.) Independently, for each of 
these ru nodes, Y, choose a set S, t Z(N;+, ,ni+,) accord- 
ing to &+I. A leaf below Y is marked if it is the rightmost 
descendant of the j-th child of v for some j E S,. 

Lemma 9: Suppose (b,k,t,N,n) satisfies the integrality 
condition and b 2 3. Let A 2 [l,Ni] with /A/ 2 UN;. and 
B C Z(N;,ni) with p&(B) 2 B = 2-b-‘. Suppose there is a 
t -i round cell-probe communication protocol, using m 5 nk 
memory cells of b bits, that correctly computes pred(j,S) 
for all j E A and S E B. Then there exist A’ C [I, Ni+ t ] with 
/A’/ 2 c&+1, B’ C Z(Ni+t,ni+t) with p&+,(B’) > /3 and a 
t - i - 1 round cell-probe communication protocol, using m 
cells of b bits, that correctly computes pred(j’,S’) for all 
j’ E A’ and S’ E B’. 

Proof We first sketch the argument. This argument isolates 
a node v in 7; with the property that we can fix one round 
of communication in the original f - i round cell-probe com- 
munication protocol to obtain a new t - i - I round commu- 
nication protocol that still works well in the subtree rooted at 
v. 

To find this node v, we first find a level of the tree z from 
which to choose Y. A node is a good candidate for Y if there is 
some fixed communication c by the Querier such that many 
of its children (at least an a fraction) have descendants cor- 
responding to inputs consistent with communication c. By a 
lemma of Ajtai [2], we show that, no matter how the com- 
munication of the Querier is determined, there is a level with 
many nodes that are good candidates for Y. In fact, there 
are so many that there will be Q.(b) such nodes among the r 
nodes at that level involved in the definition of 2,. 

By the bound on p, for at least one of these Cl(b) nodes, 
call it v, thep-measure of the possible values for the portion 
of the set S that lies below Y is at least 112. Now we fix Y, fix 
the associated communication c of the Querier, and its most 
popular (with respect to the portion of the set S lying be- 
low v) response c’ by the Responder. Since Y was one of the 
nodes chosen by distribution Z,, only the rightmost descen- 
dants of its children are potentially marked, so the answer to 
the predecessor problem does not depend on which of those 
descendants below a given child of v is the input. Thus we 
identify the portion of the set .S below Y with an element in 
Z(Ni+, ,a;+,), and the input below Y with the position of its 
ancestor among the children of Y. It is not hard to see that we 
can remap the answers in a simple deterministic way using 
this reduction. We now follow through on this sketch, after 
stating a couple of preliminaries. 

301 



Preliminaries 

The following form of the Chernoff-Ho&ding bound fol- 
lows easily from the presentation in [IO]. 

Proposition 10: Fix H C U with IHI > p\Ul and let SC U 
with 1.7 = s be chosen uniformly at random. Then Pr[lH n 
s/ 5 ps/4] I (&&?3’4)P” <2-p+. 

The next result is a small modification and rephrasing of 
a combinatorial lemma that formed the basis of Ajtai’s lower 
bound argument in [2]. 

Suppose we have a tree 7’ of depth d such that all nodes 
on the same level have the same number of children. For any 
node v E T, let leaves(v) denote the set of leaves of T that 
are descendants of Y and, for Y not the root of T, let parent(v) 
denote the parent of v. Let A( I), ,A(m) be disjoint sets 
of leaves of T and let A = lJT!,A(c). The leaves in A(c) 
are said to have colour c. A non-leaf node Y has colour c 
if leaves(v) contains a node in A(c). For c = I, _. ,m, let 
A’(c) = {v 1 leaves(v) nA(c) # I$} denote the set of nodes 
with colour c. Note that the sets A’( I), .A’(m) are not nec- 
essarily disjoint, since a non-leaf node may have more than 
one co1o”r. 

A “on-leaf node v is &dense (where 0 < 6 5 1) if there is 
a colour c such that at least a fraction 8 of Y’S children have 
colo”r c. 

