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ABSTRACT
The FO Model Counting problem (FOMC) is the following:
given a sentence Φ in FO and a number n, compute the
number of models of Φ over a domain of size n; the Weighted
variant (WFOMC) generalizes the problem by associating a
weight to each tuple and defining the weight of a model to be
the product of weights of its tuples. In this paper we study
the complexity of the symmetric WFOMC, where all tuples of
a given relation have the same weight. Our motivation comes
from an important application, inference in Knowledge Bases
with soft constraints, like Markov Logic Networks, but the
problem is also of independent theoretical interest. We study
both the data complexity, and the combined complexity of
FOMC and WFOMC. For the data complexity we prove
the existence of an FO3 formula for which FOMC is #P1-
complete, and the existence of a Conjunctive Query for
which WFOMC is #P1-complete. We also prove that all γ-
acyclic queries have polynomial time data complexity. For the
combined complexity, we prove that, for every fragment FOk,
k ≥ 2, the combined complexity of FOMC (or WFOMC) is
#P-complete.

1. INTRODUCTION
Probabilistic inference is becoming a central data

management problem. Large knowledge bases, such
as Yago [19], Nell [2], DeepDive [6], Reverb [11], Mi-
crosoft’s Probase [43] or Google’s Knowledge Vault [8],
have millions to billions of uncertain tuples. These
systems scan large corpora of text, such as the Web
or complete collections of journal articles, and extract
automatically billions of structured facts, represent-
ing large collections of knowledge. For an illustra-
tion, Google’s Knowledge Vault [8] contains 1.6B triples
of the form (subject, predicate, object), for exam-
ple, </m/02mjmr, /people/person/place_of_birth
/m/02hrh0_> where /m/02mjmr is the Freebase id for
Barack Obama, and /m/02hrh0_ is the id for Hon-
olulu [8]. The triples are extracted automatically from
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the Web, and each triple is annotated with a probabil-
ity p representing the confidence in the extraction.

A central and difficult problem in such systems is
probabilistic inference, or, equivalently weighted model
counting. The classical FO Model Counting problem
(FOMC) is: given a sentence Φ in First-Order Logic
(FO) and a number n, compute the number of struc-
tures over a domain of size n that satisfy the sentence
Φ; in this paper we consider only labeled structures,
i.e. isomorphic structures are counted as distinct. We
denote the number of models by FOMC(Φ, n), for ex-
ample FOMC(∀x∃yR(x, y), n) = (2n − 1)n.1 In the
Weighted FO Model Counting (WFOMC) variant, one
further associates a real number w(t) called weight to
each tuple t over the domain of size n, and defines the
weight of a structure as the product of the weights of all
tuples in that structure. The Weighted Model Count
WFOMC(Φ, n,w) is defined as the sum of the weights
of all structures over a domain of size n that satisfy
the sentence Φ. Weights map immediately to probabil-
ities, in the following way: if each tuple t is included in
the database independently with probability w(t)/(1 +
w(t)), then the probability that a formula Φ is true
is Pr(Φ) = WFOMC(Φ, n,w)/WFOMC(true, n,w),
where WFOMC(true, n,w) =

∏
t(1 + w(t)) is the sum

of weights of all structures.
In this paper we study the symmetric WFMOC prob-

lem, where all tuples from the same relation have the
same weight, which we denote wi. For example, a ran-
dom graph G(n, p) is a symmetric structure, since ev-
ery edge is present with the same probability p (equiv-
alently: has weight p/(1 − p)), and FOMC is another
special case where all weights are set to 1. The symmet-
ric WFMOC problem occurs naturally in Knowledge
Bases with soft constraints, as we illustrate next.

Example 1.1. A Markov Logic Network (MLN) [7] is
a finite set of soft or hard constraints. Each constraint
is a pair (w,ϕ), where ϕ is a formula, possibly with free
variables x, and w ∈ [0,∞] is a weight2. For example,

1For a fixed x, there are 2n assignments to R(x, y), which all
satisfy ∃yR(x, y), except the one where all atoms are false.
Moreover, the models for the n values of x can be counted
independently and multiplied.
2In typical MLN systems, users specify the log of the weight
rather than the weight. The pair (1.098, ϕ) means that the
weight of ϕ is w = exp(1.098) ≈ 3. Using logs simplifies the
learning task. We do not address learning and will omit logs;
(w,ϕ) means that ϕ has weight w.



the soft constraint

(3,Spouse(x, y) ∧ Female(x)⇒ Male(y)) (1)

specifies that, typically, a female’s spouse is male, and
associates the weight w = 3 to this constraint. If w =∞
then we call (w,ϕ) a hard constraint.

The semantics of MLNs naturally extend the
Weighted Model Counting setting. Given a finite do-
main (set of constants), an MLN defines a probability
distribution over all structures for that domain (also
called possible worlds). Every structure D has a weight

W (D) =
∏

(w,ϕ(x))∈MLN,a∈D|x|:w<∞∧D|=ϕ[a/x]

w

In other words, for each soft constraint (W,ϕ), and for
every tuple of constants a such that ϕ(a) holds in D, we
multiply D’s weight by w. For example, given the MLN
that consists only of the soft constraint (1), the weight
of a world D is 3N , where N is the number of pairs
of constants a, b for which Spouse(a, b),Female(a) ⇒
Male(b) holds in D. The weight W (Φ) of a sentence Φ
is defined as the sum of weights of all worlds D that
satisfy both Φ and all hard constraints in the MLN;
its probability is obtained by normalizing PrMLN (Φ) =
W (Φ)/W (true). Notice that the symmetric WFOMC
problem corresponds to the special case of an MLN con-
sisting of one soft constraint (wi, Ri(xi)) for each rela-
tion Ri, where |xi| = arity(Ri).

Today’s MLN systems (Alchemy [26], Tuffy [30, 44])
use an MCMC algorithm called MC-SAT [31] for prob-
abilistic inference. The theoretical convergence guar-
antees of MC-SAT require access to a uniform sam-
pler over satisfying assignments to a set of constraints.
In practice, MC-SAT implementations rely on Sample-
SAT [42], which provides no guarantees on the unifor-
mity of solutions. Several complex examples are known
in the literature where model counting based on Sam-
pleSAT leads to highly inaccurate estimates [16].

A totally different approach to computing PrMLN (Φ)
is to reduce it to a symmetric WFOMC [39, 15, 37, 22],
and this motivates our current paper. We review here
briefly one such reduction, adapting from [22, 37].

Example 1.2. Given an MLN, replace every soft con-
straint (w,ϕ(x)) by two new constraints: (∞,∀x(R(x)∨
ϕ(x))) and (1/(w − 1), R(x)). Here R is a new re-
lational symbol with the same arity as the number of
free variables in ϕ, and the constraint (1/(w−1), R(x))
defines R as a relation where all tuples have weight
1/(w − 1). Therefore, the probability of a formula Φ
in the MLN can be computed as a conditional prob-
ability over a symmetric, tuple-independent database:
PrMLN (Φ) = Pr(Φ|Γ), where Γ is the conjunction of all
hard constraints3. Note that this reduction to WFOMC
is independent of the finite domain under consideration.

3The reason why this works is the following: in original
MLN, each tuple a contributes to W (D) a factor of 1 or w,
depending on whether ϕ(a) is false or true in D; after the
rewriting, the contribution of a is 1/(w−1) when ϕ(a) is false,
because in that case R(a) must be true, or 1 + 1/(w − 1) =
w/(w−1) when ϕ(a) is true, because R(a) can be either false
or true. The ratio is the same 1 : w = [1/(w−1)] : [w/(w−1)].

For example, the soft constraint in (1) is translated
into the hard constraint:

∀x, y(R(x, y) ∨ ¬Spouse(x, y) ∨ ¬Female(x) ∨Male(y))

and a tuple-independent probabilistic relation R where
all tuples have weight 1/(3− 1) = 1/2, or, equivalently,
have probability (1/2)/(1 + (1/2)) = 1/3.

Thus, our main motivation for studying the sym-
metric WFOMC is very practical, as symmetric mod-
els have been extensively researched in the AI commu-
nity recently, for inference in MLNs and beyond [24,
39, 29, 41]. Some tasks on MLNs, such as parameter
learning [38], naturally exhibit symmetries. For oth-
ers, such as computing conditional probabilities given
a large “evidence” database, the symmetric WFOMC
model is applicable when the database has bounded
Boolean rank [36]. Moreover, the problem is of inde-
pendent theoretical interest as we explain below. We
study both the data complexity, and the combined com-
plexity. In both settings we assume that the vocabu-
lary σ = (R1, . . . , Rm) is fixed, and so are the weights
w = (w1, . . . , wm) associated with the relations. In
data complexity, the formula Φ is fixed, and the only
input is the number n representing the size of the do-
main. In this case WFOMC is a counting problem
over a unary alphabet: given an input 1n, compute
WFOMC(Φ, n,w). It is immediate that this problem
belongs to the class #P1, which is the set of #P prob-
lems over a unary input alphabet [34]. In the combined
complexity, both n and the formula Φ are input.

In this paper we present results on the data complex-
ity and the combined complexity of the FOMC and
WFOMC problem, and also some results on the associ-
ated decision problem.

Results on Data Complexity
In a surprising result [37] has proven that for FO2 the
data complexity of symmetric WFOMC is in PTIME
(reviewed in Appendix C).4 This is surprising because
FO2 (the class of FO formulas restricted to two logical
variables) contains many formulas for which the asym-
metric problem was known to be #P-hard. An example
is Φ = ∃x∃y(R(x) ∧ S(x, y) ∧ T (y)), which is #P-hard
over asymmetric structures, but the number of models

is5 22n+n2 −∑k,m

(
n
k

)(
n
m

)
2n

2−km, which is a number

computable in time polynomial in n.6 More generally,
the symmetric WFOMC problem for Φ is in PTIME.

This begs the question: could it be the case that ev-
ery FO formula is in PTIME? The answer was shown to
be negative by Jaeger and Van den Broeck [21, 20], us-
ing the following argument. Recall that the spectrum,
Spec(Φ), of a formula Φ is the set of numbers n for
which Φ has a model over a domain of size n [9]. Jaeger
and Van den Broeck observed that the spectrum mem-
bership problem, “is n ∈ Spec(Φ)?”, can be reduced
to WFOMC, by checking whether FOMC(Φ, n) > 0.

4PTIME data complexity for symmetric WFOMC is called
domain-liftability in the AI and lifted inference literature [35].
5Fix the relations R, T , and let their cardinalities be |R| = k
and |T | = m. Then the structure does not satisfy Φ iff S
contains none of the km tuples in R×T , proving the formula.
6Tractability of Φ was noted before in, for example [32, 35].



Then, using a result in [23], if ETIME 6= NETIME, then
there exists a formula Φ for which computing WFOMC
is not in polynomial time7. However, no hardness re-
sults for the symmetric WFOMC were known to date.

What makes the data complexity of the symmetric
WFOMC difficult to analyze is the fact that the in-
put is a single number n. Valiant already observed
in [34] that such problems are probably not candidates
for being #P-complete. Instead, he defined the com-
plexity class #P1, to be the set of counting problems
for NP computations over a single-letter input alphabet.
Very few hardness results are known for this class: we
are aware only of a graph matching problem that was
proven by Valiant, and of a language-theoretic problem
by Bertoni and Goldwurm [1].

