
The Relative Complexity of NP Search Problems

PAUL BEAME* STEPHEN COOKT JEFF EDMONDS$

Computer Science and Engineering Computer Science Dept. I. C.S.I.

University of Washington University of Toronto Berkeley, CA 94704- ”1198

beame@cs. Washington. edu sacook@cs. toronto. edu edmonds@icsi .berke,ley.edu

RUSSELL IMPAGLIAZZO

Computer Science Dept.

UCSD

russelltlcs .ucsd.edu

Abstract

Papadimitriou introduced several classes of NP search prob-

lemsbased on combinatorial principles which guarantee the

existence of solutions to the problems. Many interesting

search problems not known to be solvable in polynomial

time are contained in these classes, and a number of them

are complete problems. We consider the question of the rel-

ative complexity of these search problem classes. We prove

several separations which show that in a generic relativized

world, the search classes are distinct and there is a standard

search problem in each of them that is not computation-

ally equivalent to any decision problem. (Naturally, abso-

lute separations would imply that P#NP.) Our separation

proofs have interesting combinatorial content and go to the

heart of the combinatorial principles on which the classes are

based. We derive one res~t via new lower

degrees of polynomials asserted to exist by

stellensatz over finite fields.

1 Introduction

bounds on the

Hilbert’s Null-

In the study of computational complexity, there are many

problems that arenaturally expressed as problems “tofi&

but are converted into decision problems to fit into stan-

dard complexity classes. For example, amorenaturalprob-

lem than determining whether or not a graph is 3-colorable

●Research supported by NSF grants CCR-8858799 and CCR-
9303017

tResearch sUpport,ed by an NSERC operating grant andthelnfor-

mation Technology Research Centre
~SU~~orted by an NSF postdoctoral fellowship and by aCanacfian

NSERC postdoctoral fellowship
sRe~earch supported by an NSF postdoctoral fellowsiup aml by

NSF Grant CCR-9457782

Permission to copy wifhwt fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyri ht notice and the

8title of the publication and ds date appear, an notice is given
that copyin is by permission of the Association of Computing
Machiney o cop otherwise, or to republish, requires

a fee andk!specilc permission.
STOC’ 95, Las Vegas, Nevada, USA
@ 1995 ACM 0-89791 -718-9/95/0005 ..$3.50

TONIANN PITASSI$

Mathematics and Computer Science

University of Pittsburgh

toniflcs .pitt, edu

might be that of finding a 3-coloring of the graph if it ex-

ists. One can always reduce a search problem to a related

decision problem and, as in the reduction of 3-coloring to

3-colorability, thk is often by a natural self-reduction which

produces a polynomially equivalent decision problem.

However, it may also happen that the related decision

problem is not computationally equivalent to the original

search problem. Thk is particularly important in the case

when a solution is guaranteed to exist for the search prob-

lem.

1.

2.

3.

For example, consider the following prc)blems:

Given a list al ,. .a~ of residues mod p, where n >

log p, find two distinct subsets SI, S’z c {1,. .n} so
that II$eSla, mod p = II,es2at mod p. The existence

of such sets is guaranteed by the pigeonhole principle,

but the search problem is at least as difficult as discrete

log modulo p. It arises from the study of cryptographic

hash functions.

Given a weighted graph G, find a traveling salesper-

son tour T of G that cannot be improved by swapping

the successors of two nodes. This problem arises from

a popular heuristic for TSP called 2-OPT. Again, the

existence of such a tour is guaranteecl, basically be-

cause any finite set of numbers has a, least element,

but no polynomial-time algorithm for this problem is

known.

Given an undirected rzraDh G where everv node has

degree exactly 3, and-a “Hamiltonian circ~t H of G

find a different Hamiltonian circuit H“. A solution is

guaranteed to exist by an interesting cc,mbinatorial re-

sult called Smith’s Lemma. The proof constructs an

exponential size graph whose odd degree nodes corre-

spond to circuits of G, and uses the fact that every

graph has an even number of odd degree nodes.

In [JPY88, Pap90, Pap91, Pap94, PSY90], an approach

is outlined to classify the exact complexity of problems such

as these, where every instance has a solution. Of course,

one could (and we later will) define the class TFNP of all

search problems with this property, but this class is not very
nice. In particular, since the reasons for being a member

of TF N P seem as diverse as all of mathematics, different

303



combinatorial lemmas being required for different problems,

it seems unlikely that TF NP has any complete problem.

As an alternative, the papers above concern themselves

with “syntactic” sub-classes of TF N P, where all problems in

the sub-class can be rxesented in a fixed. easilv verifiable

format. These classes ‘correspond to comb~nat or~al lemmas:

for problems in the class, a solution is guaranteed to exist
by this lemma. For example, the class PPA is based on the

lemma that every graph has an even number of odd-degree

nodes; the class P L S is based on the lemma that every di-

rected acyclic graph has a sink; and the class PPP on the
pigeonhole principle. The third example above is thus in

P PA, the second in P LS and the first in PPP. The class

PPAD is a dh-ected version of PPA; the combinatorial lemma

here is this: “Every directed graph with an imbalance node

(indegree different from outdegree) must have another im-

balance node.” It is shown in [Pap94] that all these classes

can be defined in a syntactic way.

As demonstrated in the papers listed above, these classes

satisfy the key litmus test for an interesting complexity class:

they contain many natural problems, some of which are

complete. These problems include computational versions

of Sperner’s Lemma, Brouwer’s Fixed Point Theorem, the

Borsuk-UIam Theorem, and various problems for finding

economic equilibria. Thus thev movide useful insights into. .
natural computational problems. From a mathematical point

of view they are also interesting: they give a natural means

of comparison between the “algorithmic power” of combina-

torial lemmas. Thus, it is important to classify the inclu-

sions bet ween these classes, both because such classification

yields insights into the relative plausibility of efficient al-

gorithms for natural problems, and because such inclusions

reveal relationships between mathematical principles.

Many of these problems are more naturally formulated

as type 2 computations in which the input, consisting of

local information about a lame set. is mesented bv an or-

acle. Moreover, each of the comple~ty classes we consider

can be defined as the type 1 translation of some natural

type 2 problem. We thus consider the relative complexity

of these search classes by considering the relationships be-

tween their associated type 2 problems. Our main results

are several type 2 separations which imply that in a generic

relativized world, the type 1 search classes we consider are

distinct and there is a standard problem in each of them

that is not equivalent to any decision problem. (Naturally,

absolute type 1 separations would imply that P # N P.) In

fact, our separations are robust enough that they apply also

to the Turing closures of the search classes with respect to

any generic oracle. Such generic oracle separations are par-

ticularly nice because generic oracles provide a single view

of the relativized world, much as do probability 1 random

oracles, but unlike random oracles, the y do not change the

fundamental complexity of problems that do not depend on

the oracle.

The proofs of our separations have quite interesting com-
binatorial content. In one example, via a series of reduc-

tions using methods similar to those in [B IK+94], we derive

our result via new lower bounds on the degrees of poly-

nomials assert ed to exist by Hilbert’s Nullst ellensatz over

finite fields. The lower bound we obtain for the degree of

these polynomials is Q (n 1/4 ) where n is the number of vari-

ables and this is substantially stronger than the C2(log” n)

bound that was shown (for a somewhat different system) in

[BIK+94].

2 The Search Classes

2.1 Preliminary definitions

A decision problem in N P can be given by a polynomial

time relation R and a polynomial p such that R(z, c) implies

Icl < P([xI). The decision problem is ‘(given z, determine
whether there exists c such that R(LZ, c) “. The associated

NP search problem is “given x, find c such that F?(x, c)

holds, if such c exists”. We denote the search problem by a

multi-valued function Q, where Q(z) = {c I l?(x, c) }; that

is Q(z) is the set of possible solutions for problem instance

x. The problem is total if Q(x) is nonempt y for all x. FN P
denotes the class of all NP search problems, and TFNP de-
notes the set of all total NP search problems.

The sub-classes of TFN P defined by Papadimitriou all

have a similar form. Each input x implicitly determines

a structure, like a graph or function, on an exponentially

large set of “nodes”, in that computing local information

about node v (e. g., the value of the function on v or the set

of v‘s neighbors) can be done in polynomial-time given x

and v. A solution is a small sub-structure, a node or poly-

nomial size set of nodes, with a property X that can be

verified using only local information. The existence of the

solution is guaranteed by a lemma “EverY structure has a

sub-structure satisfying property X .“ For example, an in-

st ante of a problem in the class P P P of problems proved

total via the pigeon-hole principle, consists of a poig(n)

length description x of a member ~. = ~g.~(x, y) of a fam-

ily of (uniformly) polynomial-time functions from {O, 1}” to

{o, l}n - on. A solution is a pair yl, y2 of distinct n bit

strings with ~z(gl ) = jZ(gQ), which of course must exist.

