
Low Overhead Parallel Schedules for Task. Graphs* 
(Extended Abstract) 

Richard J. Anderson 
Paul Beame 

Walter L. Ruzzo 

Department of Computer Science and Engineering 
University of Washingtoni 

Abstract 

We introduce a task scheduling model which is use- 
ful in the design and analysis of algorithms for 
small parallel machines. We prove that under our 
model, the overhead experienced in scheduling an 
n x n grid graph is O(loglogn) for p processors, 
p > 2. We also prove a matching lower bound of 
Q(loglog n) for p processors, p 1 2. We give an 
extension of the model to cover the case where the 
processors can have varying speed or are subject to 
delay. 

1 Introduction 

In this paper we explore a task graph model for par- 
allel programming. We were originally motivated 
to look at this model based on experience gained 
implementing algorithms on a small parallel ma- 
chine [l]. The task graph model we consider nat- 
urally arises in programming and leads to efficient 
and general programs for a number of problems. It 
provides a fundamental abstraction with wide ap- 
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plicability to parallel computation. A task graph 
consists of a collection. of computational tasks to 
be performed, together with precedence constraints 
on the order in which they may be executed. Task 
graph models have been used for a wide range of 
applications. For example, they arise in parallel 
program design, scheduling theory, and code opti- 
mization. Many existing algorithms can be conve- 
niently translated into task graph form. 

The task graph model has a number of practical 
advantages for implementing parallel algorithms. 
Representing a program as a task graph allows a 
high degree of parallelism to be simply expressed, 
while compartmentalizing all synchronization in a 
few scheduling routines. This greatly facilitates de- 
bugging and enhances portability. Further, it com- 
partmentalizes knowledge of the number of avail- 
able processors, making it easy to specify some pro- 
grams for a range of processor and data sizes, and 
to make algorithms robu.st to variations in the num- 
ber of available processors. 

A key consideration in practice is whether imple- 
menting an algorithm with a task graph introduces 
an unacceptable overhead. Our results show that 
for some very important families of task graphs and 
parallel machines the overhead is negligible. 

We consider overhead in a domain where com- 
munication is not a significant cost. This is a re- 
alistic assumption to make in the case of many 
small, shared memory parallel machines. On the 
other hand, we do not assume that synchroniza- 
tion is “free”. This is also a realistic assumption 
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on most MIMD machines, where synchronization 
and scheduling can easily be comparable in cost to 
single tasks in a fine-grain task decomposition. 

In a task graph with no precedence constraints, 
it is trivial to attain perfect speedup in parallel ex- 
ecution: t unit-time tasks can be executed by p 
processors in time [t/p] with no effort wasted on 
coordination, synchronization, or scheduling other 
than to establish an arbitrary pre-agreed partition 
of the tasks into p equal size groups. Precedence 
constraints introduce two distinct sources of over- 
head - time during which processors are idle (be- 
cause too few unprocessed tasks have had their 
precedence constraints satisfied) and time perform- 
ing synchronization or scheduling (to maintain the 
required ordering of task execution). 

In the common case where there are many more 
tasks than processors, it is natural to aggregate 
tasks into jobs subject to the tasks’ precedence con- 
straints. This may greatly reduce the scheduling 
overhead since fewer, larger units of work need to 
be scheduled. However, it also could greatly in- 
crease the overhead due to idleness, since idle pro- 
cessors may need to wait longer for the completion 
of these larger units. At one extreme, minimal idle- 
ness (i.e. maximal parallelism, but also maximal 
scheduling cost) is likely to occur when each task 
is scheduled individually. At the other extreme, 
minimal scheduling cost (but also minimal paral- 
lelism) is attained by aggregating all tasks into a 
single large job, at the cost of leaving all but one 
processor idle for the duration of that job. 

The overall problem we wish to solve is to deter- 
mine, for a given task graph and number of pro- 
cessors, the best (lowest overhead) schedule. That 
is, we seek the best way to aggregate tasks into 
jobs, and to schedule those jobs, so as to minimize 
the sum of the two kinds of overhead. In the next 
section we propose a simple model for the costs 
of synchronization and idle time overhead, and for 
studying task graph scheduling. 

The main example of a task graph that we con- 
sider is the grid graph - an n by n array of tasks, 
each of which is dependent on the prior execution 
of its two neighbor tasks to the left and above it 
in the grid. This is the graph underlying a variety 
of important algorithms including the Gauss-Seidel 

relaxation method in numerical linear algebra and 
many dynamic programming algorithms such as 
the Cocke-Kasami-Younger context-free language 
recognizer [2] and the longest common subsequence 
algorithm [6]. The grid graph is also a prototype for 
an interesting class of problems with “slowly grow- 
ing” parallelism, in contrast to, say, a balanced bi- 
nary tree or the FFT graph, where a high degree 
of parallelism is apparent and easily exploited. 