Lemma 11: (Ajtai[2]) Let T be a tree of depth d > 2 such 
that all nodes on the same level of T have the same “umber 
of children. Suppose that at least a fraction a of all the leaves 
in T are coloured (each with one of m co1o”rs). Then there 
exists a level JJ, I < e 5 d - 1, such that the fraction of nodes 

on level e of T that are S-dense is at least 
a-m6d-t 

d-1 

Finding the node Y 

We examine the behaviour of the Querier during the first 
round of the original cell-probe communication protocol to 
find a set of candidates for the node v. For each value of 
j E A, the Querier sends one of m messages indicating which 
of the m memory cells it wishes to to probe. Colour the jth 
leaf of T, with this message. 

Since JAI 2 oJ$, it follows from Ajtai’s Lemmathat there 
exists a level e such that I 5 !? < u and the fraction of cz- 
dense “odes in level e of Z is at least (a - mc?)/u. By the 
integrality condition, a 5 l/2. Furthermore, u > 6 and m 5 
.k = u-4111 = a- 5. Therefore 

(a- may/u 2 a(1 -&I)/* > 3a/(4u). 

We now argue. that there is a sufficiently large set of candi- 
dates for Y among the a-dense “odes at level e and a way 
of marking the leaves of T, that are not descendants of these 
candidates so that the probability of choosing a set in B re- 
mains sufficiently large. 

Note that in the construction of Z, from &+t , the r nodes 
chosen on level ! arc not uniformly chose” from among all 
nodes on level e. The constraint that these “odes not be de- 
scendants of any of the r(e - 1) nodes chose” at higher levels 
skews this distribution somewhat and necessitates a slightly 
more complicated argument. 

Consider the different possible choices for the r(e - I) 
nodes at levels I,. ,& I of T, in the construction of Z, from 
&+t. By simple averaging, there is some. such choice with 
pa(B) 2 p, where 2: is the probability distribution obtained 
frdm Z, conditioned on the fact that this particular choice 
occurred. Fix this choice. 

Let R be the random variable denoting the set of r “odes 
chosen at level e. Since the choice of “odes at higher levels 
has been fixed, there are. certain “odes at level e that are no 
longer eligible to be in R. Specifically, each of the I nodes 
chosen at level h < ! eliminates its Nf:‘;: descendants at level 
e from consideration. In total, there are. 

“odes eliminated from consideration at level e. There am 

fN&, nodes at level e, so the fraction of “odes at level f! 
that are eliminated is less than 2r/f = a/(4u). Thus, of the 
nodes at level e that have not been eliminated, the subset D 
of “odes which are a-dense constitutes more than a fraction 
3a/(4u) - a/(4u) = cq(2u). 

We may view the random choice R of the r nodes at level 
e as being obtained by choosing r “odes randomly, without 
replacement, from the set of nodes at level f! that were not 
eliminated. Applying Proposition 10 with p = u/(2”) and 
IRI = r, 

Pr[IDnRI 5 ra/(8u)] < 2-4@“) = 2@. 

Since b 2 1, this probability is smaller than p/2. Let E be 
the event that at least rct/(Su) = 2b of the r elements of R 
are a-dense. Then jq(:‘(B) 2 p - p/2 = b/2. where 2: is the 
probability distribution obtained from 2: conditioned on the 
fact that event E occurred. 

Assume that event E has occurred. Then IDnRl 2 2b. 
Let V be the random variable denoting the first 2b nodes 
chosen for R that are also in D. By simple averaging, there 
is some. choice for V with &y(B) 2 p/2, where Z!” is the 
probability distribution obtained from 2: conditioned on the 
fact that this particular choice for V occurred. Fix some such 
choice. 

Finally, consider the different possible choices W for the 
portion of the set S that marks leaves which are not descen- 
dants of nodes in V. By simple averaging, there is some 
choice for W with pzt (B) > p/2, where 2: is the probabil- 
ity distribution obtained from 2; conditioned on the fact that 
this particular choice for W occurred. Fix some such choice. 