It is natural to present such search problems as second

order objects Q(a, x), where a is a function ( “oracle” input)

which, when appropriate, can describe a graph by giving

local information (for example a(x) might code the set of

neighbors of x). Thus Q(a, x) is a set of strings; the pos-

sible solutions for problem inst ante (a, x). As before we

require that solutions be checkable in polynomial time, and

the verifying algorithm is allowed access to the oracle CY.

Proceeding more formally, we consider strings x over the

binary alphabet {O, 1}, functions a from strings to strings,

and type 2 functions (i.e. operators) F’ taking a pair (a, z)

to a string y. Such an F is polynomial time computable

if it is computable in deterministic time that is polynomial

in 1x1 with calls to a at unit cost. We can define a type z

search problem Q to be a function that associates with each

string function a and each string x a set Q(a, x) of strings

that are the allowable answers to the problem on inputs a

and x. Such a problem Q is in F N P2 if Q is polynomial-

time checkable in the sense that g c Q(a, x) is a type 2

polynomial-time computable predicate, and all elements of

Q(a, x) are of length polynomially bounded in Izl.

A problem Q is total if Q(a, x) is nonempt y for all a and

x. TFNP2 is the subclass of total problems in FNP2, An
algorithm A solves a total search problem Q if and only if

for each function a and string x, A(cr, z) G Q(cr, x). FP2
consists of those problems in TF NP2 which can be solved by

deterministic polynomial time algorithms,

For each Q e TFN P2, we can associate a sub-class Q

of TF NP consisting of the set of relations R of the form

R(z, Y) * Y G Q(~z. f(z, z), g(x)) for j, g polYnomial-

time computable functions. In order to make Q into a com-

plexity class we follow Papadimitriou in closing the class

under a suitable reducibility y. Thus, A is many-one reclucilde

to B iff there is a pair of polynomial-time computable func-

304



, .- . 1 ---- ------ -. ~ I .,.

PPA TDAD Undirected Grauh on /0, 1]S” anv leaf c * 0“ -1

PPAD SOURCE. . . . . . . . .
with in-degree, out-degree <1 (

-1 JJiwi r
with degree <2’ ‘ ‘ ‘ On; if On is’ not a leaf

.OR..’STNK
Directed graph on {O, l}~n any source or sink c # 0“

O“, if Om is not a source i

PPADS SINK
Directed graph on {O, l}~n any sink c # O“

with in-degree, out-degree < 1 On, if On is not a source

PPP PIGEOIV
Function f any pair (c, c’), c # c

f : {o, l}~n + {o, l}s~
with ~(c) = ~(c’) # On

any c“ with J_(c”) = On
‘1

tions g and h such that h(z, g) is a solution for A on input

x for any v that is a solution to B on input g(x). We de-

fine CQ to be the class of all problems in TFN P many-one

reducible to a problem in Q.

We summarize Papadimitriou’s classes in this format in

the table. Each class is of the form CQ for some Q c TFN P2
which we name and briefly describe. The notation {O, 1} <“

denotes the set of rmnernpty strings of length n or less. We

assume that n is given in unary as the standard part of the

input to Q.

For example, in the problem LEAF the arguments (a, z)

describe a graph G = G(a, Iz \ ) of maximum degree two

whose nodes are the nonempt y strings of length \x I or less,

and a(u) codes the set of O, 1, or 2 nodes adjacent to u. An

edge (u, v) is present in G iff both a(u) and a(v) are proper

codes and a(u) contains u and a(v) contains u. A leaf is a

node of degree one, We want the node 0...0 = 0“ to be a

leaf (the standard leaf in G). The search problem LEAF is:

‘Given a and x, find a leaf of G = G(a, Izl) other than the

standard one, or output O...0 if it is not a leaf of G’, That

is, LEAF(a, x) is the set of nonstandard leaves of G(a, IzI)

together with, in case O...0 is not a leaf of G, the node 0...0.

It should be clear that LEAF is a total NP search prob-

lem and hence a member of TFNP2. Further, since the

search space has exponential size, a simple adversary argu-

ment shows that no deterministic polynomial time algorithm

solves LEAF. Hence LEAF is not in F P2.

The classes defined from these problems are interesting

for more than just the lemmas on which they are based.

There are many natural problems in them. Here are some

examples in the first order classes PPAD, PPA, and P P P from

[Pap94]. Problems in PPAD include, among others: find-

ing a panchromatic simplex asserted to exist by Sperner’s

Lemma, finding a fixed point of a function asserted to exist

by Brouwer’s Fixed Point Theorem, and tiding the antipo-

dal points on a sphere with equal function values asserted

to exist by the Borsul-Ulam Theorem (where in each case

the input structure itself is given implicitly via a polynomial

time Turing machine, but could be given by an oracle). Sev-

eral of these are complete. Problems in PPA not known to

be in PPAD include finding a second solution of an under-

determined system of polynomial equations modulo 2 that

is asserted to exist by Chevalley’s Theorem and finding a

second Hamiltonian path in an odd-degree graph given the

first. The problem Pigeonhole Circuit is a natural complete

problem for PPP.
The class PPADS is called PSK in [Pap90], where it is in-

correctly said to be equivalent to PPAD. We note here that

a natural problem complete for PPADS is Positive Sperner’s
Lemma (for dimensions three and above), which is exactly

like Sperner’s Lemma except that only a panchromatic sim-

plex that is positively oriented is allowed as a solution.

2.2 Reducibility

Besides providing a nice format for Sub-cla,sses of TFNP,
the type 2 search problems also capture their relativized

structure. We will define two notions of reduction between

problems in TF NP2 and show that these notions capture the

relationships bet we en the classes in relativized settings.

We now define a very general form of reduction among

total search problems: We say Q1 is polynomial time Turing

reducible to Qz, Q1 < Q2, if there is some polynomial-time

machine M that on input (a, c) and an oracle for Q2 outputs

some y c Q1 (a, x). (Recall that M’s input a is a string

function which it accesses via oracle calls.) (See Figures 1

and 2.) For each query to the Qz oracle, k! must provide

some pair (/3, z) as input where ~ is a string function. For

M to be viewed as a polynomial-time machine, the ~’s that

M specifies must be computable in polynomial time given

the things to which M has access: a, x, an,d the sequence

t of answers that M has received from previous queries to

Q2. We thus view the reduction as a pair of polYnomial-

time algorithms: M, and another polynomial-time machine

M* which computes ~ as a function of a, x, and t.M must

produce a correct y for all choices of answers that could be

returned by Qz.

We say that QI <~ Qz (QI is many-one reducible to

Q2 ) if Q1 reduces to Q2 as above but M makes exactly one
query to an instance of Q2.

Theorem 1: Let Q1, Qz e TFNP2. The following are equiv-

alent: (i) Q1 <~ Qz; (ii) VA, (CQ1)A ~ (CQZ)A; (iii) 3

generic G, (CQ1 )G ~ (CQ2)G.

A similar statement holds for the case of our Turing re-

ductions with the many-one closures replaced by Turing clo-

Figure 1: Reducing QI to Q2

305



M*

Figure 2: Detail showing /3’s computation

sures for the type 1 classes. All reductions we exhibit are

many-one reductions so with this theorem they give inclu-

sions or alternative characterizations of the classes defined

in [Pap94]. All separations we exhibit hold even against Tur-

ing reductions so they show oracle separations between the

Turing closures of the related type 1 search classes and these

separations apply to all generic oracles ([B187], [CIY95].)

2.3 Some simple reductions

It is easy to see that SOURCE. ORSINK <m LEAF, by

ignoring the direction information on the input graph. Also
it is immediate that SOURCE. OR.SINK <m SINK.

It is not hard to see that SINK <m PIGEON: Let G be

the input graph for S1iVK. The corresponding input function

f to PIGEON maps nodes of G as follows. If w is a sink of

G then let f(v) = 0...0; if there is an edge from v to u in

G then let f(v) = u; and if v is isolated in G, let f(v) = v.

Then the the possible answers to PIGEON coincide exactly

with the possible answers to SINK.

Our main results are that all three of these reductions

fail in the reverse direction even when allowing more general

Turing reductions. The containment of the corresponding

type 1 classes (with respect to any oracle) are shown in

Figure 3.

2.4 Equivalent problems

We say that two problems are equivalent if each is reducible

(under <) to the other, and they are many-one equiva-

lent if each is many-one reducible (under <~) to the other.