Our results show that for n x n grid graphs, 
scheduling adds only O(loglog n) overhead on p 
processors, p 1 2, where the constant of propor- 
tionality depends only on p, and that this is opti- 
mal. This overhead is remarkably low - for exam- 
ple, with 2 processors the overhead for grid graphs 
with over 350 million unit-cost tasks is at most 
37 time units, accounting for an execution time at 
most 19 steps beyond that for perfect speed-up. 

As mentioned above, our results were motivated 
by experience with small parallel machines such as 
the Sequent Symmetry El]. Such machines form 
an important class of existing parallel computers 
and seem likely to remain a highly cost-effective al- 
ternative to conventional sequential machines. Al- 
though in some cases we were able to come very 
close to full speedup over a sequential algorithm, 
the existing theory of parallel algorithms did not 
serve as a useful guide. 

The majority of the theoretical work on parallel 
algorithms does not adequately address this class 
of machines. The most common approach in de- 
veloping parallel algorithms has been to view the 
number of processors as a quantity that varies with 
the problem size. The emphasis has been on dis- 
covering very fast algorithms (for example the class 
NC) while using a number of processors that is 
very large. Work on designing “efficient” or “opti- 
mal” parallel algorithms, where the time-processor 
product is on the order of the sequential run time, 
potentially has application to small parallel ma- 
chines. However, the constant factors that arise in 
designing the “efficient” algorithms are often quite 
large. The goal when using a p processor machine is 
to solve a problem p times faster than with a single 
processor. Constant factors can easily overwhelm 
the performance gain of parallelism when p is small. 
In addition, much of the theoretical work on paral- 
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Iel algorithms ignores the cost of synchronization. 
Small parallel machines are typically MIMD ma- 
chines, so in practice processors are not fully syn- 
chronized. Synchronization costs in real algorithms 
have significant performance implications, and are 
often a much more serious factor than, say, con- 
tention for access to the shared memory. 

One of our goals is to try to develop a theory 
that aids us in understanding algorithms for small 
parallel machines. We believe this work shows that 
it is possible to say theoretically interesting things 
about such algorithms, and about synchronization 
costs in particular. 

The remainder of our paper is organized as fol- 
lows. The next section explains our formal task 
scheduling model. Section 3 introduces some easy 
basic results about the model on a variety of task 
graphs. Section 4 proves that the overhead for 
the n x n grid graph for the 2 processor case is 
O(IogIogn). In Section 5 we then sketch the ex- 
tensions of this result to the p processor case. In 
Section 6 we give the lower bound that shows our 
algorithms are optimal. We conclude in Section 7 
by discussing how the model can be extended to 
the case where the processors vary in speed or are 
subject to delay. 

2 The Task Scheduling Model 

2.1 Aggregation 

The task graph model assumes that a problem’s 
solution can be decomposed into a set of primi- 
tive computational taslcs. Precedence constraints 
on the execution of these tasks may be necessary to 
achieve correctness. The task graph model repre- 
sents the solution as a directed acyclic graph (dag), 
with the individual tasks corresponding to vertices, 
and the edges giving the precedence constraints. 

It is natural to aggregate tasks into jobs sub- 
ject to the tasks’ precedence constraints. Each job 
is executed on a single processor by executing its 
component tasks in an arbitrary order consistent 
with the &&a-job precedence constraints. Consis- 
tency with inter-job precedence constraints is the 
responsibiIity of the scheduler. A correct scheduler 
must ensure that the jobs are executed in an order 

that is consistent with the task graph, and must 
do this independently of the rate of processing of 
the individual jobs. Conceptually, we assume that 
a central scheduler calculates a beneficial aggrega- 
tion of tasks into jobs and dynamically assigns the 
jobs to idle processors in a way that ensures con- 
sistency with the task graph. 

We are not making any strong assumptions 
about the actual implementation of the “sched- 
uler.” Semaphores or a variety of other techniques 
could be used in place of central scheduling rou- 
tines to achieve the desired effect. Conversely, there 
is no essential loss in generality in assuming the 
presence of a central scheduler, since other syn- 
chronization methods can be easily recast into this 
model: simply view the set of tasks executed by 
one processor between synchronization events as a 
“job.” The key point is that some synchronization 
or scheduling method is necessary, they all intro- 
duce an amount of overhead that is roughly pro- 
portional to the number of jobs scheduled, and this 
overhead should be counted. 