Our data complexity results are the following. First,
we establish the existence of an FO sentence Θ1 for
which the data complexity of the FOMC problem is
#P1-hard; and we also establish the existence of a con-
junctive query Υ1 for which the data complexity of the
WFOMC problem is #P1-hard. Second, we prove that
every γ-acyclic conjunctive query without self-joins is in
polynomial time, extending the result in [37] from FO2

to γ-acyclic conjunctive queries. We give now more de-
tails about our results, and explain their significance.

The tractability for FO2 [37] raises a natural ques-
tion: do other restrictions of FO, like FOk for k ≥
3, also have polynomial data complexity? By care-
fully analyzing the details of the construction of Θ1

we prove that it is actually in FO3. This implies a
sharp boundary in the FOk hierarchy where symmetric
WFOMC transitions from tractable to intractable: for
k between 2 and 3. The tractability of γ-acyclic queries
raises another question: could all conjunctive queries
be tractable for symmetric WFOMC? We answer this
also in the negative: we prove that there exists a con-
junctive query Υ1 for which the symmetric WFOMC
problem is #P1-hard. It is interesting to note that the
decision problem associated to WFOMC, namely given
n, does n ∈ Spec(Φ)? is trivial for conjunctive queries,
since every conjunctive query has a model over any do-
main of size n ≥ 1. Therefore, our #P1-hardness result
for Υ1 is an instance where the decision problem is easy
while the corresponding weighted counting problem is
hard. We note that, unlike WFOMC, we do not know
the exact complexity of the unweighted, FOMC prob-
lem for conjunctive queries.

0-1 Laws. Our data complexity hardness result sheds
some interesting light on 0-1 laws. Recall that, if C
is a class of finite structures and P is a property over
these structures, then µn(P ) denotes the fraction of la-
beled8 structures in C over a domain of size n that
satisfy the property P [27]. A logic has a 0-1 law
over the class of structures C, if for any property P

7Recall that ETIME =
⋃

c≥1 DTIME(2cn) and NETIME =⋃
c≥1 NTIME(2cn), and are not to be confused with the more

familiar classes EXPTIME and NEXPTIME, which are⋃
c≥1 DTIME(2nc

) and
⋃

c≥1 NTIME(2nc

) respectively.
8The attribute labeled means that isomorphic structures are
counted as distinct; 0-1 laws for unlabeled structures also
exist. In this paper, we discuss labeled structures only.

expressible in that logic, µ(P )
def
= limn→∞ µn(P ) is ei-

ther 0 or 1. Fagin [13] proved a 0-1 law for First-Order
logic and all structures, by using an elegant transfer
theorem: there exists a unique, countable structure
R, which is characterized by an infinite set of exten-
sion axioms, τ . He proved that, for every extension
axiom, limµn(τ) = 1, and this implies limµn(Φ) = 1
if Φ is true in R, and limµn(Φ) = 0 if Φ is false in
R. Compton [3] proved 0-1 laws for several classes
of structures C. A natural question to ask is the fol-
lowing: does there exists an elementary proof of the
0-1 laws, by computing a closed formula FOMC(Φ, n)
for every Φ, then using elementary calculus to prove
that that µn(Φ) converges to 0 or 1? For example, if
Φ = ∀x∃yR(x, y), then FOMC(Φ, n) = (2n − 1)n and

µn(Φ) = (2n − 1)n/2n
2 → 0; can we repeat this argu-

ment for every Φ? On a historical note, Fagin confirms
in personal communication that he originally tried to
prove the 0-1 law by trying to find such a closed for-
mula, which failed as an approach. Our #P1-result
for FO proves that no such elementary proof is possi-
ble, because no closed formula for FOMC(Φ, n) can be
computed in general (unless #P1 is in PTIME).

Results on the Combined Complexity
Our main result on the combined complexity is the fol-
lowing. We show that, for any k ≥ 2, the combined
complexity of FOMC for FOk is #P-complete; mem-
bership is a standard application of Scott’s reduction,
while hardness is by reduction from the model counting
problem for Boolean formulas. Recall that the vocabu-
lary σ is always assumed to be fixed: if it were allowed
to be part of the input, then every Boolean formula is
a special case of an FO0 formula, by creating a new re-
lational symbol of arity zero for each Boolean variable,
and all hardness results for Boolean formulas carry over
immediately to FO0.

The Associated Decision Problem
We also discuss and present some new results on the
decision problem associated with (W)FOMC: “given Φ,
n, does Φ have a model over a domain of size n?”.
The data complexity variant is, of course, the spec-
trum membership problem, which has been completely
solved by Jones and Selman [23], by proving that the
class of spectra coincides with NETIME, that is, {Spec(Φ) |
Φ ∈ FO} = NETIME. Their result assumes that the in-
put n is represented in binary, thus the input size is
log n. In this paper we are interested in the unary rep-
resentation of n, as 1n, which is also called the tally
notation, in which case case NETIME naturally identi-
fies with NP1. Fagin proved that, in the tally notation,
{Spec(Φ) | Φ ∈ FO} = NP1 [12, Theorem 6, Part 2].

For the decision problem, our result is for the com-
bined complexity: given both Φ, n, does n ∈ Spec(Φ)?
We prove that this problem is NP-complete for FO2,
and PSPACE-complete for FO. The first of these re-
sults has an interesting connection to the finite satisfi-
ability problem for FO2, which we discuss here. Recall
the classical satisfiability problem in finite model the-
ory: “given a formula Φ does it have a finite model?”,
which is equivalent to checking Spec(Φ) 6= ∅. Grädel,
Kolaitis and Vardi [17] have proven the following two



results for FO2: if a formula Φ is satisfiable then it has
a finite model of size at most exponential in the size
of the sentence Φ, and deciding whether Φ is satisfi-
able is NEXPTIME-complete in the size of Φ. These
two results already prove that the combined complex-
ity for deciding n ∈ Spec(Φ) cannot be in polynomial
time: otherwise, we could check satisfiability in EXP-
TIME by iterating n from 1 to exponential in the size
of Φ, and checking n ∈ Spec(Φ). Our result settles the
combined complexity, proving that it is NP-complete.

The paper is organized as follows: we introduce the
basic definitions in Section 2, present our results for
the data complexity of the FOMC and WFOMC prob-
lems in Section 3, present all results on the combined
complexity in Section 4, then conclude in Section 5.

2. BACKGROUND
We review here briefly the main concepts, some al-

ready introduced in Section 1.

Weighted Model Counting (WMC). The Model
Counting problem is: given a Boolean formula
F , compute the number of satisfying assignments
#F . In Weighted Model Counting we are given
two real functions w, w̄ : Vars(F ) → R associat-
ing two weights w(X), w̄(X) to each variable in
Vars(F ) = {X1, . . . , Xn}. The weighted model count
WMC(F,w, w̄) is defined as:

WMC(F,w, w̄)
def
=

∑
θ:θ(F )=1

W (θ) (2)

where, ∀θ : Vars(F )→ {0, 1}:

W (θ)
def
=

∏
i:θ(Xi)=0

w̄(Xi)×
∏

i:θ(Xi)=1

w(Xi) (3)

The model count is a special case #F =
WMC(F, 1, 1).

The standard definition of WMC in the literature
does not mention w̄, instead sets w̄ = 1; as we will
see, our extension is non-essential. When w̄ = 1,
then we simply drop w̄ from the notation, and write
WMC(F,w) instead of WMC(F,w, 1). In the proba-
bility computation problem, each variable Xi is set to
true with some known probability p(Xi) ∈ [0, 1], and

we want to compute Pr(F, p)
def
= WMC(F, p, 1− p), the

probability that F is true. All these variations are
equivalent, because of the following identities:

WMC(F,w, w̄) = WMC(F,w/w̄, 1)×
∏
i

w̄(Xi) (4)

WMC(F,w, w̄) = Pr(F,w/(w + w̄))×
∏
i

(w(Xi) + w̄(Xi))

Throughout the paper we write 1 for the constant func-
tion with value 1, and w1 +w2, and w1/w2 for functions
X 7→ w1(X) + w2(X) and X 7→ w1(X)/w2(X) resp.

Weighted First-Order Model Counting (WFOMC).
Consider FO formulas over a fixed relational vocabu-
lary σ = (R1, . . . , Rm) and equality =. Given a domain
size n, denote Tup(n) the set of ground tuples (i.e.,
ground atoms without equality) over the domain, thus

|Tup(n)| =
∑

i n
arity(Ri). The lineage of an FO sen-

tence Φ refers to a Boolean function FΦ,n over Tup(n)
(a ground FO sentence), as well as the correspond-
ing Boolean function over propositional variables refer-
ring to ground tuples (a propositional sentence). It
is defined inductively by Ft,n = t for ground tuples
t, F¬Φ,n = ¬FΦ,n, F(Φ1 op Φ2),n = FΦ1,n op FΦ2,n for
op ∈ {∧,∨}, Fa=b,n = false, Fa=a,n = true and
F∃xΦ,n =

∨
a∈[n] FΦ[a/x],n, F∀xΦ,n =

∧
a∈[n] FΦ[a/x],n.

For any fixed sentence Φ, the size of its lineage is
polynomial in n. Given a domain size n and weight
functions w, w̄ : Tup(n) → R, the Weighted First-

Order Model Count of Φ is WFOMC(Φ, n, w, w̄)
def
=

WMC(FΦ,n, w, w̄).

Symmetric WFOMC. In the symmetric WFOMC, the
weight of a tuple depends only on the relation
name and not on the domain constants. We
call a weighted vocabulary a triple (σ,w, w̄) where
σ = (R1, . . . , Rm) is a relational vocabulary and
w = (w1, . . . , wm), w̄ = (w̄1, . . . , w̄m) represent
the weights (real numbers) for the relational sym-
bols. For any domain size n, we extend these
weights to Tup(n) by setting w′(Ri(a1, . . . , ak)) =
wi and w̄′(Ri(a1, . . . , ak)) = w̄i, and we de-

fine WFOMC(Φ, n,w, w̄)
def
= WFOMC(Φ, n, w′, w̄′).

Throughout this paper we assume that WFOMC refers
to the symmetric variant, unless otherwise stated.

For a simple illustration, consider the sentence ϕ =
∃yS(y). Then WFOMC(ϕ, n,wS , w̄S) = (w̄S + wS)n −
(w̄S)n, because the sum of the weights of all possible
worlds is (w̄S + wS)n, and we have to subtract the
weight of the world where S = ∅. For another example,
consider Φ = ∀x∃yR(x, y). The reader may check that
WFOMC(Φ, n, wR, w̄R) = ((wR + w̄R)n − w̄nR)

n. In par-
ticular, over a domain of size n, the formula Φ has
(2n − 1)n models (by setting wR = w̄R = 1).

Data Complexity and Combined Complexity. We con-
sider the weighted vocabulary (σ,w, w̄) fixed. In the
data complexity, we fix Φ and study the complexity of
the problem: given n, compute WFOMC(Φ, n,w, w̄).
In the combined complexity, we study the complexity of
the problem: given Φ, n, compute WFOMC(Φ, n,w, w̄).
All our upper bounds continue to hold if the weights
w, w̄ are part of the input. We also consider the
data- and combined-complexity of the associated de-
cision problem (where we ignore the weights) given n,
does Φ have a model over a domain of size n?