It is interesting (and also relevant to our separation argu-

ments) that there are several problems many-one equivalent

to LEAF, based on different versions of the basic combinato-

rial lemma “every graph has an even number of odd-degree

nodes.” Strictly speaking, LEAF is based on a special case

of this lemma, where the graph has degree at most two. A

more general problem, denote it ODD, is the one in which

the degree is not two, but bounded by a polynomial in the

length of the input x. That is, a(v) codes a set of polyno-

mially many, as opposed to at most two, nodes, and we are

seeking a node u # 0...0 of odd degree (or 0...0 if that node

is not a leaf).

Another variant of the same lemma is this: “Every graph

with an odd number of nodes has a node with even de-

gree.” To define a corresponding problem, denoted EVEN,

TFNP

(“EL’)

PPA

LSAF.

w
Figure 3: Search class relationships in a generic relativized

world

we would have a(v) again be a polynomial set of nodes, only

now a (o.. .0) = 0. This last condition will essentially leave

node O...0 out of the graph thus rendering the number of

nodes odd. We are seeking a node v # O...0 of even degree

(or 0...0 if that node is not isolated).

In the special case where the graph has maximum degree

one, this version of the lemma is “there is no perfect match-

ing of an odd set of nodes.” An input pair (a, z) now codes

a graph GM(cr, Izl) which is a partial matching. The nodes,

as before, are the nonempt y strings of length Iz I or less, and

there is an edge between nodes u and w iff (i) u # v, (ii)

a(v) = u, (iii) a(u) = v, and (iv) neither u nor v is the

standard node 0...0. Thus O...0 is always unmatched, and

we are seeking a second unmatched (or lonely) node o. This

search problem is denoted LOIWLLY.

Theorem 2: The problems LEAF, ODD, EVEN, and

LONELY are all many-one equivalent.

Proofi To show that LEAF <. hONELY consider an

input (a, x) to LEAF, representing a graph G = G(a, 1x1).

We transform (a, x) to an input (~, xl) to LONELY. We de-

scribe @ implicitly by describing the partial matching G2 =

GM(/3, 1s11). G2 has all nodes of G, plus a copy v’ of each

such node v. We place edges in G2 in such a way that the

leaves of G are precisely the unmatched nodes in G2. If v is

an isolated n“ode in G then there is an edge matching node

v and its copy v’ in G2. If v haa precisely one neighbor u in

G, then v is unmatched in G2 and v’ is matched in G2 with

either u or u’, as explained below. If PJhas two neighbors

u and w in G, with u preceding w lexicographical y, then

there is an edge in G2 between v and either u or u’, and

also an edge in G2 between v’ and either w or w’.

In each case where a choice has been indicated, the cor-

rect choice is determined by applying the rules to the neigh-

bor. Thus if u has precisely one neighbor u in G, then u’

is matched in G2 with u, provided u has two neighbors in

G and v lexicographically precedes the other neighbor, and

otherwise u’ is matched with u’. If v haa two neighbors u

and w in G, with u preceding w lexicographically, then v

is matched in G2 with u, provided u has two neighbors in

G, and v lexicographically precedes the other neighbor, and

otherwise v’ is matched with u’. Similarly for v’ and w or

w’.

Note that for each node v in G2, the mate ~(v) can be

determined with at most four calls to cr. It is each to verify

306



that, as claimed, the leaves of G are precisely the unmatched

nodes in G2. Thus LEAF’(c I,x) = LONELY(O, xl), so the

reduction is strong.

That LONELY <. EVEN is obvious. To convert any

problem in EVEN into one in ODD, just add to the graph

all edges of the form {vO, vI} joining nodes with all bits the

same except for the last; unless this edge is already present,

in which case remove it. Thk will make O...0 into the st an-

dard leaf, and make all even-degree nodes into odd-degree

nodes and vice versa.

Finally, ODD < LEAF follows from the “chessplayer

algorithm” of [Pap90, Pap94] which makes explicit the lo-

cal edge-pairing argument that is involved in the standard

construction of Euler tours. For completeness we give this

construction: Given an input graph G to ODD we trans-

form it to an input graph GL to LEAF. Let 2cl be an upper

bound on the degree of any node in G. The nodes of GL

are pairs (v, Z) where v is a node in G and 1 < z < d,

plus the original nodes of G. Suppose that the neighbors

of v in G are VI, . . . . v~ in lexicographical order and v is,

respectively, the Z1, . . . . i~-th neighbor of each of them in

lexicographical order. Basically, the corresponding edges in

G2 are {(v, (j/21 ),(vj, [ij/21)} forj = 1,.. .,m. In this way

the edges about each node in G are paired up consistently

in G2 creating a graph of maximum degree 2. It is easy to

see that m is odd if and only if the node (v, [m/2]) is a

leaf. Now this is not quite what we need for a strong reduc-

tion, since the name of the leaf node is not the same as in

the original problem. We resolve this by replacing the node

(v, [m/21 ) by the node v if m is odd. The construction may

be completed in polynomial time without much difficulty.

❑

One could give directed versions of ODD which would

generalize SOURCE. OR.SINK to IMBALANCE and SINK

to EXCESS, where instead of up to one predecessor and

one successor, any polynomial number of predecessors and

successors is allowed. In these definitions, the search prob-

lem would be to find a nonstandard node with an imbalance

of indegree and outdegree (respectively, an excess of inde-

gree over out degree.) The Euler tour argument given above

shows that these new problems are equivalent to the original

ones.

3 Separation Results

3.1 PPAG is not included in PPPG

Theorem 3: LONELY is not reducible to PIGEON.

Proofi Suppose to the contrary that LONELY <

PIGEON. Let A4 and M* be as in the definition of <

in Section 2.2 (see also Figures 1 and 2). Consider an in-

put (a, x) to LONELY and the corresponding graph G =

GM(a, n), where n = 1x1. On input (a, x), the machines

M and M* make queries to the oracles a and PIGEON
and finally A4 outputs a lonely node in G. Our task is to

find a and z and suitable answers to the queries made to

PIGEON so that M’s output is incorrect.

Fix some large n and some x of length n. Then the

nodes of G are the nonempty strings of length n or less, and
the edges of G are determined by the values a(v) for v a

node of G. For any string u not a node of G we specify
a(v) = A (the empty string). (Such values are irrelevant to
the graph G and hence to the definition of a correct output. )
Also we specify a(O.. .0) = J, since the standard node should
be unmatched. For nonstandard nodes v we specify a(v)

implicitly by specifying the edges of G, We do this gradually

as required to answer queries. The goal is to answer all

queries without ever specifying any particular nonstandard

node v to be unmatched. In that way M is fo reed to output

a lonely node without knowing one, and we can complete

the specification of G so that its answer is incorrect.

In general, after i steps of M’s computation, we will

have answered all queries made so far by specifying that

certain edges are present in G. These edges comprise a par-

tial matching a,, where the number of edges in a, is bounded

by a polynomial in n. Suppose that step i + 1 is a query v

to a. If that query cannot be answered by u, and our initial

specifications, then we set a(v) = w, where w # 0...0 is any

unmatched node, and form a,+ 1 by adding the edge {v, w}

to u,.

Now suppose step i + 1 is a query (~, z) to PIGEON,

specifying a function ~ = ~<p, Iz I>. Here ~ is the restriction

of /3 to the set of nonempt y strings of length \z \ or less,

except ~(c) = O...0 in case ~(c) is either empty or of length

greater than Izl. Then we must return either a pair (c, c’),

with c # c’ and ~(c) = j(c’) # 0...0, or c“ With ~(c”) = 0...0.

Our task is to show that a possible return value can be

determined by adding only polynomially many edges to the

partial matching cr~ (i.e. to G), and without specifying that

any particular node in G is unmatched.

The value f(c) is determined bv the commutation of M*. . .
on inputs z, a, c, and t (which codes the alnswers to the

previous queries to PIGEON). We have fixed x, part of a
(i.e. part of G), and the answers to previous qperies, so ~(c)

depends only on the unspecified part of G. TbLus ~(c) can be

expressed via a decision tree T’(c) whose vertices query the

unspecified part of G. Each internal vertex of the tree T’(c)

is labelled with a node u in G (representing a query) and

each edge in T’(c) leading from a vertex labelled u is labelled

either with a node v in G (indicating that u is matched to

v in G) or 0 (indicating that u is a lonely node in G). If u

has already been matched in a, or if u = O...0 then we know

the answer to the query, so we assume that no such node u

appears on the tree, either as a node label or vertex label.
Also we assume that no node u occurs more than once on a
path, since thk would give either inconsistent or redundant
information. Each leaf of T’(c) is labelled by the output

string f(c) of M“ under the computation determined by the

path to the leaf.

