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Abstract 

We prove the first time-space lower bound tradeoffs for 
randomized computation of decision problems. The bounds 
hold even in the case that the computation is allowed to have 
arbitrary probability of error on a small fraction of inputs. 
Our techniques are an extension of those used by Ajtai 14, 51 
in his time-space tradeoffs for deterministic RAM algorithms 
computing element distinctness and for deterministic Boolean 
branching programs computing an explicit function based on 
quadratic forms over GF(2).  

Our results also give a quantitative improvement over 
those given by Ajtai. Ajtai shows, for certain spec$c func- 
tions, that any branching program using space S = o(n) 
requires time T that is superlineal: The functional form 
of the superlinear bound is not given in his paper. but 
optimizing the parameters in his arguments gives T = 
R(n log log n/ log log log n) for S = O(n'-'). For the same 
functions considered by Ajtai, we prove a time-space tradeoff 
of the form T = R(ndlog(n/S)/ loglog(n/S)). Inparticu- 
lar. for space O(n'-'), this improves the lower bound on time 
to R(nJ1og n/ log log n). 

1 Introduction 
The study of time-space tradeoffs for computational 
problems is fundamental to complexity theory. These 
tradeoffs were considered early in the history of com- 
plexity, and have continued to be an important area of 
research [9]. An important motivation for these investi- 
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gations was the observation that for some natural prob- 
lems such as sorting, algorithms were known that were 
extremely space efficient, and other algorithms were 
known that were very time efficient, but no known al- 
gorithm could simultaneously achieve the optimal time 
and space efficiency. Another motivation came from the 
general study of lower bounds where time-space tradeoff 
lower bounds can be viewed as milestones towards prov- 
ing nontrivial (superlogarithmic) space lower bounds for 
problems in P or N P .  

As with most lower bound problems in complexity 
theory, research divides into "uniform" and "nonuni- 
form" models. In the uniform setting, a series of recent 
papers have established limitations on Turing machines 
computing SAT. The first work along these lines was by 
Fortnow [14], which was followed by [I61 and [15]. The 
latter gives the best current result: any algorithm for SAT 
that runs in space requires time at least o(nQ'-') 
where 9 = (4 - 1)/2 and E is any positive constant. 
Although some of these lower bounds apply even to co- 
nondeterministic computation, none of them give any re- 
sults for randomized algorithms. 

In the nonuniform setting, the standard model is the 
branching program. In this model, a program for com- 
puting a function f(q,. . . , z,) (where the variables 
take values in some finite domain D) is represented as a 
DAG with a unique start node. Each non-sink node is la- 
beled by a variable and the arcs out of a node correspond 
to the possible values of the variable. Each sink node is 
labeled by an output value. Executing the program on 
a given input corresponds to following a path from the 
start node using the values of the input variables to de- 
termine the arcs to follow. The output of the program 
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is value labeling the sink node reached. The maximum 
length of a path corresponds to time and the logarithm of 
the number of nodes corresponds to space. This model 
is often called the D-way branching program model; in 
the case that the domain D is (0 , l )  is referred to as the 
Boolean branching program model. 

In this model (or more precisely an extension which 
permits outputs along arcs during the course of compu- 
tation), there was considerable success in proving time- 
space tradeoff lower bounds for multi-output functions 
such as sorting, pattern matching, matrix-vector product 
and hashing [lo, 7, 1,2, 171. However, these techniques 
fundamentally break down when considering decision 
problems. In the comparison branching program model 
(where the inputs are numbers and the tests at nodes are 
pairwise comparisons of inputs) there were strong re- 
sults obtained for the decision problem element distinct- 
ness [ l l ,  181. In the Boolean model, there is an exten- 
sive literature on various restricted read-k models ([ 131) 
which have strict limitations on the number of times that 
any one variable may appear on any path in the branch- 
ing program. 

Recently, the first results have been obtained for de- 
cision problems on unrestricted branching programs us- 
ing time more than n. In the D-way model, [8] exhib- 
ited a problem in P,  where the domain D grows with 
the number of variables n, for which any subexponen- 
tial size nondeterministic branching program has length 
R(nlog1ogn). In the Boolean case, they obtained the 
first (barely) nontrivial bound by exhibiting a problem 
in P and a constant E > 0 for which any subexpo- 
nential size branching program requires length at least 
( l + ~ ) n .  Extending techniques of [ 131 for bilinear forms, 
the lower bounds in [8] were shown for functions based 
on quadratic forms over finite fields. 

In a remarkable breakthrough, Ajtai [5] exhibited 
a P-time computable Boolean function (also based on 
quadratic forms) for which any subexponential size 
deterministic branching program requires superlinear 
length. Much of the technical argument for this result 
was contained in a previous paper of Ajtai [4, 31 which 
developed a key tool for analyzing the branching pro- 
grams. The earlier paper gave similar lower bounds for 
two non-Boolean problems whose input is a list of n bi- 
nary strings, each of length b = O(1ogn) bits long:(l) 
determine whether the list contains a pair of strings 
within hamming distance 6b for some fixed 6 > 0, and 
(2) determine whether the strings are all distinct. 

The basic approach of all of these papers was to show 
that any branching program of “small” length and size 
must accept a subset of inputs that form a “large” embed- 
ded rectangle, and then to demonstrate that some particu- 
lar functions don’t have large embedded rectangles. for 

syntactic read-k branching programs in [13]. The first 
lower bounds on embedded rectangle size for general 
branching programs of small size and length wits done 
by [8]. These bounds yielded the results from that pa- 
per mentioned above, and are also strong enough to give 
the hamming distance result of [4], but were not: strong 
enough to yield the element distinctness and Boolean 
function lower bounds. Ajtai obtained these bounds 
by proving an amazing combinatorial lemma that gave 
much stronger lower bound on embedded rectangle size. 
This directly gave his tradeoff results for element dis- 
tinctness and was the basis for the subsequent Boolean 
branching program lower bound. 

1.1 Our results 

In this paper, we extend Ajtai’s approach for determinis- 
tic branching programs in order to obtain the first time- 
space tradeoff results for (two-sided error) randomized 
branching programs, and also for deterministic branch- 
ing programs that are allowed to err on a small fraction 
of inputs. Previously, there were no known time-space 
tradeoffs even in the uniform setting for these modes of 
computation. Our results apply to randomized RAM al- 
gorithms as well. 

We also obtain substantial quantitative improvement 
over the previous results. More specifically, we show 
that, for the functions considered by Ajtai, any branch- 
ing program of subexponential size must have length at 
least Cl(n,/-). Ajtai does not explicitly give the 
functional form of his length bounds, but analyzing his 
argument gives at most an f2 (n ,~~$’~o~n)  bound. 

Finally, while our argument is heavily based on Aj- 
tai’s, our version is considerably simpler. 

One of the key aspects of both our extension and our 
simplification is to apply the basic approach developed 
in [8] of breaking up branching programs into collec- 
tions of decision trees called decision forests and then 
analyzing the resulting decision forests. This has the 
effect of applying the space restriction only once, early 
in the argument, rather than delaying the application of 
the space restriction until the end of the argument which 
complicates the analysis without fundamentally chang- 
ing its ideas. 