Weights and Probabilities. While in practical applica-
tions the weights are positive real numbers, and the
probabilities are numbers in [0, 1], in this paper we im-
pose no restrictions on the values of the weights and
probabilities. The definition (2) of WMC(F,w) ap-
plies equally well to negative weights, and, in fact, to
any semiring structure for the weights [25]. There is,
in fact, at least one application of negative probabili-
ties [22], namely the particular reduction from MLNs to
WFOMC described in Example 1.2: a newly introduced
relation has weight 1/(w − 1), which is negative when



Problem Weights for R, S, and T tuples Solution for Φ = ∀x∀y(R(x) ∨ S(x, y) ∨ T (y))

Symmetric
FOMC

w = w̄ = 1 FOMC(Φ, n) =
∑

k,m=0,n

(
n
k

)(
n
m

)
2n2−km

Symmetric
WFOMC

wR, wS , wT ,
w̄R, w̄S , w̄T

WFOMC(Φ, n,w, w̄) =
∑

k,m=0,n

(
n
k

)(
n
m

)
Wk,m

where Wk,m = wn−k
R · w̄k

R ·wkm
S · (wS + w̄S)n

2−km ·wn−m
T · w̄m

T

Asymmetric
WFOMC

w(R(i), w(S(i, j)), w(T (j))
w̄(R(i)), w̄(S(i, j)), w̄(T (j))
depend on i, j

#P-hard for Φ [4]

Table 1: Three variants of WFOMC, of increasing generality, illustrated on the sentence Φ = ∀x∀y(R(x) ∨
S(x, y) ∨ T (y)). This paper discusses the symmetric cases only.

w < 1. Then, the associated probability p = w/(1 +w)
belongs to (−∞, 0) ∪ (1,∞).

As a final comment on negative weights, we note
that the complexity of the symmetric WFOMC prob-
lem is the same for arbitrary weights as for positive
weights. Indeed, the expression WFOMC(Φ, n,w) is
a multivariate polynomial in m variables w1, . . . , wm,
where each variable has degree n. The polynomial has
(n + 1)m = nO(1) real coefficients. Given access to an
oracle computing this polynomial for arbitrary positive
values for w, we can compute in polynomial time all
nO(1) coefficients with as many calls to the oracle; once
we know the coefficients we can compute the polyno-
mial at any values w1, . . . , wm, positive or negative.

For all upper bounds in this paper we assume that
the weights w, w̄, or probabilities p, are given as ratio-
nal numbers represented as fractions of two integers of
n bits each. We assume w.l.o.g. that all fractions have
the same denominator: this can be enforced by replac-
ing the denominators by their least common multiplier,
at the cost of increasing the number of bits of all inte-
gers to at most n2. It follows that the weight of a world
W (θ) (Eq.(3)) and WMC(F,w, w̄) can be represented
as ratios of two integers, each with nO(1) bits.

Summary. Table 1 summarizes the taxonomy and illus-
trates the various weighted model counting problems
considered in this paper. Throughout the rest of the
paper, FOMC and WFOMC refer to the symmetric
variant, unless otherwise mentioned.

3. DATA COMPLEXITY
Recall that the language FOk consists of FO formulas

with at most k distinct logical variables.

3.1 Lower Bounds
Our first lower bound is for an FO3 sentence:

Theorem 3.1. There exists an FO3 sentence, denoted
Θ1, s.t. the FOMC problem for Θ1 is #P1-complete.

Van den Broeck et al. [37] have shown that the Sym-
metric WFOMC problem for every FO2 formula has
polynomial time data complexity (the proof is reviewed
in Appendix C); Theorem 3.1 shows that, unless #P1 is
in PTIME, the result cannot extend to FOk for k > 2.

Our second lower bound is for a conjunctive query, or,
dually, a positive clause without equality. Recall that a
clause is a universally quantified disjunction of literals,

for example ∀x∀y(R(x)∨¬S(x, y)). A positive clause is
a clause where all relational atoms are positive. A con-
junctive query (CQ) is an existentially quantified con-
junction of positive literals, e.g. ∃x∃y(R(x) ∧ S(x, y)).
Positive clauses without the equality predicate are the
duals of CQs, and therefore the WFOMC problem is
essentially the same for positive clauses without equal-
ity as for CQs. Note that the dual of a clause with
the equality predicate is a CQ with 6=, e.g. the dual of
∀x∀y(R(x, y) ∨ x = y) is ∃x∃y(R(x, y) ∧ x 6= y).

Corollary 3.2. There exists a positive clause Ξ1 with-
out equality s.t. the Symmetric WFOMC problem for
Ξ1 is #P1-hard. Dually, there exists a CQ Υ1 s.t. the
Symmetric WFOMC problem for Υ1 is #P1-hard.

Corollary 3.2 shows that the tractability result for
γ-acyclic conjunctive queries (discussed below in Theo-
rem 3.6) cannot be extended to all CQs. The proof of
the Corollary follows easily from three lemmas, which
are of independent interest, and which we present here;
the proofs of the lemmas are in the appendix. We say
that a vocabulary σ′ extends σ if σ ⊆ σ′, and that
a weighted vocabulary (σ′,w′, w̄′) extends (σ,w, w̄) if
σ ⊆ σ′ and the tuples w′, w̄′ extend w, w̄.

Lemma 3.3. Let (σ,w, w̄) be a weighted vocabulary
and Φ an FO sentence over σ. There exists an ex-
tended weighted vocabulary (σ′,w′, w̄′) and sentence
Φ′ over σ′, such that Φ′ is in prenex-normal form
with a quantifier prefix ∀∗, and WFOMC(Φ, n,w, w̄) =
WFOMC(Φ′, n,w′, w̄′) for all n.

This lemma was proven by [37], and says that all
existential quantifiers can be eliminated. The main idea
is to replace a sentence of the form ∀x ∃y ψ(x, y) by
∀x ∀y (¬ψ(x, y) ∨ A(x)), where A is a new relational
symbol of arity |x| and with weights wA = 1, w̄A = −1.
For every value x = v, in a world where ∃y ψ(v, y)
holds, A(v) holds too and the new symbol contributes
a factor +1 to the weight; in a world where ∃y ψ(v, y)
does not hold, then A(v) may be true or false, and the
weights of the two worlds cancel each other out.

Note that the lemma tells us nothing about the model
count of Φ and Φ′, since in Φ′ we are forced to set some
negative weights. If we had FOMC(Φ, n) = FOMC(Φ′, n),
then we could reduce the satisfiability problem for an
arbitrary FO sentence Φ to that for a sentence with a ∀∗
quantifier prefix, which is impossible, since the former
is undecidable while the latter is decidable.

The next lemma, also following the proof in [37], says
that all negations can be eliminated.



Lemma 3.4. Let (σ,w, w̄) be a weighted vocabu-
lary and Φ a sentence over σ in prenex-normal form
with quantifier prefix ∀∗. Then there exists an ex-
tended weighted vocabulary (σ′,w′, w̄′) and a positive
FO sentence Φ′ over σ′, also in prenex-normal form
with quantifier prefix ∀∗, s.t. WFOMC(Φ, n,w, w̄) =
WFOMC(Φ′, n,w′, w̄′) for all n.

The idea is to create two new relational symbols A,B
for every negated subformula ¬ψ(x), replace the for-
mula by A(x), and add the sentence ∀x(ψ(x)∨A(x))∧
(A(x) ∨B(x)) ∧ (ψ(x) ∨B(x)). By setting the weights
wA = w̄A = wB = 1, w̄B = −1 we ensure that, for
every constant x = v, either ¬ψ(v) ≡ A(v), in which
case B(v) is forced to be true and the two new sym-
bols contribute a factor +1 to the weight, or ψ(v) ≡
A(v) ≡ true, in which case B(v) can be either true or
false, and the weights cancel out.

Finally, we remove the = predicate.

Lemma 3.5. Let (σ,w, w̄) be a weighted vocabulary
and Φ a sentence over σ. Then there exists an extended
vocabulary σ′ and sentence Φ′ without the equality pred-
icate =, such that, for all n, WFOMC(Φ, n,w, w̄) can
be computed in polynomial time using n+ 1 calls to an
oracle for WFOMC(Φ′, n,w′, w̄′), where (σ′,w′, w̄′) is
an extension of (σ,w, w̄).

The idea is to introduce a new relational symbol E,
replace every atom x = y with E(x, y), and add the sen-
tence ∀x E(x, x). Let w′, w̄′ be the extension of w, w̄
with w′E = z, w̄′E = 1. Then WFOMC(Φ′, n,w′, w̄′) is
a polynomial of degree n2 in z where each monomial has
degree ≥ n in z, because the hard constraint ∀x E(x, x)
forces |E| ≥ n. Moreover, the coefficient of zn is pre-
cisely WFOMC(Φ, n,w, w̄), because that corresponds
to the worlds where |E| = n, hence it coincides with
=. We compute this coefficient using n+ 1 calls to an
oracle for WFOMC(Φ′, n,w′, w̄′).

Now we give the proof of Corollary 3.2. Starting with
the #P1-complete sentence Θ1, we apply the three lem-
mas and obtain a positive sentence Φ, with quantifier
prefix ∀∗ and without the equality predicate, that is
#P1-hard. We write it as a conjunction of clauses, Φ =
C1∧C2∧· · ·∧Ck (recall that a clause is universally quan-
tified), and then apply the inclusion-exclusion formula:
Pr(Φ) =

∑
s⊆[k],s 6=∅(−1)|s|+1 Pr(

∨
i∈s Ci). Since any

disjunction of clauses is equivalent to a single clause, we
have reduced the computation problem Pr(Φ) to com-
puting the probabilities of 2k − 1 clauses. By duality,
this reduces to computing the probabilities of 2k−1 con-
junctive queries, Pr(Q1),Pr(Q2), . . . ,Pr(Q2k−1). We
can reduce this problem to that of computing the prob-
ability of a single conjunctive query Υ1, by the fol-
lowing argument. Create 2k − 1 copies of the rela-
tional symbols in the FO vocabulary, and take the con-
junction of all queries, where each query uses a fresh
copy of the vocabulary. Then Pr(Q1 ∧ · · · ∧ Q2k−1) =
Pr(Q1) · · ·Pr(Q2k−1), because now every two distinct
queries Qi, Qj have distinct relational symbols. Using

an oracle to compute the probability of Υ1
def
=
∧
iQi,

we can compute any Pr(Qi) by setting to 1 the prob-
abilities of all relations occurring in Qj , for j 6= i: in
other words, the only possible world for a relation R

in Qj is one where R is the cartesian product of the
domain; assuming n ≥ 1, Qj is true, Pr(Qj) = 1, and
hence Pr(Υ1) = Pr(Qi). We repeat this for every i and
compute Pr(Q1), . . . ,Pr(Q2k−1). This proves that the
CQ Υ1 is #P1-hard. Its dual, Ξ1, is a #P1-hard posi-
tive clause without equality. This proves Corollary 3.2.

3.2 Upper Bounds
A CQ is without self-joins if all atoms refer to distinct

relational symbols. It is standard to associate a hyper-
graph with CQs, where the variables are nodes, and
the atoms are hyper-edges. We define a γ-acyclic con-
junctive query to be a conjunctive query w/o self-joins
whose associated hypergraph is γ-acyclic. We prove:

Theorem 3.6. The data complexity of Symmetric
WFOMC for γ-acyclic CQs is in PTIME.

Fagin’s definition of γ-acyclic hypergraphs [14] is re-
viewed in the proof of Theorem 3.6.