The runtime of M* is bounded by a polynomial in the

lengths of its string inputs, which in turn are bounded by a

polynomial in n (since M is time-bounded by a polynomial

in the length n of its string input z). This runtime bound on

M“, say k, bounds the height of each tree. If n is sufficiently

large, then the number of nodes in G minus the number of

nodes in the partial matching a~ far exceeds k.

For each strirrz c in the domain of f. define T(c) to be the. “, ./

tree T’(c) where all branches with outcome @ on any query

are pruned. That is, we shall be interested in the behavior of

this decision tree when a evades the answer “lonely node”.

Notice that each path from the root to a leaf in a tree

T(c) designates a partial matching u of up to ,k edges match-

imz UD to 2k nodes in G. Thus we call each tree T(c) a
–“ .,

matc~ing decision tree. We call two partial matchings a and

~ compatible if U(JT is also a partial matching, i.e. they agree

on the mates of all common nodes. Notice that the partial

matching designated by any path in T(c) is compatible with

the original matching a,, since only nodes unmatched by a,
can appear as labels in T(c).

Case I: Some path p in a tree T(c) leads to a leaf labelled

307



with the standard node 0...0, indicating that f(c) = 0...0.
Then we set a,+ 1 = u, U a, where a is the partial matching

designated by the path to this leaf. This insures that c is
a legitimate answer to our current query to PIGEON, and

we answer that query with c.

We say that a path p in tree T(c) is consistent with a

path p’ in T(c’) if p and p’ designate compatible matchings.

Case II: There are consistent paths p and p’ in distinct

trees T(c) and T(c’) such that p and p’ have the same leaf

label. Then we set 0,+1 = a, U u U a’, where a and u’ are the

partial matchings designated by p and p’. This insures that

~(c) = ~(c’), so (c, c’) is a legitimate answer to our current

query to PIGEON, and we answer that query with (c, c’).

The lemma below insures that for sufficiently large n,

either Case I or Case II must hold. Thus we have described

for all cases the partial matching u, associated with step z

of M‘s comput at ion. When &f completes its computation

after, say m steps, and outputs a node y in G, the par-

tial matching cr~ contains only polynomial in n edges, and

whenever G extends this partial matching and we answer

queries to PIGEON as described, the computation of M

will be determined and the output will be y. In particular,

we can choose a G consistent with u~ in which y is not a

lonely node, so ill makes a mistake. ❑

Lemma 4: Suppose that the nodes comprising potential

queries and answers in the matching decision trees described

above come from a set of size K, and each tree has height

k. If K > 4k2, then either Case I or Case II must hold.

Proofi Suppose to the contrary that neither Case I nor

Case II holds. We think of the strings in the domain off as
pigeons and the leaf labels as holes. If there are N possible

pigeons 1,...,N then we have N trees T1,...,TN and N – 1

possible holes 1,..., N – 1 (recall 0...0 is not a possible leaf

label). If path p in tree T, has label j, then pigeon i gets
mapped to hole j under any partial matching consistent with

p. All trees have height at most k.

We say that a path p extends a path p’ if the partial

matching designated by p extends the partial matching des-

ignated by p’. Also, given some tree T of height h and path

p of length t such that 2(h +/) < K, the tree, T restricted by

p, is obtained from T by collapsing all edges in T determined

by p and pruning all edges in T inconsistent with p. Observe

that the condition on K ensures that some consistent path

remains so that the result is still a matching decision tree

defined on the nodes of G with those vertices matched by p

removed.

We will show how to construct a new collection of consis-

tent “hole” matching decision trees HI, . . . . HN - I with pos-

sible leaf labels 1 ,..., N and “unmappecT. The construction

is very similar to an axgument due to Riis [Rii93] which is

a natural analogue of the ‘Blum trick’ (see [I N88]) showing

that if a Boolean function and its negation both have terms

of length < d in disjunctive normal form then the function
has a Boolean decision tree of hei~ht ~ d2.

Fix j < N – 1. We construct hole tree Ifj as the culmi-

nation of a sequence of trees H:, . . . . H: = Hj. Let PJ be the
set of all paths in pigeon trees with leaf label J“. (Since Case

II does not hold, the paths in PI are mutually inconsistent.)

Each tree H; will have its leaf labels determined by the fol-

lowing rules: Let p’ be a path in H;. (1) if p’ extends some

path in Pj that comes from pigeon tree T, then p’ has leaf

label i; (2) if p’ is inconsistent with all paths in P~ then p’

has leaf label ‘unmapped’; (3) otherwise p’ has no leaf label.

Tree H: will have height at most 2kt and every path in

P3 will be consistent with some path in If:. Furthermore

any path p’ in H; without a leaf label will have the property

that every p c PJ that is consistent with p’ will designate

a matching that shares at least t edges with the matching

designated by p’.

We begin by letting If: have height O. Suppose that we

have constructed H;. We form ~~+1 from H; by appending

a tree of height at most 2k to each unlabeled leaf of H; as

follows. Let path p’ in H; have no leaf label. Choose some

p c PJ that is consistent with p’. Append a tree T to p’

with the property that every path from the root of H; to a

leaf of T has an associated matching which matches all the

nodes matched along the path p. Clearly, at most 2k queries

are needed along any path in T. Observe also that any path

q G P~ that is consistent with p’ will be consistent with one

of its extensions in T.

Now consider any path q’ in ff~+l that extends path p’

and has no leaf label in H:+ 1. Let q be any path in PJ con-

sistent with q’. Clearly q-is also consistent with p’. Since

q’ matches all vertices matched in p but has no leaf label, p

must be inconsistent with q’. It follows that q # p and thus

p and q are inconsistent. Since the matching for q’ matches

every node matched along p, the matching for q’ must con-

tain some edge witnessing the inconsistency of p and q. That

edge must be consistent with q and in the portion of q’ in

T since the remainder of q’, p’, is consistent with p. Now p’

had no leaf label so by hypothesis its associated matching

in H; shared at least t edges with q. With the additional

common edge just found we have, as required, at least t+ 1

edges in common between the matchings associated with q’

and q. Thus ff~+ 1 satisfies the desired properties.

At the end if the construction, the properties imply that

HJ = H? will have height at most 2k2, labels on all of its

leaves, and for any path p, with leaf label J in a pigeon tree

T, there is a path pj in hole tree H3 such that pj extends p,.

Each ~ath in tree H, has lendh at most 2k2. We now

extend a~ paths in Hj ~y addln~ ‘dummy queries’ so that

each path has length exactly 2k2. (The outcome of each

dummy query is ignored, and the leaf label of each extended

path is the former label of its ancestor. )

Now extend every path p, in pigeon tree T, with leaf

label j by the tree (H3 restricted by p,). Every path so

extended retains leaf label j. After this step all paths in all

~i~eon trees T. and all hole trees H. have the same length
.“ J

2k2. Further we have maintained the property that for any

path p, with leaf label j in a pigeon tree T, there is a path

Pj in hole tree Hj such that Pj extends Pt and has leaf label
i.

Thus there is a one-one maD from ~aths in ui~eon trees
.“

to paths in hole trees. But this’ is impossible, because there

is one more pigeon tree than hole tree, and all trees have

the same number of paths. ❑

From Theorems 1, 2 and 3 we conclude

Corollary 5: PPAG ~ PPPG for any generic oracle G.

3.2 PPPG is not included in PPADSG

Using the same technique, we can also show that PIGEON

is not reducible to SINK. Now we construct inputs (CY,x)

to PIGEON in such a way that each can be viewed as a

mapping f from [0, N] to [1, N] with the property that the

mapping is one-to-one on all but one element of the range.

308



For each query to SINK, and for each node c in the directed

graph D, the computation of M* to determine @(c) can be

expressed via a tree T(c) whose nodes query the function

f. The outcome of a query u is the unique element v such

that j(u) = v. As in the previous proof, the paths in Z’(c)
describe partial matchings from [0, N] into [1, N]. (We are

only interested in these paths, since they are the ones that

evade an answer to the PIGEON problem. )

The leaves of T(c) are labelled by the output of M’. For

vertex c, the notation {c’ ~ c, c + c“} means that there

is an edge from c’ to c, and an edge from c to c“ in the

underlying graph D. Either c’ or c“ may have the value

0, indicating that c is a source, or respectively, sink vertex.

Note that because the standard node O is a source, all leaves

of T(O) are labelled {0 ~ O, 0 + c“}. We want to show

that either the trees T(c) are inconsistent, or that there is

some vertex c and some path p in T(c) such that at the leaf

label of path p, vertex c is designated as a sink.