Our extension of Ajtai’s lemma shows that for a small 
deterministic branching program not only is there a large 
embedded rectangle of accepted inputs, but there is a 
set of large embedded rectangles of accepted inputs that 
cover almost all such inputs without covering any one in- 
put too many times. From this we show that if the given 
branching program agrees with a given target function f 
on all but a small fraction of inputs then there is a large 
embedded rectangle almost all of whose inputs are ones 
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off .  We obtain our lower bounds for random algorithms 
by strengthening Ajtai’s arguments about element dis- 
tinctness and the quadratic forms to show that, not only 
do the functions not accept any relatively large embed- 
ded rectangle, they reject a large fraction of inputs in any 
such rectangle. 

2 Definitions 

Throughout this paper D denotes a finite set and n a pos- 
itive integer. We write [n] for the set { 1, . . . , n}. For 
finite set N ,  an N-ary input over domain D is a point x 
in D N ,  the set of maps from N to D.  An element of N 
is called a variable index or, simply, an index. We nor- 
mally take N to be [n] for some integer n, and write Dn 
for D[”]. 

If A C N, a point U E D A  is a partial input on 
A. For a partial input o, fixed(o) denotes the in- 
dex set A on which it is defined and unf ixed(a) de- 
notes the set N - A. If o and T are partial inputs with 
f ixed(o) fl f ixed(T) = 8 then UT denotes the partial 
input on f ixed(a) U f ixed(n) that agrees with o on 
f ixed(o) and with 7r on f ixed(a). 

For x E D N  and A C_ N ,  the projection X A  of x 
onto A is the partial input on A that agrees with x .  For 
S E D N ,  SA = { X A  : x E S}. For a partial input U ,  

D N ( o ) ,  the set of extensions of o in D N ,  is {z E D N  : 
xtired(n) = 

A product U x V of two finite sets is called a (com- 
binatorial) rectangle. If A C N is an index subset, and 
Y E D A  and Z C_ DN-A,  then the product set Y x Z 
is naturally identified with the subset R = {op : o E 
Y, p E 2) of D N ,  and a set of this form is called a rect- 
angle in D N .  This notion of rectangle has been used, for 
example, in the study of communication complexity in 
the “best-partition” model and in the study of read-once 
branching programs. 

We need a more general notion of rectangle. An em- 
bedded rectangle R in DN is a triple (B, A I ,  A2) where 
A1 and A2 are disjoint subsets of N and B C D N  sat- 
isfies: (i) The projection B N - A ~ - A ~  consists of a single 
partial input o, (ii) If 7 1  E B A ~ ,  7 2  E B A ~  then the point 
7 1 ~ 2 1 ~  E R.  B is called the body of R and AI and A2 are 
the feet of R. The sets R A ~  and R A ~  are the legs of the 
rectangle and U is the spine. Abusing terminology, we 
typically use the same letter for an embedded rectangle 
and its body, writing R = ( R ,  A I ,  A2). This could cause 
trouble if we needed to refer to two rectangles with the 
same body but different feet, but this will not come up in 
this paper. 

We can specify an embedded rectangle by its feet, legs 
and spine. Let A1 and A2 be disjoint subsets of N ,  Y1 
DA1 and Y2 C DA2,  and U be a partial input on N - 

A1 - A2. Then the set ( 7 1 7 2 ~  : 7 1  E Y1,72 E Y2) 
is the body of the unique embedded rectangle with feet 
(Al ,A2) ,  legs (Yl,Y2) and spine o. 

For an embedded rectangle R = ( R ,  A I ,  Az), and j E 
{1,2} wedefinem,(R)tobeIAj(.Ifml(R) = m z ( R )  
we say that R is a balanced rectangle, and define m( R )  
to be the common value. We also define cuj ( R )  is defined 
to be ( R A ~  I/IDAj I, and the leg-density of R, a ( R )  to be 

For later reference, we note an easy technical fact: 

Proposition 1. Let ( R ,  A I ,  A2) be an embedded rectan- 
gle, let B1 C_ A I ,  and let S > 0. Then there is a collec- 
tion R of disjoint embedded rectangles contained in R 
that together cover at least a (1 - 6 )  fraction of points 
of R, and such that each Q E R has feet (B1, Az), and 
satisfies cu~(Q) = cu2(R) andal (Q)  2 &q(R). 

min{w, (RI, Q2(R)).  

We use the standard definitions of deterministic 
branching programs as described in the introduction. We 
say that a branching program is inquisitive if on every in- 
put x ,  the path followed by x reads all of the variables of 
x. We view randomized branching programs as distribu- 
tions over deterministic branching programs; this model 
is at least as powerful as the model in which the pro- 
grams contain explicit random choice nodes, and thus 
our results apply to both models since we prove lower 
bounds. 

A decision tree is a branching program B whose un- 
derlying graph is a tree. Every function on n variables 
is computable by a deterministic decision tree of length 
n. Following common practice, the length of a decision 
tree is referred to as its height. 

A decision forest is a set of decision trees. More pre- 
cisely for domain D and integers n and T and E > 0, 
an n-variate (r,~)-decision forest F over D is a col- 
lection of at most T decision trees such that each tree 
is an n-variate tree over domain D and has height at 
most En. F is viewed as a function on Dn by the rule 
F ( x )  = A ~ ~ ~ T ( x ) .  A decision forest F is inquisitive 
if on every input x, for each i E [n]. at least one of the 
trees T E F reads xi. 

3 Main Decomposition Theorems 

3.1 Overview 
The main approach taken in [8, 4, 51 for proving time- 
space tradeoff lower bounds is to show that if f can be 
computed by a branching program running in time T and 
space S, where T and S are suitably small, then f must 
evaluate to 1 on some embedded rectangle R whose feet 
and leg-density are both large. Roughly speaking, large 
feet means that m ( R )  = pn where /3 is a function of 
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T / n ,  and large leg-density means a(R) > IDI-W(m(R)) 
where w(m)  is small enough compared to m. 

The first step in showing the existence of these em- 
bedded rectangles is to view a branching program of 
length kn as divided into r >> k layers, each layer con- 
sisting of roughly Sn consecutive levels, and to focus on 
the impact of the space limitation only at the boundary 
between these layers. This echoes the approach used for 
multi-output problems, starting with [12, 101, but in the 
multi-output case the argument relies heavily on the fact 
that for each input, there must be a layer that produces 
at least a 1/r  fraction of the output for that input, which 
allows one to derive a contradiction by restricting atten- 
tion to a single layer. In the case of decision problems, 
we must maintain the connection between the different 
layers. We do this by using the decomposition from [8] 
of any branching program into a disjunction of decision 
forests (Lemma 2). 

There are two main differences between our results 
and previous results for decision problems. First of all, 
we obtain substantially larger values for the feet and leg- 
density of the obtained rectangles. Secondly, we show 
that not only is there one large embedded rectangle in 
f -’ ( 1 )  but there is a collection of such embedded rectan- 
gles that together cover almost all the inputs on which f 
outputs 1, and such that no input is covered more that 2k 
times. This allows us to prove lower bounds for random- 
ized and distributional as well as deterministic branching 
program complexity. 