An open problem is to characterize the conjunctive
queries without self-joins that are in polynomial time.
While no such query has yet been proven to be hard
(Υ1 in Corollary 3.2 has self-joins), it is widely believed
that, for any k ≥ 3, the symmetric WFOMC problem
for a typed cycle of length k, Ck = ∃x1 · · ·xk(R1(x1, x2),
R2(x2, x3), . . . , Rk(xk, x1)), is hard. We discuss here
several insights into finding the tractability border for
conjunctive queries, summarized in Figure 1.

This boundary does not lie at γ-acyclicity: the query
cγ = R(x, z), S(x, y, z), T (y, z) is γ-cyclic (with cycle
RxSyTzR; see Fagin [14]), yet it still has PTIME data
complexity. The key observation is that γ-cycles allow
the last variable z to appear in all predicates, turn-
ing it into a separator variable [5], hence Pr(Q) =∏
a∈[n] Pr(Q[a/z]), which is [Pr(Q[a/z])]n by symme-

try; Q[a/z] is isomorphic to the query in Table 1 and
can be computed in polynomial time. A weaker no-
tion of acyclicity, called jtdb (for join tree with disjoint
branches), can be found in [10]. It also does not char-
acterize the tractability boundary: jtdb contains the γ-
cyclic query above, but it does not contain the PTIME
query cjtdb = R(x, y, z, u), S(x, y), T (x, z), V (x, u).

Fagin [14] defines two increasingly weaker notions of
acyclicity: β- and α-acyclic. α-Acyclic queries are as
hard as any conjunctive query without self-joins. In-
deed, if Q = ∃xϕ(x) is a conjunctive query w/o self-
joins, then the query Q′ = ∃x(A(x)∧ϕ(x)) is α-acyclic,
where A is a new relational symbol, containing all vari-
ables of Q. By setting the probability of A to 1, we have
Pr(Q) = Pr(Q′). Thus, if all α-acyclic queries have
PTIME data complexity, then all conjunctive queries
w/o self-joins have PTIME data complexity.

For all we know, β-acyclic queries could well coincide
with the class of tractable conjunctive queries w/o self
joins. We present here some evidence that all β-cyclic
queries are hard, by reduction from typed cycles, Ck.
For that, we need to consider a slight generalization of
WFOMC for conjunctive queries w/o self-joins, were
each existential variable xi ranges over a distinct do-
main, of size ni: the standard semantics corresponds
to the special case where all domains sizes ni are equal.
We prove that for any β-cyclic query Q, there exists
k such that WFOMC(Ck,n,w, w̄) can be reduced to



Υ1 (#P1-hard) Ck Ck-hard Ck-hard cjtdb (PTIME) cγ (PTIME) PTIME

CQs w/o self-joins α-acyclic β-acyclic jtdb γ-acyclic

Figure 1: A summary of data complexity results for conjunctive queries (or positive clauses). Ck-hardness is
an informal concept described in the main text.

WFOMC(Q,n′,w′, w̄′). Hence, the existence of a β-
cyclic query with PTIME data complexity would imply
PTIME data complexity for at least one Ck (informally
called Ck-hardness in Fig. 1). The reduction is as fol-
lows. By definition, a β-cyclic query Q contains a weak
β-cycle [14] of the form R1x1R2x2 . . . xk−1RkxkRk+1,
where k ≥ 3, all xi and Ri are distinct, each xi oc-
curs in both Ri and Ri+1, but in no other Rj , and
Rk+1 = R1. Then, we reduce the WFOMC for Ck to
that of Q. First, for each relational symbol Rj in Q,
if Rj appears in the cycle then we define w′j = wj and
w̄′j = w̄j , otherwise w′j = w̄′j = 1. Second, for all vari-
ables xi that appear in the cycle we set their domain
size ni to be the same as that of the corresponding vari-
able in Ck, otherwise we set ni = 1. Then Q and Ck
have the same WFOMC.

Finally, we discuss a peculiar sentence, whose com-
plexity we left open in [18]:

Theorem 3.7. The data complexity of the symmetric
WFOMC problem is in PTIME for the query

QS4 =∀x1∀x2∀y1∀y2(S(x1, y1)∨
¬S(x2, y1) ∨ S(x2, y2) ∨ ¬S(x1, y2))

In [18] we showed that QS4 is in PTIME under the
modified semantics, where S is a bipartite graph. This
implies that the range of the variables x1, x2 is disjoint
from the range of the variables y1, y2. Now we extended
the proof to the standard semantics used in this pa-
per. What makes this query interesting is that the
algorithm used to compute it requires a subtle use of
dynamic programming, and none of the existing lifted
inference rules in the literature are sufficient to com-
pute this query. This suggests that we do not yet have
a candidate for a complete set of lifted inference rules
for the symmetric WFOMC.

3.3 Proofs

Proof of Theorem 3.1. We briefly recall the basic no-
tions from Valiant’s original papers [33, 34]. A count-
ing Turing machine is a nondeterministic TM with a
read-only input tape and a work tape, that (magically)
prints in binary, on a special output tape, the num-
ber of its accepting computations. The class #P1 con-
sists of all functions computed by some counting TM
with polynomial (non-deterministic) running time and
a unary input alphabet. A function f is #P1-hard if,
for any function g in #P1 there exists a polynomial
time, deterministic TM Tdet with access to an oracle

for f that computes g. Notice that Tdet’s input alpha-
bet is unary. As usual, f is called #P1-complete if it
is both hard, and in #P1.

Our proof of Theorem 3.1 consists of two steps. First
we construct a #P1-complete function f , which is com-
putable by a linear time counting TM U1, which we
call a universal #P1 machine; in fact, we will define
f by describing U1. A similar construction in [34] is
sketched too briefly to see how the particular pairing
function can work; we use a different pairing function
and give full details. To prove FO3 membership, we
also need to ensure U1 runs in (nondeterministic) lin-
ear time, which requires some care given that the input
is given in unary. Once we have defined U1, the second
step of the proof is a standard construction of an FO
formula to simulate U1: we follow Libkin [28, p. 167],
but make several changes to ensure that the formula is
in FO3. The two steps are:

Lemma 3.8. There exists a counting TM, U1, with a
unary input alphabet, such that (i) U1 runs in linear
time, and (ii) the function f that it computes is #P1-
hard.

It follows immediately that f is #P1-complete.

Lemma 3.9. Let T be any counting TM with a unary
input alphabet computing some function f . Suppose T
runs in time O(na). Then there exists an FOk for-
mula Φ over some relational vocabulary σ, s.t. f(n) =
FOMC(Φ, n)/(n!), where k = 3a for a ≥ 1.

Theorem 3.1 follows by applying this lemma to U1,
hence a = 1 and the formula is in FO3. By allow-
ing runtimes O(na) with a > 1, the lemma implies:
#P1 = {f | ∃Φ ∈ FO ,∀n : f(n) = bFOMC(Φ, n)/n!c};
this is an extension of the classic result by Jones and
Selman [23], which, restated for the tally notation says
NP1 = {Spec(Φ) | Φ ∈ FO} (see [12], [9, Sec.5]). By
considering FOMC over unlabeled structures, denoted
UFOMC, the correspondence becomes even stronger.
In UFOMC, all models that are identical up to a per-
mutation of the constants are counted once, and #P1 =
{UFOMC(Φ, n) | Φ ∈ FO}.

Proof of Lemma 3.8. The idea for U1 is simple: its in-
put n is represented in unary and encodes two num-
bers i, j: n = e(i, j), for some encoding function e to
be defined below. U1 first computes i, j from n, then
simulates the ith #P1 counting TM on input j. The
difficult part is to ensure that U1 runs in linear time:



every TM i that it simulates runs in time O(jki) for
some exponent ki that depends on i, and thus if we
construct U1 naively to simply simulate machine i on
input j, then its runtime is no longer polynomial.

We start by describing an enumeration of counting
TMs in #P1, M1,M2, . . . ,Mi, . . ., with the property
that Mi runs in time ≤ (i · ji + i)2 on an input j. We
start by listing all counting TMs over a unary input
alphabet in standard order M ′1,M

′
2, . . .. Then we dove-

tail pairs of the form Mi = (M ′r, s) where r is an index
in the standard TM order and s is a number. Mi rep-
resents the counting TM that simulates M ′r on input j
with a timer for s · js + s steps. The machine Mi can
be constructed with at most quadratic slowdown over
M ′r (due to the need to increment the counter). We
further ensure that dovetailing Mi = (M ′r, s) is done
such that i ≥ s; for that, it suffices to advance r in
such a way that i advances at least as fast as s, that
is, M1 = (M ′1, 1),M2 = (M ′2, 1),M3 = (M ′1, 2),M4 =
(M ′2, 2),M5 = (M ′1, 3), . . .. It follows that, for every i,
the runtime of Mi on input j is ≤ (i · ji + i)2. It re-
mains to show that the list M1,M2, . . . ,Mi, . . . enumer-
ates precisely all #P1 functions. Indeed, each function
in this list is in #P1, because the runtime of Mi is
polynomial in the input j. Conversely, every function
in #P1 is computed by some Mi in our list, because
it is computed by some M ′r whose runtime on input j
is ≤ ar · jkr + br and this is ≤ s · js + s if we choose

s
def
= max(ar, br, kr). This completes the construction

of the enumeration M1,M2, . . ..
We describe now the counting machine U1. Its input

is a number n in unary, which represents an encoding
n = e(i, j) of two integers i, j. We will choose the
encoding function e below such that it satisfies three
properties: (a) U1 can compute i, j from n = e(i, j) in
linear time (with auxiliary tapes), (b) e(i, j) ≥ (i · ji +
i)2, and (c) for every fixed i, the function j 7→ e(i, j)
can be computed in PTIME. We first prove the lemma,
assuming that e satisfies these three properties.

The counting machine U1 starts by computing a bi-
nary representation of its unary input n on its work
tape: this step takes linear time in n. Next, it extracts
i, j in linear time in n (by property (a)), then it sim-
ulates Mi on input j. The runtime of the last step
is ≤ (i · ji + i)2 ≤ e(i, j) (by property (b)), hence U1

runs in linear time in the input n = e(i, j). It remains
to prove that the function f computed by U1 is #P1-
hard. Consider any function g in #P1: we will describe
a polynomial-time, deterministic Turing machine Tdet
with an oracle for f that computes g. Since g is in #P1

there exists i such that g is computed by Mi. On input
j, Tdet computes n = e(i, j) in PTIME (by property
(c)), stores it on the oracle tape, then invokes U1 and
obtains the result g(j) = f(n).

It remains to describe the encoding function e. We
take e(i, j) = 2i34i·dlog3 je(6j + 1). To prove (a), note
that i is obtained by counting the trailing zeroes in
the binary representation of n, j is obtained by first
computing a ternary representation of 34i·dlog3 je(6j+1),
ignoring trailing zeros and deriving j from 6j + 1. (b)
2i34i·dlog3 je(6j+ 1) ≥ (i · ji + i)2 follows through direct

calculations, using the fact that 34i·dlog3 je ≥ j4i. (c) is
straightforward.

Proof of Lemma 3.9. We describe here the most impor-
tant steps of the proof, and delegate the details to Ap-
pendix B. We will consider only the case k = 1, i.e. the
counting TM runs in linear time: the case when k > 1
is handled using a standard technique that encodes nk

time stamps using a relation of arity k. We briefly re-
view Trakhtenbrot’s proof from Libkin [28, p. 167]: for
every deterministic TM, there is a procedure that gen-
erates a formula Θ1 such that TM has an accepting
computation starting with an empty input tape iff Θ1

is satisfiable. The signature for Θ1 is (this is a minor
variation over Libkin’s):

σ ={<,Min, T0, T1, H, (Sq)q∈States(T )}
Then Θ1 states that (1) x < y is a total order on the
domain and Min(x) is its minimum element, (2) T0(t, p)
(or T1(t, p)) is true iff at time t the tape has a 0 (or a 1)
on position p, (3) H(t, p) is true iff at time t the head is
on position p, and Sq(t) is true iff at time t the machine
is in state q. Libkin [28] describes the sentence Θ1 that
states that all these constraints are satisfied.