For every vertex c, except for the standard source vertex,

O, we will make two copies of T(c); the two copies will be

identical except for the leaf labelings. If a path p in T(c) is

labelled {c’ + c, c ~ c“}, then the path p in the ‘(domain”

copy of T(c), T1 (c), will be labelled by c + c“, and the path

p in the “range” copy of T(c), Tz ( c), will be labelled by

c’ + c. For vertex O, there is only one copy, the “domain”

copy. Thus, we have one more tree representing “domain”

elements than trees representing “range” elements. Assume

for the sake of contradiction that all trees are consistent, and

that for every path in every domain tree, T1 (c), the leaf label

is c -+ c“, for some c“ not equal to 0. As in the previous

argument, we will extend the trees so that: each tree has

the same height k, and furthermore, there is a 1-1 mapping

from paths in the domain trees to paths in the range trees.

(This is done by first extending every path p in range tree

Tz (c) with leaf label c’ ~ c, c’ # 0, by the tree (T1 (c’)

restricted by p). Then, all range trees are extended to the

same height by adding dummy queries. Finally, every path

p in domain tree T1 (c) with leaf label c +- c“, is extended

by the tree (Tl (c”) restricted by p).) But this violates the

pigeonhole principle, because there are more domain trees

than range trees, and the total number of paths in every tree

is the same. Thus, the machine cannot solve PIGEON.

3.3 PPADSG is not included in PPAG

In section 3.1 we reduced our separation problem to a purely

combinatorial question, namely to show that a family of

matching decision trees with certain properties could not

exist. In this section we again reduce our problem to a

similar combinatorial question with a somewhat different

kind of decision tree. This question is more difficult than our

previous one and we need to apply a new method of attack,

introduced in [BIK+94], that is based on lower bounds on

the degrees of polynomials given by Hilbert’s Nullstellensatz.

More precisely, we show how we can naturally associate

an unsatisfiable system of polynomial equations {Q,(z) = O}
over GF[2] with each family of decision trees with the spec-

ified properties. By Hilbert’s Nullst ellensat z, the unsatisfi-

ability of these polynomial equations implies the existence

of polynomials P, over GF[2] such that ~, P, (z)Q; (z) = 1.
However, our association shows something stronger, namely

that if the family of decision trees exists then these coeffi-

cient polynomials must also have very small degree (logo(l) n
where n is the number of variables. )

Finally, in the technical heart of the argument, we show

that for the family of polynomials we derive, Pfi’Pfl+s,

any coefficient polynomials allowing us to generate 1 require

large degree, at least nl f4. This is an interesting result in its

own right since the bound for the coefficients of the system

in [B IK +94] was only Q (log* n). We give the proof of this

result in the next section.

Theorem 6: SINK is not reducible to LONELY.

Proofi Suppose to the contrary that SINh < LONELY.

We proceed as in the proof of Theorem 3, except now the

reducing machine M takes as input (a, x) which codes a

directed graph G = GD(a, n), where n = Izl, makes queries

to the oracles a and LONELY and finally outputs a sink

node in G. Our task this time is to find a and x and answers

to the queries to LONELY so that M’s output is incorrect.

We will need a couple of convenient bits of terminol-

ogy. Recall that GD is a directed graph of maximum in-

degree and out-degree at most 1. We will call such graphs f-

digraphs.) A partial I-dtgraph r over a node set V is a partial

edge assignment over V. It specifies a collect ion, E = E(n),
of edges over V, and a collection V’””’ce (: V such that

G(V, E) is a l-digraph and for v ~ V“””’c;- = V’””’c’ (m)

there is no edge of the form u s v in E. The set E in-

dicat es ‘included edge’, the set V’Otirce indicates ‘excluded’

edges. The size of a partial Migraph is IE u V’””’”\.

Fix some large n and some x of length n. The nodes of G

are the non-empty strings of length n or less, and the edges of

G are determined by the values of a(v) as befcn-e and a(O...O)

tells us that O...0 is a source. The computation is simulated

as in the proof of Theorem 3 except that we build a partial

l-digraph a, containing only a polynomial number of edges

and we consider queries (,6, z) to LONELY. In this case

we must return a lonely node in the graph G,Vf = GM(P, Z)

(c = 0...0 if 0...0 has a neighbor) where /3 is defined in the

usual way by machine M”. We will show that a possible

value of c can be determined by adding only polynomially

many edges to u, and without specifying a sink node in G.

Again, there is a natural notion of consistency that we can

assume holds without loss of generality.

We first obtain a collection of trees in a similar manner

to that of the proof of Theorem 3. For node c in graph GM,
the computation of M* can be expressed as a function of

the graph G via a tree T’(c) whose nodes query the graph

G. Without loss of generalit y, G can be accessed via queries

of the form (pred, v), and (SUCC, v), where v is a node of G.

The outcome of a query (pred, v) is an ordered pair w ~ u

indicating that there is an edge in G from w to u; similarly

the outcome of a query (WCC, v) is an ordered pair w + w

indicating that there is an edge in G from v to w. In either

case, w can be 0, indicating that u is a source in the first

case, or a sink in the second case. For a given query there

is one outcome for each vertex w (or 0) except when such a

label would violate the rule that the edge labels on a branch,

taken together, produce a l-digraph. Each leaf in the tree

T’(c) is labelled to indicate the output of M*, namely an

unordered pair {c, c’} indicating that node c is adjacent to

node c’ in the undirected graph GM, or 0 indilcat ing that c is

lonely. The height of each T’(c) is bounded by the runtime

of M*, say 1’, which is in turn bounded by some polynomial

in n.

For each node c, we first prune the tree T’(c) defined

above by removing all branches with outcome u ~ 0 on

any query. That is, we restrict our int crest to situations in
which the oracle a evades the answer ‘[u is a sink vertex”.

The rest of the argument of this section shows that, because

of the consistency condition on M*, there is some node c

309



such that tree T(c) must have a leaf designating that c is a

lonely node. We will argue by contradiction that for some

node c # O...0 for which T(c) has a leaf label indicating that

c is a lonely node of GM.

Assume that none of the leaves of T(c) for c # O...0 have

label 0. Let N be the number of nodes in G minus 1 (for

0...0) minus the size of a,. Let s = [V’”tirce(u,)l + 1. Thus

there are N + s nodes that can appear in internal labels on

the trees, s of which are guaranteed to be sources. The set

of edge labels along any branch of T(c) forms a partial 1-

digraph of size at most 1 on these N +s nodes. Thus we call

each such tree T(c) a I-digraph decision tree. Let T be the

collection of trees T(c) for all nodes c in GM, We identify

a branch in a l-digraph decision tree T with the partial 1-

digraph determined by its edge labels and define br(T) to

be the set of branches of T.

We call two partial l-digraphs a and ~ compatible if a U T

is also a partial l-digraph. Notice that since /3 is consistent,

the collection ‘T is also consistent That is, if a is a branch

of T(c) with leaf label {c, c’} then all branches ~ in T(c’)
that are compatible with u must have leaf label {c, c’}, and

vice versa.

Given a consistent collection T, we can define a new
collection of l-digraph decision trees ~ = {T* (c) I c #
O.. .0} that satisfies an even stronger consistency condition:

For each node c, define T* (c) to be the result of of the fol-

lowing operation: For each c’ and each leaf of T(c) labelled

{c, c’} append the tree T(c’) rooted at that leaf and node

and simplify the resulting tree. Remove all branches incon-

sistent with a and collapse any branches that are consistent

wit h cr. (For example, if v contains the edge u ~ v, and an

internal node of T(c’ ) is labelled with the query (s UCC, u) or

(pred, u), then we replace that query node by the subtree

reached by the edge labelled u ~ u.) Note that since the

original collection T was consistent, all new leaves added

below a leaf labelled {c, c’} will be correctly labelled {c, c’}.

Furthermore, if ~ is the label of a branch in T* (c) with leaf

label {c, c’}, then ~ is also the label of a branch in T* (c’)

with leaf label {c, c’}. Note that all the trees in ~ now
have height at most 1 = 21’ and that M = IT’ I is odd.

Such a collection ‘T* is very similar to the generic sgstems

considered in [BIK+94].

Reducing the combinatorial problem to a degree lower bound

Given the partial l-digraph a,, we can rename the nodes of

the oracle graph GD as follows: Remove all cycles in E?(at )

from GD; remove all internal nodes on any path in E(o, )

and identify the beginning and end vertices of any such path;

rename all source nodes as N+ 1, ..., N+s with the standard

source as N + 1; rename all remaining non-source nodes to

1 ,.. ., N, We assume from now on that the internal labels

of the trees of ~ have been renamed in this manner.