By construction, the distribution 2,: is isomorphic to a 
cross-product of 2b independent distributions, Z++t, one for 

302 



each of the nodes in V. Specifically, for each Y E V, the 
selection of the set of children of Y that have marked de- 
scendants is made according to &+t and only the rightmost 
descendants of such children are marked. For Y E V and S 
chosen from ZT, let z,(S) denote the subset of [l,Nf+t] in- 
dicating which children of Y have marked descendants. In 
other words, k E z,(S) if and only if the k’th child of Y has 
a marked descendant, Let B, = {n”(S) / S E B is consistent 
with W}. Then 

Hence, there is some v E V such that 

p%+,(B,) 2 (jq(B))‘/i’(> (~/Z)‘~Zb=2-(b+Z)~(Zh)~ l/2, 

since b 2 2. Choose that node v. 

Fixing B round of communication for each player 

Since Y is a-dense, there is some message c that the Querier 
may send in the first round such that IA’I/N;+, 2 a, where 

A’ = {j’ E [l,Ni+~] 1 the j’-th child of Y is coloured c}; 

i.e., there is some input j corresponding to a descendant of 
the j’-tb child of v on which the Querier sends message c in 
the first round. We fix the message sent by the Querier in the 
first round to he c. 

Fix a function I that maps sets S’ E B, into sets S E B 
such that z,(t(S’)) = S’. In other words, t(S’) witnesses the 
fact that S’ E B,. 

There are only 2’ different messages the Responder can 
now send. Therefore, there is some. fixed message c’ for 
which 

where B’ is the collection of sets S’ E B, such that, in round 
one, given the input r(S) and the query c, the Responder 
sends c’. We fix the message sent by the Responder in the 
first round to be c’. 

Constructing the t-i- I round protocol 

Consider the following new t -i - 1 round protocol: Given 
inputs j’ E A’ and S’ E B’, the Querier and the Responder 
simulate the last f -i - 1 rounds of the original f -i round 
protocol, using inputs j E A and S = t(S’) E B. respectively, 
where j is the index of some leaf in z with colour c that is a 
descendant of the j’-tb child of node Y. Note that it doesn’t 
matter which leaf of colour c in the subtree rooted at the j’-th 
child of v is chosen. This is because every leaf in this subtree, 
except the rightmost leaf, is not marked so pred(j,S) is the 
same no matter which leaf in the subtree is indexed by j. 

It follows from tbe definitions of A’ and B’ that, for inputs 
j and S, the original protocol will send the fixed messages c 
and c’ during round one. By construction, the new protocol 
computes pred(j,S). If this value is not a descendant of Y 

then this is interpreted as 0; otherwise, if it lies in the subtree 
below the i’-th child of Y the answer is interpreted as i’. 0 

We now combine Lemma 8 and Lemma 9 to prove. The- 
0.-e* 5: 
Proof of Theorem 5 Let c = 64. Suppose that there is 
a t round cell-probe communication protocol for the static 
(N,n) predecessor problem using m 2 np memory cells of 
b hits. Let n’ = (ckbt)“’ < n and k’ = 2k. Then n’ _< n and 
m 5 (n’y. 

Let u = 8k’t, a = (nr)-‘/(4r), r = 16bu/a, f = 
128buz/az, No = N, n; = n’, and let N,,, = (Niff)‘l” and 

4+1 =n{/(ru)fori=O,...,t-I. 
Note that f = 128b x 64(k’)2tZ(n’)‘~a 5 n. One can now 

easily check that since N 2 n(64k)‘, N, 2 n 2 n,. As noted 
above, Nr > N/(fJ). 

Therefore (b, k’,t, N,n’) satisfies the integrality condition 
and the algorithm works correctly for all inputs j E A = [I, N] 
and S E B = Z(N,n’). Since b > 2, Lemma 9 can be applied 
t times to obtain A’ C [l,N,] with iA’1 2 aN,, B’ c Z(N,,ni) 
with p&(B)) 2 0 = 2@‘, and a 0 round cell-probe com- 
munication protocol such that the protocol correctly com- 
putes pred(j,S) for all j E A’ and SE B’. This implies that 
pred(j,S) is the same for all j E A’ and S E B’. 

Since a = (n’)-1/(4r) and t 2 1, a’+’ 2 (n’)+. Also, 
.’ 2 (32bk’@’ so 

d7 fib’ 
’ (16b(8k’t)21’ = (32bk’t)> ’ b’ ’ b 

since t 2 1. Therefore, e?“; < e& <2-b-’ since b 2 3, and 
so by Lemma 8, there exist integers a,a’ E A’ and a set S E B’ 
such that pred(a,S) # pred(a’,S). This is a contradiction. 