Different choices of aggregation into jobs can 
have radically differem overheads. Furthermore, 
given an aggregation into jobs, the ordering on the 
jobs chosen by the scheduler may also effect the 
overhead. Thus the general problem we wish to 
solve is: given a task graph and number of pro- 
cessors, find an aggregation of tasks into jobs and 
an ordering of these jobs consistent with the task 
graph that together produce minimum overhead. It 
will turn out that the overhead of all the schedules 
we describe is completely insensitive to the ordering 
of jobs, so our schedules can be implemented using 
a very simple barrier synchronization technique. 

In keeping with the idea that idleness and 
scheduling are the primary sources of overhead we 
study the following simple model of overhead in 
the task graph model. Each task is assumed to re- 
quire one time unit to execute. Likewise, schedul- 
ing each job is assumed to require one time unit. 
(Changing the ratio between task execution time 
and scheduling time won’t fundamentally alter our 
results.) Overhead is defined to be the total over 
all processors of the number of steps they spend 
idle plus the number of steps spent scheduling jobs. 
(The latter quantity is simply the total number of 
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jobs.) Intuitively, overhead tells us the amount of 
CPU time that is used non-productively. It mea- 
sures how close we have come to achieving perfect 
speedup; if we have p processors and n units of 
work to perform, overhead measures p times the 
difference between the schedule’s execution time 
and n Jp. 

One subtlety here is that we are using an es- 
sentially synchronous cost model to estimate the 
performance of an asynchronous system. This is 
reasonable since processors, although not tightly 
synchronized, generally execute at very nearly the 
same rates. Hence a synchronous cost model 
will provide reasonably accurate performance es- 
timates, A correct program, however, must be 
able to accommodate variations in execution rates 
due to a variety of factors, and so must explicitly 
synchronize as necessary to ensure that precedence 
constraints are respected. Hence our model charges 
for synchronization as well. At the end of the pa- 
per we extended the model to the case where the 
schedule must be dynamically adjusted to reflect 
the actual delays discovered during its execution. 

2.2 Examples 

To give some intuition for the problem, we will 
briefly consider some two processor decompositions 
for the n x n grid. Aggregation of tasks into Ic x Ic 
jobs is a very natural approach to try. It’s easy 
to see that choosing k = &i balances scheduling 
overhead against idle time, giving a total overhead 
of o(n); see Figure l(a). 

A second natural approach, based on a sim- 
ple divide-and-conquer strategy, is sketched in Fig- 
ure l(b). Although it has succeeded in creating two 
large (n/2 x n/2) independent jobs, it also creates 
a large number of small jobs, hence also yields only 
O(n) overhead. 

A somewhat more complex refinement of the 
k x k strategy giving sublinear overhead is also pos- 
sible; see Figure l(c). To reduce the overhead, we 
must both reduce the number of jobs and avoid 
leaving any long periods of idle time. We reduce 
the number of jobs by breaking into bigger squares: 
we divide the grid into n213 squares, each of size 
n213 x n2j3, To reduce the idle time associated 
with the large corner squares, we subdivide them 

into n2i3 smaller squares of size n1i3 x n1i3. This 
approach (with attention to a few details), yields 
n2i3 overhead. This method generalizes to give 

a solution with 2O(Gl overhead. We can do 
better still. Our main results are that overhead 
O(loglog n) is achievable for the grid graph, for any 
fixed number of processors, and that this is opti- 
mal. We found this result very surprising, since we 
did not expect that the overhead could be so small. 

2.3 Formal Model 

We model a computation as a dag G whose nodes 
are the primitive computation steps (tasks) to be 
performed and whose edges represent precedence 
between the tasks. A schedule S of G consists 
of a partition of the set of tasks of G into jabs 
Jl,... , Jm and a schedule graph, a dag with these 
jobs as nodes and with edges representing con- 
straints on the order of execution of the jobs. The 
precedence constraints on the jobs must be consis- 
tent with the precedence of their constituent tasks. 
That is, for any jobs Jk, Ji in S there must be an 
edge from Jk to Jl whenever job Jk contains a task 
that is a predecessor of a task in job J1. Note 
that the schedule graph may contain edges other 
than the edges enforcing task graph constraints. A 
schedule is a p-processor schedule if its schedule 
graph is the union of at most p (not necesssarily 
disjoint) chains of jobs. (That is, the maximum 
parallelism in the schedule is at most p.) 