We summarize the relationships between the different 
results in Figure 1. In each case, we assume that we 
begin with a D-way branching program that accepts a 
6 fraction of all inputs in Dn. Each result shows that a 
branching program for some function f running in time 
T = kn and space S admits a large embedded rectangle, 
whose feet are each size at least pn where p = p(k) 
and whose leg-density is at least a = 2-X(@n-sr where 
X is a nonnegative function of p and r is a function of 
k. In the first three lines of the table, the guaranteed 
rectangle consists entirely of points in f - l ( 1 ) .  In the last 
case, where the branching program is randomized with 
2-sided error E, the guaranteed rectangle may contain a 
small fraction of 0’s. The last column gives the size of 
D and range of k for which the rectangle bounds can 
be used to get linear space bounds for explicit functions. 
The restriction on D in the first line comes from the fact 
that to get a nontrivial tradeoffs we need that 2X(b)n is 
“sufficiently small” compared to 00” .  The upper bound 
on k in each row is because the lower bound on space is 
roughly 5.. 

In section 3.2 we describe the decomposition into de- 
cision forests and in section 3.3 we show how to find the 
appropriate partitions into embedded rectangles within 

each decision forest. We derive the key theorems con- 
cerning branching programs in section 3.4. 

3.2 Decomposition into Decision Forests 
The following lemma is a minor variant of one proved 
in [8]. 

Lemma 2. Let k E R and n ,  s E N and D be afinite set. 
Let B be an (inquisitive) n-variate branching pi-ogram 
over domain D having length at most kn and size tzt most 
s. Then for any integer-r E [k, n],  the function f com- 
puted by B can be expressed as: f = v:=’=, Fi, where 
U 5 s’, each Fi is an (inquisitive) ( r ,  %)-decision for- 
est, and the sets FF1 ( 1 )  are pairwise disjoint setas ofin- 
puts. 

3.3 Finding large embedded rectangles in 
decision forests 

Throughout this section, D is a fixed finite domain, n 2 
T 2 k 2 1 are integers and F is a fixed inquisitive D- 
way (T,  k/r)-decision forest over index set [n] .  For input 
x E Dn and decision tree T we define read(x, T )  to be 
the set of indices read by T on input x .  For F1 C F ,  
read(x, F1) = UTEq read(x, T ) .  

Our goal is to cover F - I ( l )  by large rectangles, 
where “large” means that both the feet and leg-density 
are suitably large, as described in Section 3.1. Our 
first step is to show that any pair ( F I ,  F2) of disjoint 
subforests of F is naturally associated with a partition 
R(F1, Fz) of F - l (  1) into embedded rectangles. 

Let F1 and F2 be disjoint subsets of F, x E Dn and 
S C Dn. We define: 

0 core (x ,F l )  = read(z,Fl)-read(x,F--Fl), the 
F1-core of x ,  is the set of indices which on input x 
are read by at least one tree in F1 and by no tree out- 
side of F1. By our assumption that F is inquisitive, 
this is the same as [n] - read(x, F - F1). 

0 stem(x, F l ) ,  the Fl-stem of x, is the partial input 
obtained by projecting x to [n] - core(x,  Fl ) .  

0 stem(x,Fl ,F2)  is the partial input on [n] - 
core(x,  F1) - core(x ,  8’2) obtained from project- 
ing x .  

We now come to the key definition. We say that 
inputs x , y  E F - l ( l )  are (F1,Fz)-equivalent if and 
only if core (x ,F l )  = core (y ,F l ) ,  core(x,F2) = 
core(y ,  F2), and stem(x, F1, F2) = stem(y, Fl ,  F2). 
Let R( F1, F2) be the set of (F1, F2)-equivalence classes. 
For R E R(F1,  Fz ) ,  we write core(R,  F I )  for the com- 
mon value of core(x,  3’1) shared by all x E Rand define 
core(& F2) and stem(& F1, F2) analogously. 
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Figure 1. Results concerning existence of an embedded rectangle with m(R) 2 p n  and a(R) 2 2-X(fl)n-sr 
for a given branching program with time T = kn and space S that accepts a 6 fraction of Dn. 

Lemma 3. Let F be an inquisitive decision forest and 
let FI ,  F2 c F be disjoint subforests of F.  Let 
R E R(F1, a). Then R is an embedded rectan- 
gle with feet (core(R, F I ) ,  core(R, F2)) and spine 
stem(R, F1, F2). 

ProoJI: Let AI = core(R, F1) and A2 = core(R, F2) 
and cr = stem(R, F1, F2). By definition, AI and A2 are 
disjoint. Let Q be the embedded rectangle defined by A I ,  
A2, R A ~ ,  R A ~ ,  and U. Clearly, R 5 Q, and it suffices to 
show that Q 

Let z E Q. By definition of Q, there is a y1 E R 

Furthermore ZA,, = y:, = yAo - p. On input y l ,  each 
tree T E F - F2 reads only variables in [n] - A S ,  so 
each T E F - F2 behaves the same on z as it does on 
y l .  Therefore read(z, F - F2) = read(y', F - F2), 
and thus core(z, F2) = core(yl, F2) = A2 since F 
is inquisitive, and each tree in F - F2 accepts z since 
R C_ F- ' ( l ) .  By a symmetric argument, core(z, F1) = 
core(y2, F I )  = A I ,  and each tree in F - F1 accepts z. 
Thus z E F- ' ( l ) ,  core(z, F I )  = A I ,  core(z, F2) = 
A2, and stem(z, Fl,  F2) = p and thus z E R as re- 

R. Let Ao denote [n] - A1 - A2. 

such that Z A ~  = y i l  and a y 2  E R such that Z A ~  = yA2. 2 

2 -  

quired. 0 

Thus, each pair of disjoint forests F I ,  F2 induces a 
partition of F - l (  1 )  into disjoint embedded rectangles. 
However, we have no guarantee that for an arbitrary 
(F1, F2) the rectangles in R(F1, F2) are large. In fact, 
we will not be able to show that any one fixed pair 
( FI ,  F2) can guarantee large rectangles. Instead, we will 
show that almost every accepted input is contained in a 
large rectangle from R( F1, F2) for one of a small num- 
ber of pairs ( FI , F2). 

To choose the desired pairs of forests, we will an- 
alyze properties of the rectangle family corresponding 
to a pair of forests chosen at random. In [8], ( F I ,  F2) 
was chosen to be a random partition of F into two parts. 
Ajtai [4] used a more general parameterized family of 
distributions, and we use a variant of the ones he used. 
For q E (0,  f], let Fq be the distribution which chooses 

( FI , F2) by independently assigning each decision tree 
T E F as follows: 

with probability q 
T E { :  with probability q 

with probability 1 - 2q. F - FI - F2 

The distribution used in [8] corresponds to the case q = 

For x E Dn, let p(z,q) = E[lcore(z,F1)I] = 
E[lcore(z, F2)1] for (F1, F2) selected according to Fq. 
We now show that p(x,q) is a fairly large fraction of 
n,  and also that for each z, with high probability, both 
core(x, FI) and core(x, Fz) are close to p(x,  q). This 
lemma generalizes one proved in [8] for the q = 1 / 2  
case. 

Lemma 4. Let n 2 T 2 k and let F be an n-variate 
inquisitive ( T ,  Ic/r)-decision forest. Let 2 be any input. 
For any q, if (F1 , F2) is chosen according to Fq, then: 

(b)for each j E { 1 , 2 } ,  

1 / 2 .  

f a )  p b ,  4)  2 4". 

P r  [Ilcore(x, Fj>l - 4 x 7  dl 2 $42, 411 I * 4 t 2  

Thus when (F1, F2) is chosen according to Fq, for a 
"typical" x E F- ' ( l ) ,  the rectangle R = R(z, F I ,  F2) 
has ml(R) and m2(R) both close to p(x,q) 2 q'n. 
This gives us a collection of rectangles with large feet 
that covers most of F - l ( l ) .  If we only cared about the 
foot size, then we would clearly choose q = 1 / 2 ,  and we 
would essentially be done. However, we also want the 
rectangles in our family to have large leg-density. 