We adapt this to a more general construction that is
sufficient to prove Lemma 3.9. We address five changes:
(1) Our TM is non-deterministic, (2) has k tapes in-
stead of 1, (3) its runtime is c ·n instead of n, for some
c > 1, (4) the input tape initially contains n symbols 1,
and (5) Θ1 needs to be in FO3.

Support for non-deterministic transitions requires
only a slight modification to the sentences. It is also
easy to represent multiple tapes, by using k different
relations T0τi , T1τi , and similarly k head relations Hτi ,
for i = 1, k. To encode transitions in FO3, we will as-
sume that the multi-tape TM always reads or writes
only one tape at each time. This is without loss of gen-
erality: a state that reads and writes all tapes can be
converted into a sequence of 2k states that first read
one by one each tape and “remember” their symbols,
then write one by one each tape and move their heads.

Next, we show how to encode running times (and
space) up to c · n for some integer constant c > 1, with
only a domain of size n available. The standard way
is to increase the arity of the relations, e.g. with arity
a we can represent na time steps, but this is not possi-
ble within FO3. Instead, we partition the computation
into c epochs, each having exactly n time steps, and sim-
ilarly we partition the tapes into c regions, each with
n cells. We denote T0τer(t, p), T1τer(t, p) the relations
T0, T1 specialized to tape τ , epoch e, and region r, and
similarly define Hτer and Sqe. Furthermore, we modify
the sentences that encode the TM transition relation to
move the heads across epochs and regions, using only 3
variables. The fourth item is easy: we write a formula
stating that initially (at time 1 of epoch 1), region 1 of
(input) tape τ1 is full of 1’s, and all other regions and
tapes are full of 0’s. Moreover, Appendix B shows that
Θ1 can be written in FO3.

Finally, FOMC(Θ1, n) is precisely the number of ac-
cepting computations of the TM on input n, times n!,
coming from the n! ways of ordering the domain.



Proof of Theorem 3.6. We show how to compute Pr(Q)
rather than WFOMC(Q,n): we have seen in Sec. 2
that these two are equivalent. We actually prove the
theorem for a more general form of query, where each
variable xi range over a domain of size ni, thus, Q =
∃x1 ∈ [n1], . . . ,∃xm ∈ [nm]ϕ, where ϕ is quantifier-free.
The probability of a query under the standard seman-
tics (when all variables range over the same domain [n])
is obtained by simply setting n1 = · · · = nm = n.

To prove the theorem, we use an equivalent definition
of γ-acyclicity given by Fagin [14], which we give here
together with our algorithm for computing Pr(Q). The
graph is γ-acyclic if it can be reduced to an empty graph
by applying the following rules, in any order.

(a) If a node x is isolated (i.e., it belongs to precisely
one edge, say R(x, y, z)), then delete x. In this case
we replace the relation R(x, y, z) by a new relation
R′(y, z), where each tuple has probability 1− (1−
p)nx , where p is the probability of tuples in R.

(b) If an edge R(x) is a singleton (i.e., if it contains
exactly one node), then delete that edge (but do
not delete the node from other edges that might
contain it). Here, we condition on the size k = |R|.
For each k, let pk be the probability of the residual
query obtained by removing R(x) and restricting
the range of x to [k]. By symmetry, this probabil-
ity depends only on k = |R|, and does not depend
on the choice of the k elements in the domain. Then
Pr(Q) =

∑
k

(
nx

k

)
pkR(1 − pR)nx−kpk, where pR de-

notes the probability of a tuple Pr(R(i)), and is the
same for all constants i (by symmetry).

(c) If an edge is empty, R(), then delete it. We multiply
the probability of the residual query by pR.

(d) If two edges (say R(x, y, z), S(x, y, z)) contain pre-
cisely the same nodes, then delete one of these
edges. Here we replace the two atoms by a new
atom R′(x, y, z) whose probability is pR · pS .

(e) If two nodes x, y are edge-equivalent, then delete
one of them from every edge that contains it. (Re-
call that two nodes are edge-equivalent if they are
in precisely the same edges.) Here we replace the
two variables x, y by a new variable z, whose range

has size nz
def
= nx · ny.

Each operation above is in polynomial time in the size
of the binary representation of the inputs, and there are
only polynomially many operations. Therefore the en-
tire computation is in polynomial time, because each
intermediate result can be represented using polynomi-
ally many bits. This follows from the fact that the
number of models is 2O(na), where a is the maximum
arity of any relation in Q, hence the number of models
can be represented using O(na) = nO(1) bits.

Example 3.10. Consider the following linear chain
query:

Q =∃x0∃x1 · · · ∃xmR1(x0, x1) ∧ · · ·Rm(xm−1, xm)

where the probabilities of the m relations are p1, . . . , pm.
Denote Pn0,...,nm

the probability of Q when the domains
of x0, x1, . . . , xm are sets of sizes n0, n1, . . . , nm (thus,

initially n0 = n1 = · · · = nm = n). Then the variable
xm is isolated (item a), hence we can eliminate it and
update the probability of Rm to 1−(1−pm)nm . Now Rm
is a singleton relation, hence we can remove it (item b),
and restrict the domain of xm−1 to have size km−1, for
km−1 = 1, nm−1. Therefore:

Pn0,...,nm−1,nm
=

∑
km−1=1,nm−1

Pn0,...,nm−2,km−1
·
(
nm
km

)
· [1− (1− pm)km ]km−1

· [(1− pm)km ]nm−1−km−1

Repeating this process we arrive at an expression that is
computable in polynomial time in n (for a fixed m). No-
tice that this formula does not appear to be computable
in polynomial time in both n and m. We leave open the
combined complexity of acyclic queries.

Proof of Theorem 3.7. First note that, by using reso-
lution, the query implies the following statement, for
every k ≥ 2:

∀x1, y1, . . . , xk, yk(S(x1, y1) ∨ ¬S(x2, y1)

∨S(x2, y2) ∨ ¬S(x2, y3)

∨ . . . ∨ ¬S(x1, yk)) (5)

For any two numbers n1, n2, denote Qn1n2 = ∀x1 ∈
[n1],∀x2 ∈ [n1],∀y1 ∈ [n2],∀y2 ∈ [n2], (S(x1, y1) ∨
¬S(x2, y1) ∨ S(x2, y2) ∨ ¬S(x1, y2)), in other words we
restrict the range of the variables to some domains
[n1], [n2]. These domains are not required to be dis-
joint, instead we use the standard assumption n1 ≤ n2

implies [n1] ⊆ [n2]. When n1 = n2 = n then Qn1n2

is equivalent to QS4. We claim the following. If D is
a model of Qn1n2 , then either property Pa or Pb holds
in D:

Pa ≡∃x ∈ [n1],∀y ∈ [n2], S(x, y)

Pb ≡∃y ∈ [n2],∀x ∈ [n1],¬S(x, y)

Suppose not. Consider any model of Qn1n2 that does
not satisfy Pa, Pb. Pick any element x1 ∈ [n1]. As
Pa does not hold, ∃y1 ∈ [n2]¬S(x1, y1). As Pb does
not hold, ∃x2 ∈ [n1], S(x2, y1). Continuing, ∃y2 ∈
[n2], ¬S(x2, y2), ∃x3 ∈ [n1], S(x3, y2) and ∃y3 ∈ [n2],
¬S(x3, y3). Continuing, we obtain an arbitrarily long
sequence of values x1, y1, x2, . . . such that: ¬S(x1, y1),
S(x2, y1), ¬S(x2, y2), . . . , S(xn1

, yn1−1), ¬S(xn1
, yn1

).
Note that we can never have xi = xj or yi = yj , for
i 6= j, because that would violate Eq.(5) for k = j − i.
Since the domain is finite, this is a contradiction.

Therefore, either Pa or Pb holds. Clearly, both state-
ments cannot hold, as they are exclusive events. Denote
f and g the weighted model count for Qn1n2 in these
two cases:

f(n1, n2) = WFOMC(Qn1n2
∧ Pa, n, w, w̄)

g(n1, n2) = WFOMC(Qn1n2 ∧ Pb, n, w, w̄)

Then we have WFOMC(Qn1n2 , n, w, w̄) = f(n1, n2) +
g(n1, n2). It remains to show how to compute f, g.

Consider a model that satisfies Pa, hence the set X =
{x | ∀y ∈ [n2], S(x, y)} is non-empty, hence k = |X| ≥ 1.



Remove the elements X from the domain [n1] (and re-
name the elements such that [n1]−X = [n1 − k]) and
call D′ the resulting substructure. Then D′ still sat-
isfies the query Q(n1−k),n2

, and, by the removal of all
elements X, cannot satisfy Pa, hence it must satisfy Pb.
This justifies the following recurrence, completing the
proof of Theorem 3.7:

f(n1, 0) = 1 f(n1, n2) =

n1∑
k=1

(
n1

k

)
wkn2g(n1 − k, n2)

g(0, n2) = 1 g(n1, n2) =

n2∑
`=1

(
n2

`

)
w̄n1`f(n1, n2 − `)

4. COMBINED COMPLEXITY
In the combined complexity we consider a fixed vo-

cabulary σ = (R1, . . . , Rm), and assume that both Φ
and n are given as part of the input. As before, n is
given in unary (tally) notation. We consider both the
FOMC problem, “compute FOMC(Φ, n)”, and the asso-
ciated decision problem “is n ∈ Spec(Φ)?”. Our upper
bound for FOMC also holds for WFOMC. Recall that
the spectrum Spec(Φ) of a formula Φ is the set of num-
bers n for which Φ has a model over a domain of size n.

Vardi [40] proved that the model checking problem,
“given Φ and a structure D, is Φ true in D?” is
PSPACE-complete. This implies that the above deci-
sion problem is also in PSPACE: to check n ∈ Spec(Φ)
enumerate over all structures D of a domain of size n,
and check if Φ is true in D. By the same argument,
FOMC is also in PSPACE. We prove:

Theorem 4.1. (1) For every k ≥ 2, the combined
complexity for FOMC for FOk is #P-complete. (2)
The combined complexity for the decision problem n ∈
Spec(Φ) is NP-complete for FO2, and is PSPACE-
complete for FO.

The #P-membership in (1) also holds for the
WFOMC problem. Recall that the vocabulary σ is
fixed. If σ were allowed to be part of the input, then
the lower bound in (1) follows immediately from the
#P-hardness result for #SAT, because any Boolean
formula is trivially encoded as an FO0 formula, by in-
troducing a new, zero-ary relational symbol for every
Boolean variable.