0 
One can translate the arguments of this section to the dy- 

namic case, using a translation argument given by Miltersen 
[Zl]. This requires work since the hound applies even with- 
out the polynomial restriction on the size of the data struc- 
ture. The basic idea of Miltersen’s translation is to observe 
that dynamic algorithms that have small cost per query and 
do not run for very long can access only a small number of 
memory cells from a moderate size set of potential memory 
cells. Using static dictionary techniques from [ 171, one can 
obtain an efficient solution to the static problem by hegin- 
ning with the empty set and inserting elements one by one, 
recording the changes made to the memory in the dictionary. 
One then obtains: 

Theorem 12: Any cell-probe data structure for the dynamic 
predecessor problem on [I, N] for a set of size at most n using 
(logN)O(‘) bits per memory cell and no(‘) worst-case time 
for insertions requires a( Jlognl log logn) worst-case query 
time. 

We can obtain a lower bound solely in terms of the uni- 
verse size with an even larger allowed word size. We do not 

303 



state this version enplicity but we state its extension to amor- 
tized costs provided the memory is not too large: If words 
are b bits long then a bound of 2O@) on the number of mem- 
ory cells is reasonable; it is the number of different cells that 
can be accessed when performing indirect addressing. 

Theorem 13: Any cell-probe data structure using zO@) 

memory cells of b = 2(‘0gN)‘en”’ bits to solve the dynamic 

predecessor problem on [I,N] using 2(‘“@l’-““’ amortized 
time per update, requires R(loglogN/logloglogN) worst- 
case time for queries. 

Acknowledgements 

We are grateful to Peter Bro Miltersen and Mikkel Tlmrup 
for helpful discussions. 

References 

[I] M. Ajtai, M. Fredman, and J. Koml6s. Hash functions for 
priority queues. Information and Contml. 63:217-225, 1984. 

[Z] Mikl6s Ajtai. A lower bound for finding predecessors in Yao’s 
cell probe model. Combinarorica, 8:235-247, 1988. 

[3] A. Andersson. Sublogarithmic seaching without multiplica- 
tions. In 36th IEEE Annual Symposium on Fou?!dafions of 
Computer Science, pages 655-665. Milwaukee, WI, 1995. 

[4] A. Andersson. Faster deterministic sorting and seaching in 
linear space. In 37rhAnnual IEEE Symposium on Foundarions 
of Computer Science, pages 135-141, Burlington, VT, 1996. 

151 A. Andersson. P. B. Miltersen. S. Riis, and M. Thorup. Static 
dictionaries on A@ RAMS: query time O(Jlogn/loglogn) 
is necessary and sufficient. In 37th Annual Symposium on 
Foundations of Computer Science. pages 441450. Burling- 
ton, VT, October 1996. IEEE. 

[6] A. Andersson and M. Thorup. Exponential search trees for 
faster deterministic searching, sorting and priority queues in 
linear space. Manuscript. 

[7] A. Brodnik, P.B. Miltersen, and I. Munro. Trans.dichotomous 
algorithms without multiplications-some upper and lower 
bounds. In Pmceedings of the 5th Wokshop on Algorithms 
and Data Structures, LNCS volume 1272, pages 4-39. 
Halifax, NS, Canada, 1997. Springer-Verlag. 

[S] J. L. Carter and M. N. Wegman. Universal classes of hash 
functions. Journal of Computer andSystem Sciences, 18: 143- 
154.1979. 

[9] A. Chakrabarti, B. Chazelle. B. Gum, and A. Lvov. A good 
neighbor is hard to find, In Proceedings of the Thirty First 
Annual ACM Symposium on Theov of Computing, Atlanta, 
GA. May 1999. 

1101 V. ChvBtal. Probabilistic methods in graph theory. Annals of 
Onerations Research. l:l71-182, 1984. 

[l 11 G. Dietzfelbinger. &venal hashing and k-wise indepen- 
dent random variables via integer arithmetic without primes. 
In Proceedings of the 13th Annual Symposium on Theo&- 
cal Aspects ofCompurer Science. LNCS volume 1046. pages 
569-580, Grenoble, France, February 1996. Springer-Verlag. 