In the special case that all of the trees in F are oblivi- 
ous (that is, the choice of variables queried in a given tree 
depends only on the level and not on the path followed 
by the input) the value q = 1 / 2  suffices for large leg- 
density as well: In this case, the values of the cores do 
not depend on the choice of input and so, for any given 
pair (F l ,  Fz), all of the rectangles in R(F1, F2) have 
the same pair of feet ( A I ,  A2). Thus, by definition of 
R(F1, F2), these rectangles are determined only by their 
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spines a on [n] -A1 -A2. It easily follows that for q > 0 
all but at most 2171D"l points of F-'(l) are covered by 
rectangles of leg-density at least q since any rectangle R 
with a j (R)  5 q covers at most qlDllAll+lAzl inputs and 
there are only (Dln-IA1l-IAzl rectangles in R(F1, F2). 

In the general case, large leg-density is much harder 
to achieve and we need a more detailed understanding 
of leg-density. In a single class R = R(z, F1, F2), all 
inputs agree on the spine = stem(x, F1, Fz). In or- 
der for R to have large leg-density, both the Rcore(z,~i)  
must be large. In particular, it must be the case that for 
j = 1,2, for many assignments rj to core(x, Fj) ,  there 
are many inputs in F-' that extend arj and have the 
same F1- and F2-cores as x. Observe that for any such 
assignment, rj, arj is the F3-j-stem of many inputs y 
in R. Thus we consider how varying the inputs, subject 
to fixing their F1- or F2-stems, affects their F1- and F 2 -  

cores. 
We simplify this by observing that fixing an input's 

Fj-stem also fixes its Fj-core: 

Proposition 5. For any subforest F' of F, ifx, y E D" 
have the same value on stem(z, F') then core(y, F') = 
core(x, F') and stem(y, F') = stem(%, F'). 

Proof: Since x and y agree on all elements of [n] - 
core(x, F'), the computations of all trees of F out- 
side of F' are the same on x and y. Thus, in par- 
ticular, read(y,F - F') = r e a d ( x , F  - F') and 
so core(y,F')  = [n] - r e a d ( y , F  - F') = [n] - 
read(x, F - F') = core(x, F'). It then follows that 
stem(y, F') = s t e m ( z ,  F') since they agree on [n] - 

0 

Furthermore, we can analyze the inputs with different 
Fj-stems separately since the Fj-stems partition the set 
of inputs: 

Proposition6. For any subforest F' of F ,  the set 
E(F') = { D n ( p )  : 32 E D", p = stem(z, F')} parti- 
tions D". 

core(y, F') = [n] - core(z,  F'). 

Proof: Clearly every input x E Dn is an extension of its 
own F'-stem so every element of D" is covered by an el- 
ement of E(F'). Furthermore, by Proposition 5 ,  any in- 
put y E D " ( p )  for p = stem(x, F')  has stem(y, F') = 

0 

Thus, to show that the leg-density is large for rectan- 
gles associated with most inputs in some set J E D", it 
suffices to show that, for each p = stem(z, Fj)  with x E 
J, many inputs y E D"(p) that are also in J have the 
same value of core(y, F3-j). There are clearly, a pri- 

such F3-j-cores. The following lemma shows that one 
can obtain density bounds indirectly by showing that the 

p and thus the various sets P ( p )  are disjoint. 

ori, at most IDn(p)I = IDllunfixed(P)l = IDllc'Jre(z,Fj)l 

number of distinct Fj-cores of such y is much less than 
Dlunfixed(p)l. For p an Fj-stem of some input in J, let 
numcoresj(p, J) be the number of different F3-j-cores 
of inputs in J that are extensions of p. 

Lemma 7.  Let F be an n-variable inquisitive decision 
forest on domain D, let F1, F 2  be subforests of' F and 
J C D". Let q E [0,1]. Suppose that there is an integer 
function g such that for each j E { 1,2} and each p that 
is an Fj-stem of some input in J, numcoresj(p, J) 5 
g(lunf ixed(p)(). Then the subcollection of rectangles 
R E R ( F I , F ~ )  thatsatisfyaj(R) 2 &forj E 
{ 1,2} covers all but at most 2171Dn( points of J. 

Proof: F i x j  E {1,2}.CallarectangleRER(F1,F2) 
bad if a j (R)  < d. It suffices to show that the 
number of inputs in J that are in bad rectangles is at 
most q1 D"]. 

For any x E F-l, let &(x) be the set of in- 
puts y E F-' such that stem(y,Fj) = stem(z,Fj)  
and core(y, F3-j) = core(x, F3-j) and call the val- 
ues of these quantities pz and C,, respectively. Ob- 
serve that the sets &($) partition F-' and that the 
distinct sets may be specified unambiguously using 
the notation & ( p z , C z )  instead of &(x). By Propo- 
sition 5 and our discussion above, we have &(x) c 
R(x,F',F2), mj(R(s,  F',F2)) = unfixed(p,), and 
a j (R(z ,F l ,  F2)) = I&(z)l/lD"(~z)I. Call the set 

bad if IQ(5)I < -lD"(pz)I- Thus 
if x E J is in a bad rectangle R(x,  F1, F 2 )  then &(x) 
is bad; we therefore count the number of inputs in bad 
rectangles by counting the number in bad Q(z). 

Fix a p that is the Fj-stem of some input in J. 
We first count the number of inputs of J in bad sets 
of the form &(p,C). Each such bad set has at most 
e I D n ( p ) I  elements by definition. By our as- 
sumption, numcoresj(p, J) < g(Iunf ixed(p)l) which 
implies that there are at most g(lunf ixed(p))) different 
sets C such that Q(p,  C) contains any input in J. Thus 
the total number of inputs of J in D"(p)  that are in bad 
sets is at most qID"(p)l. 

By Proposition 6, the sets I Dn (p )  I partition D" so the 
total number of inputs of J that are in bad sets is at most 
qlD"l, as required. cl 

To apply this lemma for given J, F1 and F2, we need 
a bounding function g. For this, we want for j E { 1,2} 
and p E stem(J, Fj)  that the number of distinct sets 
core(x,Fj)  with x E J n D"(p) is small. As Ajtai 
did, we use the following simple observation: 

Proposition 8. I f C  is a collection of subsets of [n,] such 
that for any two sets A,  B E C, the symmetric differ- 
ence AAB has size at most d, then IC1 < S(n, d), where 
S(n, d )  = CjSd (i). 
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We want to arrange that for any two inputs 
z , y  E P ( p )  of interest, core(z, Fj)Acore(y, F j )  
has small size. Unfortunately, we cannot achieve this 
simply by choosing a single pair of disjoint subforests 
based on one value of q as in the oblivious case. Instead, 
we identify a partition of F- l ( l )  into a small number 
of sets J based on their "access" patterns and find a 
suitable pair of disjoint subforests using a different value 
of q for each such class. To this end, for fixed (F1, Fz), 
it will be useful to define, for j E {1,2} and positive 
integer L 5 T :  

acc(z, L )  = {i E [n] : on input z, zi is read 
in exactly e trees of F} 

Bj(z, L )  = core(z, Fj)  - acc(z, L )  
Bi(z, L )  = {i E [n] : on input 2, xi is read in exactly 

and no trees of F - F1 - F2.). 