Proof of Theorem 4.1. We start by proving item (1)
of Theorem 4.1. To prove membership in #P, it suf-
fices to show that the lineage of a sentence ϕ of size
s over a domain of size n is polynomial in s and n,
then use the fact that WMC for Boolean functions is
in #P. However, FOk formulas have, in general, expo-
nentially large lineage, e.g. the formula checking for
the existence of a path of length n, ∃x∃y(R(x, y) ∧
∃x(R(y, x) ∧ ∃y(R(y, x) ∧ . . .))), over a domain of size
n has lineage of size Ω(nn). Instead, we first transform
the formula by removing all nested variables. For that,
we apply Scott’s reduction, which we give below, follow-
ing the presentation by Grädel, Kolaitis, and Vardi [17,
Prop.3.1]; while Scott’s reduction was described for
FO2, it carries over unchanged to FOk. More precisely,
the reduction converts a sentence ϕ of size s into a new
sentence ϕ∗ over an extended vocabulary, satisfying the
following properties:

c1 c2 c3

· · ·
cn−1 cn

c0

R R R R R

S

S
S S

S

A B

C

Figure 2: All models of ϕF represent graphs of the
depicted form. There is a linear graph of R-edges be-
tween the distinguished nodes A and B. The S-edges
go from a distinguished node C to all others. They
are optional, and are in one-to-one correspondence
with the variables Xi in F .

1. The finite models of ϕ and ϕ∗ are in one-to-
one correspondence, and the corresponding mod-
els have the same weight.

2. ϕ∗ has size O(s).

3. ϕ∗ is a conjunction of sentences in prenex normal
form, i.e. Q1x1Q2x2 · · ·Qkxkψ where each Qi is
either ∀ or ∃, and ψ is quantifier-free.

The new formula has a lineage of size O(nks), be-
cause its quantifier depth is bounded by k = O(1),
which implies WFOMC is in #P. It remains to de-
scribe Scott’s reduction, which we review here briefly,
for completeness. Introduce a new relational symbol
Sψ for every subformula ψ of ϕ, where the arity of Sψ
equals the number of free variables in ψ, and define the
sentence θψ ≡ ∀x1 · · · ∀x`(Sψ(x1, . . . , x`) ⇔ θ′ψ), where

θ′ψ depends on the structure of ψ as follows: if ψ is

an atomic formula, then θ′ψ = ψ, if ψ = ψ1 ∧ ψ2 then

θ′ψ = Sψ1
∧ Sψ2

, if ψ = ¬ψ1 then θ′ψ = ¬Sψ1
and if

ψ = ∀xψ1 then θ′ψ = ∀xSψ1 . The new formula ϕ∗ is

defined as Sϕ ∧
∧
ψ θψ. By setting w(Sψ) = w̄(Sψ) = 1

for all new symbols, we ensure that the models of ϕ
and ϕ∗ are not just in one-to-one correspondence; they
have the same weights.

Next we prove #P-hardness for FO2 (this implies
hardness for FOk for every k ≥ 2). We use reduc-
tion from #SAT: given a Boolean formula F over n
variables X1, . . . , Xn, compute #F . This problem is
#P-hard [33].

Define the vocabulary σ consisting of 3 unary sym-
bols A,B,C, and 2 binary symbols R,S. Given a
Boolean formula F , we construct an FO2 sentence ϕF
such that, over a domain of size n + 1, the number of
models of ϕF is FOMC(ϕF , n+ 1) = (n+ 1)! ·#F . The
sentence ϕF enforces a particular graph structure, as
illustrated in Figure 2, by asserting the following:

• There exists three unique, distinct elements x, y, z
such that A(x), B(y), C(z) are true:
∃xA(x) ∧ ∀x, ∀y(A(x) ∧ A(y)) ⇒ x = y, and simi-
larly for B and C;
¬∃x(A(x)∧B(x)) and similarly for A,C, and B,C.

• There exist n elements x1, . . . , xn such that the
following holds:
A(x1), R(x1, x2), R(x2, x3), . . . , R(xn−1, xn), B(xn).
This is expressible in FO2, by reusing variables.



Untyped triangles ∃x, y, z(R(x, y), R(y, z), R(z, x))
Typed triangles (3-cycle) ∃x, y, z(R(x, y), S(y, z), T (z, x))
k-cycle, for k ≥ 3 ∃x1, . . . , xk(R1(x1, x2), R2(x2, x3), . . . , Rk(xk, x1)
Transitivity ∀x, y, z(E(x, y) ∧ E(y, z)⇒ E(x, z))
Homophily ∀x, y, z(R(x, y) ∧ S(x, z)⇒ R(z, y))
Extension Axiom (Simplified) ∀x1, x2, x3(x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3 ⇒ ∃yE(x1, y) ∧ E(x2, y) ∧ E(x3, y))

Table 2: A list of open problems: for each formula it is conjectured that FOMC is hard.

• For every number m ∈ [2n]−{n}, it is not the case
that there exists m elements x1, . . . , xm such that:
A(x1), R(x1, x2), R(x2, x3), . . . , R(xm−1, xm), B(xm).

• For all x, y, if R(x, y) then neither C(x) nor C(y).

• For all x, y, if S(x, y) then C(x).

• Finally, ϕF contains a statement obtained from F
by replacing each Boolean variable Xi by the sen-

tence γi
def
= ∃x, ∃z(S(z, x) ∧ αi(x)), where αi(x) is

the following formula with free variable x: there
exists a path A(x1), R(x1, x2), . . . , R(xi−1, x) (if
i = 1 then α1(x) ≡ A(x)).

The reader may check that, for any database instance
D over a domain of size n+1 that satisfies ϕF there ex-
ists a unique permutation c0, c1, . . . , cn over its domain
such that the relations A,B,C and R contain precisely
the following tuples: C(c0), A(c1), B(cn), R(c1, c2), . . . ,
R(cn−1, cn). Indeed, if it contained some R(ci, cj) with
j 6= i + 1, then c1, . . . , ci, cj , cj+1, . . . , cn forms a path
from A to B of some length m ≤ 2n and m 6= n, which
contradicts the sentence ϕF ; notice also that αi(x) is
true iff x = ci. Therefore the only relation that is left
unspecified in D is S, which may contain an arbitrary
number of tuples of the form S(c0, ci). These tuples
are in one-to-one correspondence with the Boolean vari-
ables Xi, proving our claim.

Now we prove item (2) of Theorem 4.1. The claim for
FO2 follows immediately from the proof above. It re-
mains to prove that the combined complexity for FO is
PSPACE, for which we use a reduction from the Quanti-
fied Boolean Formula (QBF) problem, which is known
to be PSPACE complete. A Quantified Boolean For-
mula is a formula of the form Q1X1Q2X2 . . . QnXnF
where each Qi is a quantifier ∀ or ∃, and F is a Boolean
formula over the variablesX1, . . . , Xn. We make the fol-
lowing change to the construction above. Recall that a
Boolean variable Xi in F was represented by S(c0, ci).
Now we extend S to a ternary relation S(x, y, u), re-
strict u to two constants (we choose c1 and cn arbi-
trarily) and represent Xi by S(c0, ci, c1) and ¬Xi by
S(c0, ci, cn). Then, we replace the quantifiers ∀Xi or
∃Xi with ∀u or ∃u. More precisely, the new formula
ϕF contains the following statements:

• If S(x, y, u) is true, then u is either the dis-
tinguished A or the distinguished B element:
∀x, y, u(S(x, y, u)⇒ A(u) ∨B(u)).

• If u, v are the distinguished A and B el-
ements, then S(x, y, u) is the negation
of S(x, y, v): ∀u, v, x, y(A(u) ∧ B(v) ⇒
(S(x, y, u) xor S(x, y, v))).

Finally, we rewrite a QBF ∀Xi(. . .) into ∀u(A(u) ∨
B(u) ⇒ . . .) and a QBF ∃Xi(. . .) into ∃u((A(u) ∨
B(u)) ∧ . . .). We omit the straightforward details.

5. CONCLUSIONS
In this paper we discuss the symmetric Weighted FO

Model Counting Problem. Our motivation comes from
probabilistic inference in Markov Logic Networks, with
applications to modern, large knowledge bases, but the
problem is also of independent theoretical interest. We
studied both the data complexity, and the combined
complexity. For the data complexity we established
for the first time the existence of an FO sentence for
which the Symmetric Model Counting problem is #P1-
hard, and also the existence of a Conjunctive Query for
which the Symmetric Weighted Model Counting prob-
lem is #P1-hard. We also showed that for all γ-acyclic
conjunctive queries WFOMC can be computed in poly-
nomial time. For the combined complexity, we proved
a tight bound of #P-completeness for FO2. We also
discussed the associate decisions problem.

We end this paper with a list of open problems, listed
in Table 2: for each query in the table, the complexity
of the FOMC or the WFOMC problem is open.

Acknowledgments. We thank Ronald Fagin, Phokion
Kolaitis and Lidia Tendera for discussions on topics re-
lated to this paper. This work was partially supported
by NSF IIS-1115188, IIS-0911036, CCF-1217099, and
the Research Foundation-Flanders (FWO-Vlaanderen).

6. REFERENCES
[1] Alberto Bertoni and Massimiliano Goldwurm. On

ranking 1-way finitely ambiguous NL languages
and #P1-complete census functions. ITA,
27(2):135–148, 1993.

[2] Andrew Carlson, Justin Betteridge, Bryan Kisiel,
Burr Settles, Estevam R. Hruschka Jr., and
Tom M. Mitchell. Toward an architecture for
never-ending language learning. In AAAI, 2010.

[3] Kevin J. Compton. The computational
complexity of asymptotic problems i: Partial
orders. Inf. Comput., 78(2):108–123, 1988.

[4] Nilesh N. Dalvi and Dan Suciu. Efficient query
evaluation on probabilistic databases. VLDB J.,
16(4):523–544, 2007.

[5] Nilesh N. Dalvi and Dan Suciu. The dichotomy of
probabilistic inference for unions of conjunctive
queries. J. ACM, 59(6):30, 2012.

[6] http://deepdive.stanford.edu/.
[7] Pedro Domingos and Daniel Lowd. Markov Logic:

An Interface Layer for Artificial Intelligence.
Morgan & Claypool Publishers, 2009.



[8] X. Dong, E. Gabrilovich, G. Heitz, W. Horn,
N. Lao, K. Murphy, T. Strohmann, S. Sun, and
W. Zhang. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In
KDD, 2014.

[9] Arnaud Durand, Neil D. Jones, Johann A.
Makowsky, and Malika More. Fifty years of the
spectrum problem: survey and new results.
Bulletin of Symbolic Logic, 18(4):505–553, 2012.

[10] David Duris. Some characterizations of γ and
β-acyclicity of hypergraphs. Information
Processing Letters, 112(16):617–620, 2012.

[11] Anthony Fader, Stephen Soderland, and Oren
Etzioni. Identifying relations for open information
extraction. In EMNLP, pages 1535–1545, 2011.

[12] Ronald Fagin. Generalized first-order spectra and
polynomial-time recognizable sets. In SIAM-AMS
Proceedings 7, pages 43–73, 1974.

[13] Ronald Fagin. Probabilities on finite models. J.
Symb. Log., 41(1):50–58, 1976.

[14] Ronald Fagin. Degrees of acyclicity for
hypergraphs and relational database schemes. J.
ACM, 30(3):514–550, 1983.

[15] Vibhav Gogate and Pedro Domingos.
Probabilistic theorem proving. In UAI, pages
256–265, 2011.