[I21 M. Dietzfelbinger, J. Gil, Y. Matias. and N. Pippenger. Poly- 
nomial hash functions are reliable. In Automata, Languages, 
and Pmgmmming: 19th Intemationnf Colloquium, LNCS 
volume 623, pages 235-246. Springer-Verlag. July 1992. 

1131 

1141 

1151 

1161 

[l71 

[la 

(191 

[201 

1211 

WI 

1231 

M. Dietzfelbinger, A. Karlin, K. Mehlhom. F. Meyer auf der 
Heide. H. Rohnen, and R Tajan. Dynamic pertect hash- 
ing: Upper and lower bounds. SIAM Journal on Computing, 
23(4):738-761, 1994. 
M. Dietzfelbinger and F. Meyer auf der Heide. A new univer- 
sal class of hash functions and dynamic hashing in real time. 
In Automata, Languages, and Pmgromming: 17th Inrema- 
rional Colloquium. LNCS volume 443. pages 6-17, Warwick 
University, England, July 1990. Springer-Verlag. 
F. Fich and P. B. Millersen. Tables should be sorted (on ran- 
dom access machines). In Proceedings of the 4th Workshop 
on Algorithms and Dota Structures, LNCS volume 995, pages 
163-174. Springer-V&g. 1995. 
M. Fredman, I. KomJ6s. and E. Szemertii. Storing a sparse 
table with O(1) worst case access time. Journal of the ACM, 

31:538-544, 1984. 
M. Fredman and M. Saks. The cell probe complexity of dy- 
namic data structures. In Proceedings of the Twenty FirsrAn- 
nwl ACM Symposium on Theory of Computing, pages 345- 
354, Seattle, WA, May 1989. 
M. Fredman and D. Willard. Surpassing the information the- 
oretic bound with fusion trees. Journal of Computer and Sys- 
tem Sciences, 47(3):424-436, 1993. 
Mauicio Karchmer and Avi Wigderson. Monotone circuits 
for connectivity require super-logarithmic depth. In Pmceed- 
ings of the Twentieth Annual ACM Symposium on Theory of 
Comparing, pages 539-550, Chicago, IL, May 1988. 
P. B. Miltersen. The bit probe complexity measure revisited. 
In Proceedings of the 10th Annual Symposium on Theoretical 
Aspects of Computer Science, LNCS volume 665, pages 662- 
671, Wurzburg, Germany, February 1993. Springer-Verlag. 
P. B. Miltersen. Lower bounds for Union-Split-Find related 
problems on random access machines. In Pmceedings of the 
Twenty-Sixth Annual ACM Symposium on Theory of Comput- 
ing, pages 625-634. Montr&l, Q&cc, Canada, May 1994. 
P. B. Miltersen, N. Nisan. S. Safra, and A. Wigderson. On data 
~tmctures and asymmetric communication complexity. Jour- 
nal of Computer and System Sciences, 57(1):37-t9, 1998. 
R. Raman. Priority queues: Small, monotone, and tmns- 
dichotomous. In Proceedings of the 4th Eumpean Sympo- 
sium on Algorithms, LNCS volume 1136, pages 121-137. 
Springer-Verlag. 1996. 

[24] P. Van Emde Boas. Preserving order in a forest in less than 
logarithmic time and linear space. Informdon Processing 
Letters, 6:8&82, 1977. 

[25] P. Van Emde Boas. R Kaas, and E. Zijlstra. Design and im- 
plementation of an efficient priority queue. Morhematical Sys- 
tems Theory, 10~99%127, 1977. 

1261 D. E. Willard. Log-logarithmic worst case range queries 
are possible in space o(n). lnfomarion Processing Letters, 
17:81-84, 1983. 

1271 Bing Xiao. New bounds in cell probe model. PhD thesis, 
University of California, San Diego, 1992. 

128) A. C. Yao. Some complexity questions related to distribu- 
live computing. In Conference Record of the Eleventh Annul 
ACM Symposium on Theory of Computing, pages 209-213. 
Atlanta, GA, April-May 1979. 

1291 A. C. Yao. Should tables be sorted? Journal of the ACM. 
28:615-628, July 1981. 

304 