Lemma 9. Let (F1, F2) be a pair of disjoint sub- 
forests of the forest F and let L be a positive integel: 
For j E {1,2} and inputs z , y  E D" such that 
stem(z, F3-j) = stem(y, F3-j) we have 

L trees of Fj ,  at least one tree of F3-j, 

core(z, Fj)Acore(y, Fj)  CBj(z,L) U Bj(y,L) 
U B+,L) U Bi(y,L). 

Proof: By symmetry in j ,  it suffices to consider i E 
core(z, F1) - core(y, FI) and show i E B1(z,L) U 

If i 6 acc(z,L), then i E Bl(z,L). Suppose i E 
acc(z,L). On input z, i is read by exactly L trees in 
F1, and by no trees of F - F1 - F2, and the same is 
true for y since z and y agree outside of core(%, F2) = 
core(y, Fz). Since i core(y, Fl) ,  at least one tree 
of F 2  reads i on input y, so i E Bi(L,y). Therefore 

The following lemma shows that for each input z, we 
can choose L = l ( z )  and q = q(z) from a small set 
of values such that for (F1, F2) chosen according to 3q, 
the expected sizes of Bj(z, L )  and Bi(z, L )  ( j  = 1,2) are 
substantially smaller than the expected core size, p(z,  q). 
Our bounds substantially improve those implicit in [4,5] 
because we give a more precise description of these two 
quantities and give a sharper calculation of their expected 
sizes. Roughly speaking, in each case, the analysis in [4] 
only uses the randomness of one of the forests in the 
pair (F1, Fz) whereas we use the randomness of both 
forests. 

Lemma 10. Let F be an n-variable inquisitive (T, k/T)- 
decision forest with n 2 T 2 k 2 3. Let q1 5 1/4k. For 
every input z, there is a pair (e, b)  = ( L ( z ) ,  b ( z ) )  of 
integers with 1 5 C 5 k and 1 < b 5 2k, such that for 

B:(Y 7 e>. 

i E Bl(z,L) uB:(y,L). 0 

(F1, F2) chosen according to 3qt and j E { 1,2}, 
(a)  E [ P ~ . ( & L ) I ]  I 4ql .  p(z7q!)6 
(b)  E[IB;(z,L)II 5 2kq1 P(Z,41). 

Proof. Let v h  = lacc(z, h)l for h = 1,. . . , T .  It is easy 
to see that p(z,  q)  = CL=, v h q h .  We will choose and 
q = q! so that term veqe overwhelmingly dominates the 
sum. 

For a 2 1, let qa = q f .  Let h(a) be the least index 
such that vh(a)qt(a) 2 vhq,h for all h 2 1. It is easy 
to show that (h(a) : a 2 1) is a decreasing sequence 
of positive integers with h(a)  5 k. By the pigeonhole 
principle, there exists a b E (2,. . . ,2k} such that 
h(b- 1)  = h(b) = h(b+ 1). Set L = L(z) to be h(b) and 
let b(z) = b. By the choice of b, vhqk 5 veqi qr-" .  
Then, for (F1, F2) chosen according to 3 q b ,  

h f f  

5 4ql . p(z,  qb). 
Note that B;(z,L) C Uh>e+lacc(z, h). For h 2 C + 1 
and i E acc(z, h), i E Bi(z, L )  if and only if exactly 
L out of the h trees that read i on z are in Fj and 
the rest are in F3-j, which happens with probability 
(I;(!) = qkvy. . . & 5 &(k + l)h-L, since 
L 5 k. Summing over h > Land i E acc(z, h), 

r 

5 vhqk(k + l)h-e I 2kQip(z,Qb). 
cl 

For b E (2,. . . ,2k} and L E ( 1 , .  . . ,k}, let Cetb = 
{z E F- l ( l )  : L(z) = L , b ( z )  = b}, and let Cb = 
UeCe*b. We now show that if I C Cb for some b E 
(2 , .  . . ,2k}, we can choose a pair of disjoint subforests 
(F!, F;) so that for most points z of I ,  the rectangle 
R(z,  F,b, F..) is large. 

Lemma 11. Let F be an n-variable inquisitive (T ,  k/r)  
decision forest with n 2 T 2 k 2 8. Let q1 5 1/(4k), 
let b E (2,. . . ,2k} and let qb = q!. Let I cb. Let 
7,6 > 0, and suppose T 2 qkz. Then there is a pair of 
forests(Fl,F2)undasubsetI'ofIwith II'I 2 IIl(1 - 
67) - 261Dl" such that for each z E I' and j E {1,2} 
the rectangle R = R(z,  F1, F 2 )  satisjies: mj(R) E 

h=L+I 

yqb 

Proof. Select (F1, F2) according to 3qb. 
Let z E I and let L = L(z). We claim that with proba- 

bility at least 1 - 67, the following three events hold for 
bo th j  E {1,2}. 
(i) i p ( z ,  q b )  I Icore(z, Fj)l 5 !p(z ,  qb), 
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(ii) IB j (z ,e ) l  5 8qilcore(z, Fj)l/7.  
(iii) IB$(z,L)I 5 4kql(core(z,Fj)I/y. 

For each j, Lemma 4 says that (i) fails with probabil- 
ity at most 4k2/(rq:),  which is at most y by hypothesis. 
Since (i) implies p ( z ,  q b )  5 2lcore(t, F')l, Lemma 10 
with Markov's inequality implies that, conditioned on 
(i), the failure probabilities of (ii) and (iii) are each at 
most y. This proves the claim. 

It follows that there is a fixed pair (F1,Fz) and a I" C 
I with II"l 2 (1 - 6y)lII, such that for each t E I", (i), 
(ii) and (iii) hold for j = 1 and j = 2. Note that (i) 
implies the desired bounds on m j ( R ( z ,  F1, F2)). 

For each e E [k], let I;' = {z E I" : C(z) = e } .  We 
now determine a function g that, for each e separately, 
will allow us to apply Lemma 7 with J = I;', to show 
that most points of I;' are covered by rectangles that 
are sufficiently dense. Consider the F1-stem p of some 
input in I;' and fix y in P ( p )  n I;'. Lemma 9 with 
(ii) and (iii) above imply that for z E Dn(p)  n I;', 
Icore(y, F!)Acore(z, F2)l 5 y l u n f  ixed(p)l 
which is at most y l u n f i x e d ( p ) (  since 
k 2 8. By Proposition 8, numcoresj(p,I;') 5 
S(n ,  F l u n f  ixed(p)l). 