[16] Carla P Gomes, Joerg Hoffmann, Ashish
Sabharwal, and Bart Selman. From sampling to
model counting. In IJCAI, pages 2293–2299,
2007.
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APPENDIX
A. THE THREE LEMMAS

A.1 Proof of Lemma 3.3: Removing Exists
Following the proof of [37], we show how to elimi-

nate existential quantifiers from a WFOMC problem
(a form of Skolemization). Assume that Φ is in prenex
normal form: Φ = Q1x1Q2x2 . . . QkxkΨ, where each
Qi is either ∀ or ∃, and Ψ is quantifier-free. Let i
be the first position of an ∃, and denote ϕ(x, xi) =
Qi+1xi+1 . . . QkxkΨ; note that ϕ is a formula with free
variables x = (x1, . . . , xi−1). We have:

Φ =∀x∃xiϕ(x, xi)

Let A be a fresh relational symbol of arity i. The new
formula Φ′ is:

Φ′ =∀x((∃xiϕ(x, xi))⇒ A(x)) (6)

Let w′, w̄′ denote the weights of Φ’s vocabulary ex-
tended with w(A) = 1 and w̄(A) = −1. We claim that
WFOMC(Φ, n, w, w̄) = WFOMC(Φ′, n, w′, w̄′). Con-
sider a possible world D ⊆ Tup(n) that satisfies Φ′.
Call D “good” if it also satisfies Φ. In a good world D,
for any constants x = a, the sentence ∃xiϕ(a, xi) is true,
hence A(a) is also true (because Φ′ is true), and there-
fore the weight of D is the same as the weight of D −
{A}, the world obtained from D by removing all tuples
referring to the relational symbol A: W (D,w′, w̄′) =
W (D−{A}, w, w̄). Thus, the sum of the weights of the
good worlds (see Eq.(3)) is precisely WFOMC(Φ, n, w, w̄).
We prove that the sum of the weights of the bad worlds
is zero. Let D be a bad world: it satisfies Φ′ but not
Φ. Thus, there exists some constants a s.t. the sen-
tence ∃xiϕ(a, xi) is false; choose a to be the first such
constants, in some lexicographic order. Let D′ be the
world obtained from D by flipping the status of A(a):
thus D,D′ are identical, but one sets A(a) to true and
the other to false. Both satisfy Φ′, and W (D,w′, w̄′) =
−W (D′, w′, w̄′), therefore they cancel out in the sum
of Eq.(3). This proves that WFOMC(Φ, n, w, w̄) =
WFOMC(Φ′, n, w′, w̄′).

We note that Φ′ can be written equivalently as:

Φ′ =∀x∀xi(¬ϕ(x, xi) ∨A(x))

In other words, we have replaced the first existential
quantifier in Φ by a universal quantifier (and may have
increased the number of ∃ on positions i+ 1, i+ 2, . . .).
Lemma 3.3 follows by applying this procedure induc-
tively.

A.2 Proof of Lemma 3.4: Removing Negation
Let ¬ψ(x) be a negated subformula of Φ, with k free

variables x. Let A, B be two new relational symbols of
arity k. Let Φp denote the sentence obtained from Φ
by replacing the subformula ¬ψ(x) with A(x). Denote:

∆ =∀x[(ψ(x) ∨A(x)) ∧ (A(x) ∨B(x)) ∧ (ψ(x) ∨B(x))]
(7)

Extend the weight functions w, w̄ to w′, w̄′ by setting
w(A) = w̄(A) = w(B) = 1, w̄(B) = −1. Define
Φ′ = Φp ∧ ∆. We claim that WFOMC(Φ, n, w, w̄) =
WFOMC(Φ′, n, w′, w̄′). To prove this, consider a world

D ⊆ Tup(n) over the vocabulary of Φ′, and assume
that D satisfies Φ′. Call D “good”, if the statement
∀x(ψ(x) xor A(x)) holds. It is easy to see that in any
good world, ∀xB(x) holds too, hence the good world
has the same weight as the world obtained by strip-
ping it of the additional relations A,B, and, further-
more, their contributions to WFOMC(Φ′, n, w′, w̄′) is
precisely WFOMC(Φ, n, w, w̄). Consider a bad world:
it satisfies Φ′, but there exists a such both ψ(a) and
A(a) are true. In that case B(a) can be set arbitrar-
ily to true or false and still satisfy the formula Φ′,
hence the contributions of these two pairing worlds
cancel out. This proves that WFOMC(Φ, n, w, w̄) =
WFOMC(Φ′, n, w′, w̄′).

Lemma 3.4 follows by apply this process repeatedly.

A.3 Proof of Lemma 3.5: Removing Equality
Let E(x, y) be a new predicate symbol, with weights

w(E) = z and w̄(E) = 1, where z is a real value to be
determined below. Define ΦE to be obtained from Φ by
replacing every equality predicate x = y with E(x, y),
and define:

Φ′ =ΦE ∧ ∀xE(x, x)

Consider the count f(z) = WFOMC(Φ′, n, w′, w̄′) as a
function of z, where w′, w̄′ extend w, w̄ with w(E) =
z, w̄(E) = 1. This is a polynomial of degree n2 in z.
Since Φ′ asserts ∀xE(x, x), all monomials in f have a de-
gree ≥ n. Let c ·zn be the monomial of degree n. Then
we claim that its coefficient c = WFOMC(Φ, n, w, w̄).
Indeed, every world D where E has exactly n tuples
is a world where E is interpreted as the equality predi-
cate. We can compute c using n + 1 calls to an oracle
for f(z) as follows. Fix δ > 0, and denote ∆0f = f ,
∆k+1f(z) = (∆kf)(z + δ)− (∆kf)(z). Then ∆nf(0) =
c·n! =

(
n
0

)
f(0)−

(
n
1

)
f(δ)+

(
n
2

)
f(2δ)−· · · (−1)n

(
n
n

)
f(nδ).

B. A #P1-HARD SENTENCE Θ1

We prove here Lemma 3.9: shows how to reduce a
linear-time, multi-tape counting TM with a unary in-
put alphabet (such as the #P1-complete TM) to the
FOMC problem on a first-order sentence. The sentence
that encodes the #P1-complete TM is referred to as
Θ1. This proof is based on the standard encoding of a
deterministic Turing machine into first-order logic, as
used to prove Trakhtenbrot’s theorem [28, p. 167]. We
extend this construction in several ways: (1) towards
non-deterministic counting Turing machines, (2) with
multiple tapes, (3) with a run time of c · n for some
fixed c, instead of n, (4) to have n symbols 1 on the
input tape, followed by symbols 0, and finally (5) to
obtain a sentence in FO3.

As discussed in Section 3.3, we need to encode run
times and space with lengths up to c · n, yet we only
have a domain size of exactly n available. This is solved
by partitioning the run time into c epochs of n steps,
and the space into c regions of n cells. Moreover, we
assume w.l.o.g. that there are two symbols: {0, 1}.

B.1 Signature
The signature of Θ1 consists of the following predi-

cates P/a, where a is the arity of P :

• </2, denoting a strict linear order on the domain,



• Succ/2, denoting the successor relation w.r.t. the
order on the domain,

• Min/1 and Max/1, denoting the smallest and largest
domain element

• state predicates Sqe/1, where Sqe(t) is true pre-
cisely when the machine is in state q at time t in
epoch e,

• head predicates Hτer/2, where Hτer(t, p) is true
precisely when at time t in epoch e, the head for
tape τ is at position p in region r, and

• tape predicates Tsτer/2, where Tsτer(t, p) is true
precisely when at time t in epoch e, tape τ contains
symbol s ∈ {0, 1} at position p in region r,

• movement predicates Leftτer/2 and Rightτer/2, where
Leftτer(t, p) is true precisely when the head on tape
τ at time t in epoch e is to the left of p in region
r (or when p, r is the first cell on its tape and the
head is there), and Right is defined similarly, and

• frame predicate Unchangedτer/2, where we have
that Unchangedτer(t, p) is true precisely when po-
sition p in region r of tape τ did not change going
from time t in epoch e to the next time step.

B.2 Sentences
To encode the Turing machine, we let Θ1 consist of

the following sentences.

1. < is an arbitrary strict linear order (total, antisym-
metric, irreflexive, and transitive):

∀x, ∀y, ¬(x = y)⇒ (x < y) ∨ (y < x)

∀x, ∀y, ¬(x < y) ∨ ¬(y < x)

∀x, ∀y,∀z, (x < y) ∧ (y < z)⇒ (x < z)

2. Min is the smallest element, and Max is the largest
element:

∀x, Min(x)⇔ ¬∃y, (y < x)

∀x, Max (x)⇔ ¬∃y, (x < y)

3. Succ is the successor relation:

∀x,∀y, Succ(x, y)⇔ (x < y) ∧ ¬∃z, (x < z) ∧ (z < y)

4. At any time, the machine is in exactly one state:∧
q,q′,e:q 6=q′

∀t, ¬Sqe(t) ∨ ¬Sq′e(t)∧
e

∀t,
∨
q

Sqe(t)

5. At any time, the head is in exactly one position
per tape:

(a) The head is in at least one position:∧
τ,e

∀t,∃p,
∨
r

Hτer(t, p)

(b) The head is in at most one region:∧
τ,e,r

∀t, ∀p, Hτer(t, p)⇒
∧

r′:r′ 6=r
∀p′,¬Hτer′(t, p

′)

(c) The head is in at most one position per region:∧
τ,e,r

∀t, ∀p, Hτer(t, p)

⇒ ¬∃p′,¬(p = p′) ∧Hτer(t, p
′)

6. At any time, each tape position has exactly one
symbol:∧

τ,e,r

∀t, ∀p, T0τer(t, p)⇔ ¬T1τer(t, p)

7. In the initial configuration of the TM (first time
step),

(a) it is in state q1, and its heads are in the first
position:

∀x,Min(x)⇒ Sq1e1(x) ∧
∧
τ

Hτe1r1(x, x)

(b) the first (input) tape τ1 contains n symbols 1
in the first region, followed by symbol 0 in all
other regions (starting with cell n+ 1), and all
other tapes τi contain symbol 0:

∀t,Min(t)⇒∀p, T1τ1e1r1(t, p) ∧
∧
i:i>1

T0τ1e1ri(t, p)

∧
∧

i,r:i>1

T0τie1r(t, p)

8. An encoding of the transition relation δ. For ex-
ample, that state qa operates on tape τa, and that
δ(qa, 0) = {(qb, 1, L), (qc, 0, R)} is encoded into the
following sentences.