We will now show that if this collection of l-digraph de-

cision trees ~ exists then there is a particular unsatisfiable
system of polynomial equations whose Nullstellensatz wit-

nessinging polynomials have small degree. This system is

the natural expression of the sink counting principle for 1-

digraphs that guarantees the totality of SINK.

DEFINITION 3.1: Let S:+s be the following system of poly-

nomial equations in variables x, ,j with z E [0, N + S], J c

[l, N]:

one for each z ~ [1, N + s], and

( ~ Zt,,)-l=o
CEIO,N+S]

one for each j ~ [1, N], and

X2,3 .Xt,k = o

one for each i c [l, N+ s], y # k, j,k c [l, N], and

X,, k . Z]lk = o

one for each i # j, i,j c [O, N+ 1], j c [l, N].

The variables X,)3 describe a dh-ected graph on vertices

[1, N+s] with vertices [N+ 1, N+s] guaranteed to be source

vertices. The variable x, ,J, i # O, describes whether or not

there is an edge from z to ~. The variable zo ,k indicates

whether or not vertex k is a source vertex. A solution to the

above equations would imply that there is a l-dlgraph with

source vertices but no sink vertex. Since this is impossible,

there cannot exist a solution to S;+s.

Write SN+S = {Q;(E) = 0},. We call any expression of

the form fl,~t’(z)Ql(z) where the ~i(~) are polynomials
a linear combination of the Q;. The degree of such a lin-

ear combination is the maximum of the degrees of the Pi

polynomials. (We say that the polynomial O has degree -l.)

We now show that if the collection T* exists then there is a

linear combination of the Q:’s over GF[2] that equals 1 and

has degree at most 1 – 1. (Such a result, without the degree

bound, would follow directly from Hilbert’s Nullstellensatz.)

Given a partial l-digraph T over [1,. . . . N +s] with [N+

1, N + s] as source vertices, the monomial

is the natural translation of ~ into the polynomial realm

(X= = 1 if n is empty.)

Lemma 7: Let T be a l-digraph decision tree of height at

most 1 over a set of size N and that 21 < N. Then the

polynomial p~(~) = ~Te~,(~) X. – 1 can be expressed as

a linear combination of degree at most I — 1.

Proofi The proof proceeds by induction on the number

of internal vertices of T. If T has no internal vertices then

it has one branch of height O, P~(~) = O, and all coeffi-

cient polynomials in the linear combination are O which is

of degree -1. Thus the lemma holds in this case.

S~ppose now that T has at least one internal vertex and

has height 1. Then it has some internal vertex v all of whose

children are leaves. Let ir be the partial l-digraph that labels

the path from the root of the tree to . and let T’ b. the 1-

digraph decision tree with the children of v removed (the leaf

label of v in T’ will be immaterial.) Applying the inductive

hypothesis to T’ which has one fewer internal vertex than

T, we get that P~J (z) is some linear combination of the Q:

of degree at most 1 — 1.

The difference between PT (z) and PT) (z) is that we have

removed the monomial for the branch r in T’ and replaced it

by the sum of the monomials for all branches in T extending

n. Note also that Xm has degree at most the depth of v which

is at most 1— 1.

310



We have two cases to consider. If v is labelled with the

query (pred, J for some j G [1, N] that has no predecessors

in E(T) and is not in V’””’’’(m) then

PT(Z) = Pp(z) +x. . ( ~ X*,J – 1)

:e{o}us

where S is the set of all z 6 [1, N +s] that have no successors

in E(n). It is easy to see that for any z & [1, N + s] – S,

Xn . X,,j is a degree at most 1 – 2 multiple of some Zk,j . ~i,j

‘0 XT “ &l, N+s]\s x, ,J is a linear combination of degree at

most t — 2. Then

is a linear combination of degree at most 1 – 1 since

EG,O,N+SI ‘*J – 1 is one of the Q’ polynomials. Thus P~(z)

also-k’ a ‘hnear combination of degree at most 1 – 1.

Similarly, if w is labelled with the query (SUCC,i) for some

z ~ [1, N + s] that has no successors in E(~) then

where S’ is the set of all j“ ~ [1, N] that have no prede-

cessors in E(m) and are not in V’””’’’(m). Again XT

Z* E[,,N]-9 ‘LJ is a linear combination of degree at most

t–2 and

is a linear combination of degree at most 1 – 1 since

&,N] ‘t, - 1 is one of the Q’ polynomials. Again it

follows that PT (i) is a linear combination of degree at most

1–1.

The lemma follows by induction. ❑

Lemma 8: Surmose that ‘V exists as defined above. Then

~Te7 ~.ebr;;) X= = O over GF[2].

Proofi By the definition of T*, for T = T*(c) E T any
r G br(7’) has some leaf label {c, c’} and such that we also

have n E br(T* (c’)) with leaf label {c, c’}. This association
pairs two copies of every branch in T* so every X. appears

an even number of times in the desired sum. Thus over

GF[2] the sum is O. ❑

Corollary 9: If T’ exists as defined above then, over GF[2],

there are P:(z) of degree at most 4 – 1 such that
~, P/(z) Q;(E) = 1.

Proof: Defining PT (z) as in the statement of Lemma 7

we have

TET* TcT” m6br(T)

= (~ ~ X.)-17 -*I
TG’r. =ebr(q

= -IT*I
= 1

where the next to last line follows by Lemma 8 and the last
line follows since IT* ] is odd. By Lemma ‘7, ~TeT* P~(z)

is a linear combination of degree at most 1 –- 1 and we obtain
our desired result. ❑

It remains to show that there cannot exist small degree
P: such that ~, P/Q~ = 1 over GF[2]. We first argue

that there is a simpler subset of the equations in S;+’,

?71’P~+’ = {Q,(z) = O}, such that For any d, >1, for any
linear combination of the Q; of degree at most d that equals

1 there is also a linear combhation of the Q, of degree at
most d that equals 1. We then argue our de~~ree lower bound

bin terms of the Q;. The equations in P%!’P ~+s are the nat-

ural encoding of the the pigeonhole principle stating that
there is no function from a set of size N + s to a set of size

N.

DEFINITION 3.2: P?I!P~+s is the following system of poly-
nomial equations in variables X,,j with z G [1, N + s], j c

[l, N]:. .
(~ Z*,,) -1=0

jC[l,N]

one for each z c [1, N + s], and

one for each z E [l, N+ s], j # k, j,k c [l, N], and

Xz,k . Xj,k = O

one for each i # j, i,j G [l, N+ s], j 6 [l, N].

Lemma 10: Write S~+s = {QJ(z) = O} and P?lP~+’ =

{Q, (~) = 0}. For any d ~ 1, there is a linear combination of
the Q; of degree at most d that equals 1 if and only if there

is a linear combination of the Q, of degree at most d that

equals 1.

Proofi One direction is immediate. For the other direc-

tion, assume there exist polynomials P; of degree at most

d >1 such that X, P/(z)Qj (z) = 1. Now apply the substi-

tution ZO,, = 1 – (zI,, + . ..x~+l., ) to this linear combination.
First notice that it doesn’t change the degree of any coeffi-
cient monomials. There are two types of polynomials among

the Q[ that are not explicitly present among the Q,: The
first type is any ‘range polynomial’, i.e., m),, + ZI,, + . . . +
x~,, – 1. But thk becomes O under the substitution. The

second type is of the form ZO,, . Xk,t, for k >0. However, un-

der the substitution, the resulting combination is of degree 1
over the reduced system: [1 — (zI,, + . . . + z~,, )]. xk,, is equal

to Xk,, – z~,, plus a degree O combination of XJ,, . Xk,z for

O < j # k. Now Xk,t – x~,t is a degree 1 combination of the
domain polynomial for k m the reduced system and some of
the other polynomials since ‘$k,,(~~,l +Zk,:z + . . . +$k,~ – 1)
equals Zk,, —x;,, plus a degree O combination of Zk ,j . Xk,, for
j # i. Thus the degree of the combination in the reduced
system is at most d. ❑

By Theorem 12 proven in the next section we can now
complete the proof of Theorem 6. Combining Theorem 12

with Lemma 9 and Lemma 10 we have that the existence
of ‘T* implies that E z @. However, 1 is also polynomial

in n < log N which contradicts I > @ for n sufficiently
large. Thus the collection ‘T* as defined above cannot exist.
Our only assumption made to create the collection ~ was
that no leaf of any tree T(c) for c # 0...0 had the label

0. Therefore there is some branch r of some tree T(c) for

311



c # 0...0 with leaf label 0. It follows that a?+l = u~ U a
forces c to be a lonely node of GM. This allows us to fix

the computation of the reduction in the i + l-st step and by

induction we can force the reduction to make an error as in

the proof of Theorem 3. ❑

Corollary 11: PPADSG ~ PPAG for any generic oracle G.