Now apply Lemma 7 with g(m) = S(n ,  y m )  
and 77 = 6 / k .  This gives I; 5 I;' of 
size at least 1I;'I - 261Dln/k, such that 
for every z E I:, a j ( R ( z , F l , F 2 ) )  2 
6/(klDlnS(n, y l c o r e ( z ,  Fj)l)) .  Let I' = UZ1I;.  
Then 11'1 2 II"I - 26101" 2 IIl(1- 67) - 26101". 0 

Lemma 12. Let F be an n-variable (T,  k / r )  decision 
forest where n 2 T 2 k 2 8 are integers. Let 
q1 5 1/ (4k) .  Let J be a subset of F-'(l). Let 
y',6' > 0, and suppose T 2 Then there is a 

family R of rectangles each contained in F-' (1) such 
that UREa R covers a subset J' of J of size at least 
lJl(1-7')- IDn(6', andsuchthatRcanbepartitioned 
into subcollectons {Rb : b E { 2 , .  .. , 2 k } } ,  where 
for each b, the rectangles in Rb are disjoint and each 
R E Rb satisfies m ( R )  = m l ( R )  = m2(R)  2 fqlbk 

48k2 
r'Q:ba' 

' 6' 
anda'(R),a2(R) 8k2S(n,5787q1 ,n(R)) '  

Proofi For each b E ( 2 , .  . . , 2k } ,  apply the previous 
lemma with I = Ib  = J n Cb and y = y ' /12  and 
6 = 6'/4k. Let (F! ,Fi)  be the set of subforests and 
Jb be the set I' from the conclusion of the lemma. 
Let Qb = { R ( z , F ! , F t )  : z E Jb}. Let J" = 
U::, J~ and Q = uiE2  b. Then IJ'/I = l ~ b l  2 

lD"l6'. 

we use Proposition 1 on each rectangle ,of Q. 

cb (lIbl(l -'Y'/2) - lD"16'/2k) 2 lJl(1 - 7 ' / 2 )  - 

The rectangles in Q need not be balanced, so 
Let 

(Q,  A I ,  A2) E Q, and without loss of generality, sup- 
pose that /All 2 IA21. From the conclusion of lemma 
11, wehave a1(Q),a2(Q) 2 6'/(4k2S(n, y - l A 2 1 ) )  

since [All 5 31A21 . Choose B1 C A1 of size 11421 and 
apply Proposition 1 with 6 = 7'/2 to obtain a collec- 
tion R ( Q )  of disjoint subrectangles of Q each with feet 
(B1, A2) that together cover at least (1 -y'/2)lQl points 
into subrectangles and such that each R E R(Q) satisfies 
a2(R)  = a2(Q) and a l ( R )  2 y'al(Q)/2.  Take R to 
be the union of R( Q )  over Q E &, and J' to be the union 
of all the rectangles in R, so I J'I 2 I J''I(1 - y ' /2)  2 
lJl(1- y') - lD"l6'. The conclusion of Lemma 11, to- 
gether with the lower bound on p(%, q)  given by Lemma 
4 implies that the rectangles in R have the claimed prop- 
erties. 0 

3.4 Embedded Rectangles in Branching 

Theorem 13. Let k 2 2  8 be an integel; q1 5 2-30k-6, 
n 2 T 2 200k2/qfk . Let B be a branchingprogram of 
length at most ( k  - 2)n and size 2s and let I B-' (1) .  
There is a collection R of embedded rectangles each 
contained in B-' (1) that satisfies: 
1. Each rectangle of R is contained in B-'( 1). 
2. U R S R  R covers at least 14/2 inputs of I .  
3. No input belongs to more than 2k - 1 rectangles of R. 
4. Each rectangle R E R satisfies m l ( R )  = m z ( R )  2 

Programs 

qfk2n/2 and a ( R )  2 2--Q:/2m--Sr 14 / PI". 
Proof: Let B' be the length ( k  - l ) n  inquisitive branch- 
ing program obtained from B by adding n layers at 
the begining that obliviously query each variable. By 
Lemma 2, there is a family S consisting of 2" ( r ,  t / r )  
decision forests, such that B = AFEs F. As remarked 
after that lemma, each of the decision forests is inquisi- 
tive. Note that the collection of sets {F-' (1) : E' E S} 
partitions B-'(1). 

For each forest F E S, apply Lemma 12 with J = 
F-'(l) n I, y' = 1/4 and 6' = IIl/(2s'+210"l), and 
let RF be the family of embedded rectangles obtained in 
the conclusion of the lemma. Define R = UFES RF. 
We claim that R satisfies the conditions asserted in the 
lemma. 

The rectangles of RF are contained in F-' ( 1 )  so ev- 
ery R E R is contained in B-'(l). Since no input is 
covered by more than k rectangles in RF and the sets 
covered by F-'(l) are disjoint for distinct F E S and 
each input is covered at most k rectangles of R. For 
each F, R(F) coversat least $lF-'(l)nIl- 111/2s'+2 
points of F-' (l), so summing over at most 2Sf different 
F, we have that R ( F )  covers at least 111/2 points of I. 

Again by the conclusion of Lemma 12 each R E 
RF has m ( R )  = ml(R) = m2(R)  2 qfk22n/2 and 
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a(R) 3 Irl/(2srlD"l128k2S(n, 1440kqlm(R))). A 
routine calculation yields the desired lower bound on 

0 a(R) using our hypotheses on k, q1, T ,  and n. 

We can strengthen the above theorem to show that 
there is a collection of rectangles that covers almost all 
of I but the strengthening complicates the analysis and 
is unnecessary for obtaining our lower bounds. 

The first part of the following corollary is a quanti- 
tative strengthening of Ajtai's main technical result; the 
second part extends this to branching programs that are 
allowed to make a small fraction of errors. 

Corollary 14. Let k 2 8 be an integer; q1 5 2-30k-6, 
n >_ T 2 q;5k2. Let B be an n-variate branchingpro- 
gram over domain D of length 5 (k - 2). and size 2'. 
1. There is an embedded rectangle R contained in 
B- l ( l )  satisfying ml(R) = m2(R) 2 q fk2n /2  and 

2. Let f is an n-variate decision function over D and 
suppose B agrees with f on at least ( 1  - € ) I  Dn I inputs. 
Let 6 5 If-'(l)l/lD"l. Then there is an embedded 
rectangle R contained in B- l ( l )  satisfying ml (R)  = 

such that f is 0 on at most a 4ck/(6 - E )  fraction of 
points in R. 

Prooj: Apply Theorem 13 with I = B-'( 1) (noting that 
the lower bound on T in the hypothesis of the present 
theorem implies the hypothesis on T for that theorem) 
and let R be the resulting collection of rectangles. The 
first part of the corollary follows by choosing any R in 
R. For the second part, note that the hypotheses im- 
ply that ~ B - l ( l ) ~ / ~ D n ~  >_ 6 - e, so all rectangles in 
R satisfy Q(R)  2 2-gi'2m-Sr(6 - e), and together 
the rectangles cover at least (6 - c)IDn1/2 inputs of 
B-l( l ) .  Call an input z bad if B ( x )  # f(z) and for 
R E R, let Bad(R)  be the set of bad inputs of R. 
Now ERER JBad(R)I I 2k4D"I since each input ap- 
pears in at most 2k rectangles. Also ERER IBad(R)I > 
minR Jv zRER I R ~  > minR ~ F I D ~ I .  
So the rectangle minimizing IBad( R)  I /I RI satisfies 

0 

Q(R) > 2-9:/2m-Sr IB- (1 )  I / PI". 

m2(R) > q?"n/2 and a(R)  > 2-9:12m--sr(6 - 4. 

J-1 5 4€k/ (6  - €). 

4 Lower Bounds 

4.1 Element Distinctness 
In this section we consider the element distinctness func- 
tion E D  : Dn + (0 ,1}  which is 1 if and only if there 
is no pair i # j E X such that z( i )  = ~ ( j ) .  By simple 
calculation one can show that if 101 2 n2 - n ,  at least 
a 1 / e  fraction of all inputs z 6 Dn have E.D(z) = 1. 

We first use Ajtai's argument to obtain a lower bound for 
d2terministic branching programs computing ED.  