(a) What changed when t is before the end of an
epoch (i.e., has a successor in the epoch):

∧
e,r

∀t, t′,∀p,

 Sqae(t)
∧Hτaer(t, p)
∧T0τaer(t, p)
∧Succ(t, t′)

⇒
[

Sqbe(t
′)

∧Leftτaer(t
′, p)

∧T1τaer(t
′, p)

]
∨
[

Sqce(t
′)

∧Rightτaer(t
′, p)

∧T0τaer(t
′, p)

]

(b) What changed when t is at the end of an epoch:

∧
i,r:1≤i<c

∀t, t′,∀p,


Sqaei(t)

∧Hτaeir(t, p)
∧T0τaeir(t, p)
∧Max (t)
∧Min(t′)

⇒
[

Sqbei+1(t′)
∧Leftτaei+1r(t

′, p)
∧T1τaei+1r(t

′, p)

]
∨
[

Sqcei+1(t′)
∧Rightτaei+1r(t

′, p)
∧T0τaei+1r(t

′, p)

]

(c) What does not change on the tapes: other cells
in the region of τa where the head is, regions



with no head, and tapes other than τa.∧
e,r

∀t,∀p,
[

Sqae(t)
∧Hτaer(t, p)

]
⇒ ∀p′, (p = p′) ∨Unchangedτaer(t, p

′)∧
τ,e,r

∀t, ∀p,Hτer(t, p)

⇒
∧

r′:r′ 6=r
∀p,Unchangedτer′(t, p)∧

e

∀t, Sqae(t)

⇒
∧

τ,r:τ 6=τa
∀p,Unchangedτer(t, p)

(d) The positions of the heads on tapes other than
τa do not change:

∧
τ,e,r:τ 6=τa

∀t, t′,∀p,
[

Sqae(t)
∧Hτer(t, p)
∧Succ(t, t′)

]
⇒ Hτer(t

′, p)

∧
τ,i,r:τ 6=τa,1≤i<c

∀t, t′,∀p,

 Sqaei(t)
∧Hτeir(t, p)
∧Max (t)
∧Min(t′)


⇒ Hτei+1r(t

′, p)

9. The movement predicates are defined as∧
τ,e,r

∀t, ∀p, p′,
[

Leftτer(t, p)
∧Succ(p′, p)

]
⇔ Hτer(t, p

′)

∧
τ,e,i:1≤i<c

∀t,∀p, p′,
[

Leftτeri+1
(t, p)

∧Min(p)
∧Max (p′)

]
⇔ Hτeri(t, p

′)

∧
τ,e

∀t,∀p,
[

Leftτer1(t, p)
∧Min(p)

]
⇔ Hτer1(t, p)

∧
τ,e,r

∀t, ∀p, p′,
[

Rightτer(t, p)
∧Succ(p, p′)

]
⇔ Hτer(t, p

′)

∧
τ,e,i:1≤i<c

∀t, ∀p, p′,
[

Rightτeri(t, p)∧Max (p)
∧Min(p′)

]
⇔ Hτeri+1

(t, p′)

∧
τ,e

∀t,∀p,
[

Rightτerc(t, p)
∧Max (p)

]
⇔ Hτerc(t, p)

10. The frame predicates are defined as

∧
s,τ,e,r

∀t, t′,∀p,
[

Tsτer(t, p)
∧Unchangedτer(t, p)

∧Succ(t, t′)

]
⇔ Tsτer(t

′, p)

∧
s,τ,i,r:1≤i<c

∀t, t′,∀p,

 Tsτeir(t, p)
∧Unchangedτeir(t, p)∧Max (t)

∧Min(t′)


⇔ Tsτei+1r(t

′, p)

11. The machine terminates in an accepting state (e.g.,
q1, q5, q42, etc.) :

∀t,Max (t)⇒ Sq1ec(t) ∨ Sq5ec(t) ∨ Sq42ec(t) ∨ . . .
It is easy to verify that Θ1 uses at most three logical

variables per sentence, and that Θ1 is therefore in FO3.
Note that FO3 permits variables to be reused within
the same sentence.

For a fixed model of </2, that is, a fixed order on the
domain, the models of Θ1 for domain size n correspond
one-to-one to the accepting computations of the TM on
input n. Since there are exactly (n!) models of < /2,
we can compute the number of accepting computations
from the FOMC efficiently.

C. PTIME DATA COMPLEXITY FOR FO2

The proof of the fact that the data complexity for
FO2 is in PTIME is spread over two references, [35] and
[37]. We include here a brief proof, for completeness.

Given an FO2 formula ϕ of size s, we start by ap-
plying the reduction in [17], which converts ϕ into a
formula ϕ∗ with the following properties:

• Every relational symbol occurring in ϕ∗ has arity
at most 2.

• Items 1 and 3 of Scott’s reduction hold. (Item 2
becomes: ϕ∗ has size O(s log s). In our case ϕ is
fixed, so it suffices to note that the size of ϕ∗ is
O(1).)

The reduction consists of Scott’s reduction described
above, plus the following transformation that ensures
that all relational symbols have arity ≤ 2. Replace
each relational atom of arity > 2 by a new unary or bi-
nary symbol, for example, replace the atoms R(x, y, x),
R(y, y, y), R(x, x, y) by R1(x, y), R2(x), R3(x, y). Then
append to ϕ∗ conjuncts asserting how the new rela-
tional symbols relate, for example ∀x(R1(x, x)↔ R2(x));
we refer the reader to [17] for details.

We perform one more transformation: remove all ex-
istential quantifiers by using Lemma 3.3, thus trans-
forming ϕ∗ into a universally quantified sentences:

ϕ∗ = ∀x∀y ψ(x, y)

where ψ(x, y) is a quantifier-free formula.
If ϕ∗ contains any relational symbol R of arity zero

then we perform a Shannon expansion and compute
P (ϕ∗) = Pr(ϕ∗[R = false]) · (1 − p(R)) + Pr(ϕ∗[R =
true]) · p(R). Thus, we can assume w.l.o.g. that all
relational symbols in ϕ∗ have arity 1 or 2.

Assume first that all relational symbols in ϕ∗ have
arity 2. Then we write its lineage as:

F =
∧

a,b∈[n]:a<b

ψ(a, b) ∧
∧
c∈[n]

ψ(c, c)

Since all atoms are binary, for any two distinct sets
{a, b} 6= {a′, b′}, the formulas ψ(a, b) and ψ(a′, b′) are



independent probabilistic events, because they depend
on disjoint sets of ground tuples: one depends on tu-
ples of the form R(a, b) or R(b, a), the other on tuples
of the form R(a′, b′) or R(b′, a′), and they are disjoint.
(This would fail if ψ contained a unary atom, say U(x),
because we may have a = a′, b 6= b′, and in that case
both formulas depend on the tuple U(a).) Therefore:

Pr(F ) =
∏

a,b∈[n]:a<b

Pr(ψ(a, b)) ·
∏
c∈[n]

Pr(ψ(c, c))

Because the probabilities are symmetric, the quantity
p1 = Pr(ψ(a, b)) is independent of a, b, while p2 =
Pr(ψ(c, c)) is independent of c, and both can be com-
puted in time O(1). Therefore, Pr(ϕ) = Pr(ϕ∗) =

p(F ) = p
n(n−1)/2
1 pn2 . For a simple illustration, consider

ϕ∗ = ∀x∀y(R(x, y)∨T (x, y))∧(R(x, y)∨T (y, x)). Then:

F =
∧

a,b∈[n]:a<b

(R(a, b) ∨ T (a, b)) ∧ (R(a, b) ∨ T (b, a))

∧ (R(b, a) ∨ T (b, a)) ∧ (R(b, a) ∨ T (a, b))

∧
∧
c∈[n]

(R(c, c) ∨ T (c, c))

and the probability is given by p
n(n−1)/2
1 pn2 where p1 =

Pr((R(a, b) ∨ T (a, b)) ∧ (R(a, b) ∨ T (b, a)) ∧ (R(b, a) ∨
T (b, a)) ∧ (R(b, a) ∨ T (a, b))) and p2 = Pr(R(c, c) ∨
T (c, c)), both quantities that can be computed using
brute force.

Next consider the case when ϕ∗ has both unary and
binary relational symbols. Let R1, . . . , Rm be all unary
symbols. Consider the 2m cells defined by conjunc-
tions of these atoms or their negation, denote them
C1, . . . , C2m ; that is C1(x) ≡ ¬R1(x)∧· · ·∧¬Rm(x), . . .,
C2m(x) ≡ R1(x)∧ · · · ∧Rm(x). Let P denote any parti-
tion of [n] into 2m disjoint sets, i.e. P = (S1, . . . , S2m)
such that S1 ∪ · · · ∪S2m = [n]. Denote (C1, . . . , C2m) =
P the event that the 2m cells define precisely the par-
tition P . Then, summing over all partitions P gives
us:

Pr(ϕ∗) =
∑
P

Pr(ϕ∗ ∧ (C1, · · · , C2m) = P ) (8)

Next, we split ϕ∗ into a conjunction of several formulas,
each x ranging over some cell Si and y over some cell
Sj :

ϕ∗ =
∧

i,j∈[2m]:i<j

∀x : Si,∀y : Sj , (ψ(x, y) ∧ ψ(y, x))

∧
∧

`∈[2m]

∀x : S`,∀y : S`, ψ(x, y)

When x ranges over Si, then every unary predicate R(x)
containing the variable x is either true or false. Simi-
larly, when y ranges over Sj , a predicate R(y) is either
true or false. Let ψij(x, y) (or ψ`(x, y)) denote the for-
mula ψ(x, y) ∧ ψ(y, x) (or ψ(x, y)) where all the unary
predicates have been replaced by true or false, accord-

ing to the cells Si, Sj (or S` respectively). Therefore:

ϕ∗ =
∧

i,j∈[2m]:i<j

∀x : Si,∀y : Sj , ψij(x, y)

∧
∧

`∈[2m]

∀x : S`,∀y : S`, ψ`(x, y)

Notice that ψij and ψ` have only binary predicates.
All conjuncts in the expression above are independent
probabilistic events: if {i1, j1} 6= {i2, j2} then ∀x :
Si1 ,∀y : Sj1 , ψi1j1(x, y) and ∀x : Si2 ,∀y : Sj2 , ψi2j2(x, y)
are independent. Therefore, denoting ni = |Si| for
i = 1, 2m, we have: Pr(ϕ∗ ∧ (C1, · · · , C2m) = P ) =∏
i,j∈[2m]:i<j qij ·

∏
`∈[2m r`, where:

qij = Pr(∀x : Si,∀y : Sj , ψij(x, y))

=
∏

a∈Si,b∈Sj

Pr(ψij(a, b)) = r
ninj

ij

r` = Pr(∀x : S`,∀y : S`, ψ`(x, y))

=
∏

a,b∈S`:a<b

Pr(ψ`(a, b) ∧ ψ`(b, a)) ·
∏
c∈S`

Pr(ψ`(c, c))

=s
n`∗(n`−1)/2
` · tn`

`

where rij = Pr(ψij(a, b)), s` = Pr(ψ`(a, b) ∧ ψ`(b, a)),
and t` = Pr(ψ`(c, c)) are independent of the choices
of a, b, c respectively, and can be computed by brute
force in time O(1). Finally, we use the fact that the
probabilities are symmetric, which implies that the ex-
pression in Eq. (8) depends only on the cell cardinali-
ties n1, . . . , n2m , and not on the actual cells S1, . . . , S2m .
Therefore:

Pr(ϕ∗) =
∑

n1,...,n2m :n1+···+n2m=1

n!

n1! · · ·n2m !

· rninj

ij s
n`∗(n`−1)/2
` · tn`

`

For a simple illustration, consider ϕ∗ = ∀x∀y(R(x) ∨
U(x, y)∨T (y))∧ (¬R(x)∨¬U(x, y)∨¬T (y)). Denoting
the four cells ¬R ∧ ¬T , ¬R ∧ T , R ∧ ¬T , R ∧ T by
C1, . . . C4 respectively, we split ϕ into a conjunct of
6 + 4 expressions, such that in each expression x and
y are restricted to the domains Ci and Cj respectively,
for i ≤ j. Denoting n1, . . . , n4 the sizes of these cells,
we have:

Pr(ϕ∗) =
∑

n1+···+n4=n

n!

n1!n2!n3!n4!
r
ninj

ij s
n`∗(n`−1)/2
` · tn`

`

where r12 = Pr(U(a, b)) (because ∀x : S1,∀y : S2, (R(x)∨
U(x, y) ∨ T (y)) ∧ (¬R(x) ∨ ¬U(x, y) ∨ ¬T (y)) ≡ ∀x :
S1,∀y : S2, T (x, y)), and similarly for the others.
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