4 A Nullstellensatz degree lower bound for P’?-lP{+’

In this section we prove the following theorem which is of

independent int crest.

Theorem 12: Write P’h!P~+s = {Q, (z) = O}. Over GF[2],
if ~$ p,(E) Q, (z) = 1 for polynomials P, then one of them

must have degree at least @ – 1.

Let P,(z) be polynomials over GF[2] of degree at most d.
We consider the class of assignments to the variables z that

correspond to bi-partite matchings in U;+’ = [1, N + .s] x
[1, N], and examine the behavior of ~, P,(z) Q,(z) under
such assignments.

Given a bi-partite matching M = {(z1, jl), . . . . (%, ~~)} C

U;+’ we naturally obtain the monomial XM = ~(,,,i=~ Z~,~
,,”, -

as well as the assignment such that X,,J & 1 if and only if

(i, j) c M. Any monomial that is not of the form XM- for
some bi-partite matching M will be O under all assignments

we consider so we ignore such terms without loss of gen-
erality. In particular, we will not need to consider the Q3

that give the degree 2 equations in 7%!P~+s. Therefore, we

can assume that we have the polynomial ~fls P, (z)Qt (E)

where Q,(z) = ~~=1 Z,,J – 1 and all monomials not of the

form XM- for so—m-e‘matching M have been removed. Let
the coefficient in P, of the monomial X~ corresponding to

matching M be ah.

DEFINITION 4.1: Matching M matches z if (z, J) ~ M for
some j c [1, N]. We write this formally as i c M. If i c M,

we write M — i for the matching M — {(i, j)} where j is

the unique value such that (i, j) 6 M. Let dom(M) = {i c

[1, N + s] I i c M} be the projection of M onto the first
co-ordinate.

Since we only consider assignments over GF[2], we can

assume that ah = O if i c M. The reason is that if M =
{(i, k)} U (M – z), then X~ = X~_, x,,~ and

XM. Q, = XM_, . X,,k . ( ~ X,,j – 1)
Je[l,N]

= XM-, . (Z:,k– Zt,k) = o

since X2 — z = O for all z ~ GF[2].

By considering assignments corresponding to each bipar-

tite matching M of size up to d + 1 in turn, we obtain an

equation over GF[2] for the coefficient of XM in ~~’ P,. Q,

so that the combination is equal 1 over GF[2]:

(1)

(2)

(3)

- I&,iv+s] %= 1

~;.iw “b-, - ~;@M ah = 0, for all matchings M on

U#+s with IMI s c1

~8~M ah-,=0, for au mat.hings M on u~’s with

Ikfl=d+l.

We will now show that the above system of equations

(l)-(3) has a solution over GF[2] if and only if there does

not exist a particular combinatorial design.

DEFINITION 4.2: Let M be a collection of matchings on U:+’

so that all matchings M c M match i c [1, N + s]. Define

M – i to be the set of matchings @~E~{M – i} where @

operates like U except that it only includes elements that

appear in an odd number of its arguments.

DEFINITION 4.3: A k-design for (l)- (.3) is a collection of

matchings, M, on U:+ S such that each matching in M

has size at most k and such that the following conditions

hold.

(a) The empty matching M = ~ is in M.

(b) The sets M. = {M c M I dom(M) = S} for S c
[l, N+s], ISI <k, satisfy M~_{,l = M.s – i.

Lemma 13: Equations (l)-(3) have a solution over GF[2]
if and only if there does not exist a d + l-design for (1)-(3).

Proofi We give the proof of the above lemma in the direc-

tion that we will need, although using basic linear algebra
the converse direction can also be proven.

Suppose we have a d + l-design M for (l)-(3) and a

solution for equations (l)-(3). We view the matchings M 6

M as selecting a subset of the equations in (1)-(3), since

there is one equation for each matching on U#+’ of size

at most d + 1. We consider the GF[2] sum of the selected

equations. Condition (a) in the definition of a (d+ 1)-design
requires that equation (1) is selected so the right-hand side

of the sum is 1.

We will show that condition (b) in the definition of a
(d+ 1)-design implies that the left-hand side of this sum is

O which is a contradiction. Consider the coefficient of ah

in the sum. It occurs once (with coefficient -1) if M 6 M.
Italso occurs once (with coefficient +1) for each j such

that M U {(i, j)} E M. We rewrite this in terms of S =
dom(M): There is a contribution of –1 if M c MS and

a contribution of +1 if there are an odd number of j such
that M U {(i, j)} G Msu{, }. The latter is true if and only

if M c Msu{t} – i. By condition (b) of the definition of a
(d+ 1)-design, MS = M~U{,} – i so the net coefficient of
~M .

, 1s0. ❑

We now state the conditions under which we can produce

designs.

Theorem 14: For any d such that N ~ (d~2) there exists

a (d+ 1)-design for (1)-(3).

By Theorem 14 if N > (d~z) = (d + l)(d + 2)/2, there

is a (d + 1)-design for (l)-(3) and thus by Lemma 13 there
is no solution to equations (1)-(3) and no polynomials P, of

degree d such that ~, P,. Q, = 1. This proves Theorem 12.
❑

The proof of Theorem 14 occupies the remainder of this
section.

DEFINITION 4.4: Let [N](k) c [N]k denote the set of k-
tuples from [1, N] that do not contain any repeated elements.
For any set S c [1, N + s], we can define a set of matchings

Ms by giving an associated set VS ~ [N]( ISl) with the inter-

pretation that if S = {ii ,.. .,ilsl} where zl<tz <.. .<il.q
then

Ms={((zl,.ii),.. . !(21SI, J” IS I)) I (31) J”2! . . . , js) G Vs}

312



We use the notation Ms = M(S, Vs).

The design that we produce will be symmetric in the

following sense. For any two sets S, S’ C [1, N + s] with

]Sl = 1S’[ we will have VS = VS. We will use the notation
V~ to denote VS for ISI = k. In order to describe our design

it will be convenient to define the following somewhat bizarre

operation.

DEFINITION 4.5: Let v 6 [N][k) and I s [l, k], 1 = {z1,. . .ZIII}

such that Z1 < zz s . . .ilrl. Let A ~ [N]([~lJ be such that no

element of v appears in any element of A. Define

v @IA = {x c [N](’) I 3W E A.V.j ~ III. X,, = W,

and Vi c [l, k] – 1. z, = v,}

This operation creates the set of tuples made by ‘spread-

ing out’ some tuple in A into the positions indexed by 1
and filing the remaining positions with the corresponding

entries from v. Note that if 1 = 0 then v @IA = {u} and

if 1 = [l, k] then v @rA = A.

DEFINITION 4.6: Let VO = {()}, the set containing the empt y

tuple.

For k >Olet v, = ((~) + 1,..., (’~’)) and define

Vk = u Vk @IVIII

Ic[l,k]

In order to understand this definition it

nient to represent each Set Vk as an arraY,

will be conve-

each of whose

columns is “a tuple in Vk, and listed so that the columns are

in order of decreasing size of the set 1 used in their construc-
tion. Using this representation, we have

v, = ()
VI = (1)

(
444212212441 4

V3 = 212555133515 5

133133666166 6 )

and so on.

DEFINITION 4.7: Let A c [N](k) and 1 g t ~ k. We define

A – i to be the projection of A onto the k – 1 co-ordinates
other than z where we cancel repeated tuples in pairs. That
is

A–i = {(~1, . . ..~l. ~,+1,1, ..., Zk) C [iV](k-l) \

#{Y c A : VJ #Z. YJ =z, }is odd}

By the definition; if A is the disjoint union of sets Al, . . . . A.

then A– i = @j=l(Aj – z).

The following is the key property of the sets vk.

Lemma 15: For k ~ 1 and any i E [l, k], vk – I = Vk-1.

Proofi The proof is by induction on k. For the base case,

VI = (1) so VI – 1 is {()} which equals Vo.