Lemma 15. Let E D  : D" + ( 0 , l ) .  Any embedded 
rectangle R D" such that E D ( z )  = 1 for all x E R 
has a(R) 5 2-m(R). 

Prooc Let A I ,  A2 be the feet of R, and for j E (1,2}, 
let Sj = U ~ E A ~ R ~  (where Ri is the set of elements 
of D that appear in coordinate i of some point of R). 
E D ( z )  = 1 for all z E R implies S1 f l  S2 = 8, 
so for some index h Ish1 5 101/2. Thus ah(R) 5 
(Ishl/lol)mh(R) 5 $ m ( R ) .  0 

Theorem 16. There is a constant c > 0 such that any 
[l ,  n2]-way deterministic branching program computing 

size 2s requires 

Prooj: Suppose we have a branching program of length 
(k - 2)n  and size s = 2s for E D .  Apply Corollary 14(i) 
with q1 = 2-30k-6 and T = rq;5k21. We obtain an em- 
bedded rectangle on which B outputs 1 such that m > 

Using Lemma 15, this means 2-q:/2m-Sr-2 < - 2-m 
and thus ST > m ( 1  - q:l2)  - 2 2 q?"n/4 or S 2 
q?k2 n / ( 4 ~ ) .  Thus for some constant c > 0 any algorithm 
solving ED in time k n  requires space at least k-ck2n. 
Substituting T = (k - 2)n ,  and re-arranging we obtain 
the claimed tradeoff. 

We now consider randomized branching programs for 
E D .  We will use the second part of Corollary 14, but 
first we need to show that any rectangle on which E D  is 
mostly 1 can not be very dense. 

Lemma 17. If (R,  A I ,  A2) is an n-variate embedded 
rectangle over [n2] with lAll = (A21 = m such that 
at most a 1/12fraction of x E R have E D ( x )  = 0 then 
a(R) 5 (8/9)m/222+n/m. 

Proofsketch. Observe that if x E R has E D ( z )  = 1 
then Z A ~  and X A ~  must be disjoint sets. We derive our 
bound by adapting the proof of a lower bound for €-error 
communication complexity of the set-disjointness prob- 
lem due to Babai, Frankl, and Simon [6 ] .  0 

Theorem 18. There is a constant c > 0 such that 
any randomized [l ,  n2]-way branching program com- 
puting E D  : [1,n2ln + ( 0 , l )  in time T and size 

q f k 2 n / 2  and Q > 2-9:/2m-Sr/e > 2-9:IZm-Sr-2. 

- -  
is with probability of error at most n/200T requires 
T = f l (nJ log (n /S ) /  loglog(n/S)).  

Proofi It suffices to prove the lower bound for determin- 
istic branching programs that approximate ED within 
error E. 
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Choose n to be a sufficiently large integer. We will 
apply the second part of Corollary 14 and to this end, 
we assume without loss of generality that k 2 8 and 
define for q1 = 2-30k-6, and T = [q;5k21. Let B 
be a deterministic branching program of length at most 
(k - 2)n and size 2s that approximates ED,, within 
1/200(k - 2). We will show that for some c > 0, 
k 2 cdlog(n/S)/loglog(n/S). If n < r2 this is im- 
mediate, so assume n > r2 .  

Applying Corollary 14(ii), we obtain a balanced 
rectangle R with m(R) 2 q~"n/2  and a (R)  2 
2-~r--g:/'m-2 such that ED is 0 for at most a frac- 
tion &/(l/e - l/lOO(k - 2)) 5 1/12 since 
k 2 8. Applying the previous lemma, we have 
that a ( R )  5 22+"lm(8/9)m, so combining the up- 
per and lower bounds on a ( R )  and simplifying we get 
2.5' 2 2-q:/2m-4--n/m (9/8)m, which, for n sufficiently 
large and k satisfying the restrictions above, is at least 
(10/9)m. From this we deduce S 2 log(10/9)? which 
is at least cOn/kclk2 for some CO, c1 independent of n 
and k. It follows that for some constant c > 0 and suffi- 
ciently large n, k 2 dlog(n/S)/  loglog(n/S). 0 

Corollary 19. There is a constant c > 0 so that for any 
6 2 0 there is a constant Cg such that any randomized 
RAM algorithm for element distinctness on inputs in the 
range [l, n2] taking at most can,/logn/ loglogn time 
and having at most cg J- error requires at least 
,1-6 space. 

4.2 Boolean Branching Programs Com- 
puting Quadratic Forms 

If D is a finite field and M is an n x n matrix with en- 
tries in D, let FM denote the function on Dn given by 
FM(x) = xTMx. By considering such functions in the 
case D = GF(2), Ajtai constructed an explicit family 
of boolean functions which can not be computed by a 
deterministic branching program of subexponential size 
and linear length. In this subsection we extend this result 
to randomized branching programs. 

Using ideas of Borodin, Razborov, Smolensky [13], 
Beame, Saks, and Thathachar had shown (in the case 
where D = GF(q) for odd q) that if M is a symmet- 
ric matrix that is rigid in the sense that all sub-matrices 
of M have rank that is suitably large relative to their size, 
then xTMx can not be constant on any large embedded 
rectangle. This result does not hold when q = 2, and Aj- 
tai developed a variant that holds for this case. Lemma 
20 encapsulates and strengthens Ajtai's argument. 

Lemma 20. Let M be a n x n matrix with entries G F (  2 )  
and suppose that (R, AI, A2) is an embedded rectangle 

in GF(2)" with [All = IA2l. Let P be thesubmitrixof 
M + MT induced on A1 x A2. Suppose that a ( R )  2 
22-'Qnk(P)/2. Then for each b E GF(2), thefraction of 
inputs of x E R for which xTMx = b is at least 3./16. 

Combining this lemma with Corollary 14 gives the 
following result which says that if M is a matrix whose 
quadratic form function is well approximated by a small 
branching program then M must have a large submatrix 
of small rank, that contains no entry on the diagonal. 

Theorem 21. Let n, T ,  k be positive integers and q1 > 0 
with k 2 8, q1 5 2-30k-6, n 2 T 2 qT5". Let M 
be an n x n matrix with entries in GF(2), with asso- 
ciated quadratic form function f .  Suppose that R is an 
n-variate branching program over GF(2) of length at 
most (k - 2). and size s that disagrees with f on at 
most afraction 1/160k inputs. Then there are two dis- 
joint subsets AI, A2 c [n] with IA1 I = IA2 I = m. where 
m 2 q12"n/2 such that the submatrix of P = M + MT 
induced by A1 x A2 has rank at most 2Sr + 2q:I2m + 8. 

Proof: Let b E GF(2)  be such that If-'(b)l 2 2,,-'. 
Define the function f '  by f'(x) = f (x )  + b - 1 and 
define the branching program B' analogously from B by 
replacing output 0 by b - 1 and output 1 by b. 

Applying the second part of Corollary 14 to f' and 
B' with 6 > 1/2 and = 1/160k, we get a balanced 
rectangle R = (R, Al , A2) contained in B-'( 1) satis- 
fying m(R) = lAll = IA21 2 q~"n /2  and a ( R )  2 
2 - 4 7 1 / 2 7 7 4 R ) - s r ( ~ - L )  160k _> 2-q"' m(R)-sr-2 such that 
f '  is 0 on at most 4(1/160k)k/(1/2 - 1/160k) < 1/16 
fraction of points of R. By Lemma 20, a ( R )  must 
be less than 22-'Q"k(p)/2. Combining the upper and 
lower bounds on a (R)  we deduce rank(P)  5 2Sr + 
2q:I2m(R) + 8. 0 

This theorem can be applied to give time-space trade- 
offs for the quadratic form function for any matrix M for 
which M + MT has the property that every large subma- 
trix that avoids the diagonal has large enough rank. The 
Sylvester matrices considered in [ 13, 81 have the prop- 
erty that for P E [0,1] every rPn1 x [Pnl submatrix has 
rank at least P2n. This is not strong enough to get good 
tradeoffs from Theorem 2 1. 

Instead Ajtai looks at Hankel matrices, matrices 
whose every anti-diagonal is constant. Given a vector 
y E GF(2)2n-1, define the Hankel matrix H[y] whose 
i, j entry is H[y]j,j = yj+j-1. Ajtai proved the follow- 
ing lemma concerning the rigidity properties of random 
Hankel matrices over GF(2). (Here a random Hankel 
matrix means a matrix H[y] where y is chosen uniformly 
at random from GF(2)2n-1.) 
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Lemma 22. Assume that n, s, R, t are positive integers, 
t2 < s < n, R < Q = l s / t 2 J .  I f H  is a random n x n 
Hankel matrix over GF(q) ,  the probability that there is  
some s x s sub-matrix of H of rank less than R is at most 
(GtJ2 (Q-%+l)q-t(Q-R+l)tz. 

We restate this in a more convenient form, making no  
attempt to optimize constants. 

Corollary 23. Let n be an integer and H be a random 
a random n x n Hankel matrix over GF(2) .  With prob- 
ability at least 112, for all integers s satisfying (1024 + 
64 log n)2 < s < n every s x s submatrix of H has rank 
at least s / (2048 + 12810g(n/s ) )~  - 2. 

The rigidity property of random Hankel matrices 
above is strong enough to  be  useful. However, there are 
two minor problems in making use of this. In  Theorem 
2 1, to  prove a tradeoff for the function FM , w e  need that 
M + M T  be rigid. Hankel matrices are symmetric which 
means that M + M T  = 0, since w e  are over G F ( 2 ) .  
(In [13] and [8] this problem was avoided by working 
over fields of odd characteristic.) Following Ajtai, de- 
fine L ( M )  to be the lower triangular matrix obtained by 
changing all entries of M that are on  or above the diag- 
onal to 0. Then L ( M )  + L(M)T agrees with M except 
on  the diagonal, and if M is sufficiently rigid, w e  can use 
Theorem 21 to  get a time-space tradeoff for the quadratic 
form associated with L ( M ) .  

The second problem is that w e  want lower bounds 
for explicit functions, and a random Hankel matrix does 
not give an explicit function. But, since a Hankel ma- 
trix is specified by only 2 n  - l values, w e  can prove 
lower bounds on  the explicit function Gn(z, y )  where 
z E GF(2)"  and y E GF(2)2"-1, which is defined to  
be z T M z . w h e r e  M = L(H[y] ) .  
Theoremu. There is a constant c' > 0 such that 
any randomized Boolean branching program comput- 
ing G n ( z , y )  in time T and size 2s with prob- 
ability of error at most c'nfT requires T 2 
c'nJlog(n/S)/ log log(n/S). 

References 
[l] K. R. Abrahamson. A time-space tradeoff for Boolean 

matrix multiplication. In Proceedings 31st Annual Sym- 
posium on Foundations of Computer Science, pages 412- 
419, St. Louis, MO, Oct. 1990. IEEE. 

[2] K. R. Abrahamson. Time-space tradeoffs for algebraic 
problems on general sequential models. Journal of Com- 
puter and System Sciences, 43(2):269-289, Oct. 1991. 

Determinism versus non-determinism for 
linear time RAMS with memory restrictions. Tech- 
nical Report TR98-077, Electronic Colloquium in 
Computation Complexity, http: //www.eccc.uni- 
trier .de/eccc/, 1998. Revision 1. 

[3] M. Ajtai. 

[4] M. Ajtai. Determinism versus non-determinism for linear 
time RAMS with memory restrictions. In Proceedings of 
the Thirty-First Annual ACM Symposium on Theory of 
Computing, 1999. 

[ 5 ]  M. Ajtai. A non-linear time lower bound for boolean 
branching programs. In Proceedings of the 40th Annual 
Symposium on Foundations of Computer Science. IEEE, 
1999. 

[6] L. Babai, P. Frankl, and J. Simon. Complexity classes in 
communication complexity theory. In 27th Annual Sym- 
posium on Foundations of Computer Science, pages 337- 
347, Toronto, Ontario, Oct. 1986. IEEE. 

[7] P. W. Beame. A general time-space tradeoff for find- 
ing unique elements. SIAM Journal on Computing, 
20(2):270-277, 1991. 

[8] P. W. Beame, M. Saks, and J. S. Thathachar. Time-space 
tradeoffs for branching programs. In Proceedings 39th 
Annual Symposium on Foundations of Computer Science, 
pages 254-263, Palo Alto, CA, Nov. 1998. IEEE. 

Time space tradeoffs (getting closer to 
the bamer?). In 4th Intemational Symposium on Algo- 
rithms and Computation, pages 209-229, Hong Kong, 
Dec. 1993. 

[lo] A. Borodin and S. A. Cook. A time-space tradeoff for 
sorting on a general sequential model of computation. 
SIAM Joumal on Computing, 11(2):287-297, May 1982. 

[ 111 A. Borodin, F. E. Fich, E Meyer auf der Heide, E. Upfal, 
and A. Wigderson. A time-space tradeoff for element 
distinctness. SIAM Joumal on Computing, 16( 1):97-99, 
Feb. 1987. 

[12] A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. 
Lynch, and M. Tompa. A time-space tradeoff for sorting 
on non-oblivious machines. Joumal of Computer and 
System Sciences, 22(3):351-364, June 1981. 

[13] A. Borodin, A. A. Razborov, and R. Smolensky. On 
lower bounds for read-k times branching programs. 
Computational Complexity, 3: 1-18, Oct. 1993. 

[ 141 L. Fortnow. Nondeterministic polynomial time versus 

[9] A. Borodin. 

- -  
nondeterministic logarithmic space: Time-space trade- 
offs for satisfiability. In Proceedings, Twelfth Annual 
IEEE Conference on Computational Complexity, pages 
52-60, Ulm, Germany, 24-27 June 1997. IEEE Com- 
puter Society Press. 
L. Fortnow and D. van Melkebeek. Time-space tradeoffs 
for nondeterministic computation. In Proceedings, Fif- 
teenth Annual IEEE Conference on Computational Com- 
plexity. IEEE Computer Society Press, July 2000. To 
appear. 

[16] R. Lipton and A. Viglas. Time-space tradeoffs for sat. In 
Proceedings of the 40th Annual Symposium on Founda- 
tions of Computer Science. IEEE, 1999. 

[17] Y. Mansour, N. Nisan, and P. Tiwari. The computational 
complexity of universal hashing. Theoretical Computer 
Science, 107:121-133, 1993. 

[18] A. C. Yao. Near-optimal time-space tradeoff for element 
distinctness. In 29th Annual Symposium on Foundations 
of Computer Science, pages 91-97, White Plains, NY, 
Oct. 1988. IEEE. 

179 