Now suppose that Vt – z = VZ_l for all 1 <1 < k and

z 6 [1, 1]. Consider Vk — i where z c [1, k]. It ~s clear that
the union in the definition of vk is a disjoint, union so

Vk – z = @rc[l,kl [(”k C3,MII) – Z]

Claim: Suppose that i < 1 and 1 U {z} C [1, k]. Then

(~k BIVIII) - ~ = (~k 81 U{ L} VIII+1) - i

Before proving the claim we first see that it is sufficient

to complete the induction. Consider the natural pairing

between the subsets 1 ~ [1, k] that do not contain i and

those subsets that do contain i, namely 1 is paired with
1 U {z}. Equation 4 has terms for both elements of every

pair except for the pair with 1 = [1, k] – {i} since there is no
term for 1 = [1, k]. By the claim, the contributions to Vk – z

from the elements of any of these pairs cancel each other out
so we have vk – t = (’Uk @[l,kl_{,}Vk–l) — t = t~–1 which

is what we needed to show.

Now to prove the claim, define v; to be vk with its i-th
component removed. Since a @ I, by the definition of @I

we have (Vk @I VIIl) — z = vi @IVIIl because all tuples in

Vk @IVIIl have the same i-th component, namely the i-th
component of Vk. On the other hand, by the definition of

81JIU{;} ‘ehave (Vk 81 U{, }vlIl+I)–i = ‘i @r(VIII+l–~)
where i is the j-th element of 1 U { i}. This follows because we
are first inserting the ~’-th component of each tuple in YI 1+I

into the i-th component of our new tuples (ignoring the i-th
component of ?Jk) and then removing that i-th component.

(All duplicates created in this process must be from tuples
in VI ~,+ ~ that disagree on the yth component but agree

everywhere else. )

Since z @ 1 and 1 U {i} C [l, k], we have III + 1 < k.

Therefore, by the inductive hypothesis, VI 11+1 – j = VIII

and thus

(~~ 81 U{,} VIII+1 ) - i = v} @I(VIIl+l -~)

= VL @lVl,rl

= (~k @lVIIl) - z

which proves the claim. ❑

Lemma 16: Assume that N ~ (~~2). For every S C [N+s]

with IS[ s d + 1, define MS = M(S, V1. q). Then M =
USMS is a (d+ I)-design for (l)-(3).

Proof: We first observe that for any k, V~ contains entries

from [1, (k~l)] so N ~ (~~2) implies that V~ is well defined

fork~ci+l.

For condition (a) of the definition of a (d+ 1)-design for

(1)-(3), observe that MO = M(O, Vo) = M(O, {()}) = {4},
where ~ is the empty matching and so @ c M.

Let SC IN+s], lSl~d+landz ES. Write S=
{i,,... ,i,}for k~d+l, where i,<i’<<z~ andsup -

pose that i = ZJ. Interpreting the definitions and applying

Lemma 15 we have,

Ms–i = itf(S, vk) – i = M(S – {i}, v~ –.7)

= M(S – {z}, V,k-1) = &f S_{,}

where the second equality follows because both the defini-
tions M — i and V — j use the same ~ operator. Thus

condition (b) of the definition of a (d + 1)-design holds and
the lemma follows. ❑

This proves Theorem 14.

313



5 Search vs decision

We now show that our focus on search problems as opposed

to decision problems is necessary. Define NP2 and CONP2 to

be the type 2 analogs of NP and CONP (in the same way that

FN P2 is the type 2 analog of FNP.) It is easy to see that if a
decision problem D is polynomial-time Turing reducible to
some Q in TF N P2 then one can guess and verify answers to
the oracle queries to Q made by the reducing machine, so D
is in N P2 n CONP2. The next result shows that none of the

search problems introduced in Section 2 is computationally
equivalent to a decision problem.

Theorem 17: None of the problems SOURCE. OR. SHVK,
SINK, LEAF, or PIGEON is polynomial-time Turing re-

ducible to any decision problem in NP2 n CONP2.

Proofi We prove the theorem for LONELY, which by

Theorem 2 is equivalent to LEAF. The other cases are sim-

ilar.

Suppose that LONELY < D, where D c NF’2 n COPJF’2.
Since D c NP2, there is a polynomial time relation R(,B, z, w)
and a polynomial p such that (~, z) c D iff there exists w,

J-
such that WI < P(IZ 1) and R(,8, z, w) holds. Similarly since
D c CONP there is a polynomial time relation S such that

(@, z) is not in D iff there exists w, such that IwI ~ p(]zl)

and S(,B, z, w) holds.

Consider an input (a, x) to LONELY, and the corre-

sponding graph G. We proceed as in the proof of Theo-

rem 3, except now the interesting case is that step i + 1
makes a query (/3, z) to D instead of to PIGEON. Here ,6
is computed by a polynomial time machine M* with oracle
a, and we can combine M* with the machines computing

the relations R and S to obtain polynomial time machines
MR and MS which have an oracle for a instead of /3. Thus

the answer to the query (/3, z) is determined by a set T

= {TR(w), 7’S(W) : Iwl s P(IzI)} of small-height matching

decision trees, corresponding to the computations of the ma-
chines MR and M.s on various inputs w. The vertices of the

trees are labelled with queries to G and each leaf is labelled

with either ‘yes’ or ‘no’. Then (,8, z) c D iff there exists w

such that the path in TR(w) determined by a leads to ‘yes’,
and also iff for all w the path in 2X’(w) determined by a
leads to ‘no’.

Lemma 18: Let d be the greatest height of any tree in T.

Then there is a new decision tree of height at most 2d2 which
alone answers the question ‘is (,B, z) c D?’

Proofi We use a somewhat simpler version of the argu-

ment from Lemma 4 – in this case we are very close to the

argument in [IN88] adapted to matching decision trees. We

build up the new tree by successively choosing for each leaf
some new consistent path p in the tree TF?(w) leadlng to

a ‘yes’ and extending that leaf by a subtree whose paths
query all the vertices matched by p (there are at most 2%2of
them.) Since p must be inconsistent with every ‘yes’ path in
TS(W), querying the vertices matched by p will determine
the outcome of some new query along each consistent path
in TS(W). Thus, after d iterations the tree constructed has

enough information to make a decision for the function. ❑

By choosing any path in the new decision tree produced
by the lemma above, we can fix a small partial matching
a sufficient to answer the query (~, z) to D. Thus we set

at-l-l = u, U a. The rest of the proof is the same as for

Theorem 3. ❑

A related result in [IN88] (Proposition 4.2) states that

for some oracle A, PA = NPA n CONPA, but TFNPA is not

contained in FPA.

Acknowledgements

The authors would like to thank Christos Papadimitriou for
sharing his insights on these problems and for a number of

discussions that led to this work.

References

[B187] M. Blum and R. Impagliazzo. Generic oracles and

oracle classes. In 28th Annual Symposium on Foun-

dations of Computer Science, pages 118–126, Los

Angeles, October 1987.

[BIK+94] P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi,

[BP93]

[CIY95]

[IN88]

[JPY88]

[Pap90]

[Pap91]

[Pap94]

[PSY90]

[Rii93]

‘and P. Pudlak. Lower bounds on Hilbert’s NuIlst el-
lensatz and propositional proofs In 35th Annual

Symposium on Foundations of Computer Science,
pages 794-806, Santa Fe, November 1994.

P. Beame and T. Pitassi. An exponential sep-
aration between the matching principle and the

pigeonhole principle. In 8th Annual IEEE Sym-
posium on Logic in Computer Science, Montreal,

Quebec, June 1993.

S. Cook, R. Impagliazzo, and T. Yamakami. A
tight relationship between generic oracles and
type-2 complexity theory. In preparation.

R. Impagliazzo and M. Naor. Decision trees and
downward closures. In Third Anrmal Conference

on Structure in Complexity Theory, pages 29–38,

1988.

D. S. Johnson, C. H. Papadimitriou, and M. Yan-
nakakis. How easy is local search? Journal of Com-

puter and System Sciences, pages 79-100, 1988.

C. H. Papadimitriou. On graph-theoretic lemmata
and complexity classes. In 31st A nnuai Symposium
on Foundations o.f Computer Science, pages 794–
801, St. Louis, MO, October 1990.

C. H. Papadimitriou. On inefficient proofs of ex-

istence and complexity classes. In Proceedings of
the Jth Czechoslovakian Symposium on Combina-

torics, 1991.

C. H. Papadimitriou. On the complexity of the

parity argument and other inefficient proofs of ex-
istence. Jourrud of Computer and System Sciences,
pages 498–532, 1994.

C. H. Papadimitriou, A. S. Schaifer, and M. Yan-
nakis. On the complexity of local search. In Pro-
ceedings of the Twenty Second Annual ACM Sym-
posium on Theory of Computing, pages 438-445,
Baltimore, MD, May 1990.

Riis, S. Independence in bounded arithmetic. PhD.

Thesis, Oxford University, 1993.

314