The cost of a job containing t tasks is t + 1, ac- 
counting for the t time units to perform its con- 
stituent tasks and one time unit for scheduling. 
The completion time of schedule S is the length of 
the longest path in the schedule graph of S, where 
the length of a path is the sum of the costs of its 
jobs. The overhead of a p-processor schedule S is 
p times its completion time minus the number of 
tasks it contains. In other words the overhead of a 
schedule is simply the sum of the idle times of the 
processors plus the number of jobs in the schedule. 

The tusk graph scheduling problem is to find, 
given a number of processors p and a task graph 
G, a p-processor schedule of G that minimizes over- 
head. 
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Figure 

(b) 
1: Grid Graph Decompositions 

(4 

2.4 Related Work 

Papadimitriou and Ullman [4] and Papadimitriou 
and Yannakakis [5] consider the parallel execution 
of task graphs, concentrating on some of the same 
graphs as we do. Both papers differ from ours in 
that they assume synchronous parallel execution. 
In a synchronous model the overhead for schedul- 
ing is not an issue and instead they concentrate 
on relationships between communication and time. 
Their task graphs contain edges representing data 
communication between tasks whereas ours only 
have the smaller number of edges needed to en- 
sure precedence. For example, in their model, grid 
graphs are not applicable to dynamic programming 
because of the communication of earlier values in 
these problems. Papers on the optimization of 
nested loops [7], [3] also look at grid graphs, but 
do not present solutions similar to ours. Our re- 
sults may be applicable in this context. 

process the the top log2 p levels, and then give each 
processor a subtree of size n/p. This leads to an 
overhead of roughly p (independent of n). If the 
number of processors in not a power of two, there 
is a little work to do in load balancing, but even 
in this case the overhead is proportional to p. It 
is possible to get very similar results for the FFT 
graph. The reason that the results for these cases 
are almost trivial is that the graphs are very shal- 
low, and by performing a small amount of work, it 
is possible to generate very large independent jobs. 

Throughout the rest of this abstract we will only 
consider (two-dimensional) grid graphs. In the full 
paper we will also present results on scheduling 
higher dimensional grids. 

4 Upper Bound for 2 Processors 

3 Basic Resulty 

In this section we will sketch the scheduling 
method used to solve the n x n grid with overhead 
O(loglog n). 

It should not be surprising that our basic problem 
is NP-hard for p > 2 processors. The NJ’-hardness 
result is not a serious obstacle to our study, since 
we are interested in studying families of graphs that 
arise from actual algorithms as opposed to arbi- 
trary dags. 

Theorem 4.1 For any n 2 2, an n x n grid graph 
can be scheduled with at most 9 units of idle time 
and at most 810g2 log, n •t 20 jobs. 

Proof: The key subproblem is to efficiently sched- 
ule an n x n grid with a k x k subgrid removed 
from both the upper left and lower right corners, 
for any even k, 2 5 k 5 n/2. 

For several families of graphs it is very easy to get Given this procedure, the n x n grid problem is 
nearly optimal results. For example, we could take easily solved. In the first step, Processor A does 
complete binary trees as our family of graphs. In the four tasks in the 2 x 2 square at the upper left 
the case where the number of processors is a power corner. In the last step, Processor A does the 2 x 2 
of two, a simple solution is to have one processor lower right corner. In between, the two processors 
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Figure 2: The Two Processor Schedule 

cooperatively solve the problem for an n x n grid 
with its upper left and lower right 2 x 2 corners 
removed. This costs 8 units of overhead (Processor 
B is idle while Processor A does the corners), plus 
the overhead for the subproblem. 

The key subproblem is handled in four phases 
plus the recursive solution of an n’ x n’ grid with 
k’ x k’ corners removed, where k’ is roughly m. 
Since the corners grow rapidly, after O(loglog n) 
recursive levels, the corners touch, leaving two com- 
pletely independent subproblems to solve at the 
bottom level. 

Figure 2 shows how the n x n decomposition is 
performed. The labels in the various regions in- 
dicate both the phase in which the region is pro- 
cessed, and the processor that does it. For example, 
the region labeled “1B” is the phase 1 job executed 
by Processor B, and the two disconnected regions 
labeled “2A” comprise the phase 2 job for Processor 
A. The two jobs in each phase are exactly the same 
size, so the solution provides perfect parallelism: 
there is no overhead due to idle processors, except 
for the 8 units at the top level for the upper left 
and lower right 2 x 2 corners, and one unavoidable 
unit in the base case when n is odd. 

The sizes of the various regions shown in Figure 
2 are determined as follows. The area of region 
2B is obviously (k’)2. Region 2A is chosen to have 

the same area. Regions 1A and 1B are chosen to 
fill the remainder of the width k strips along the 
top and left of the grid, and so have length n - 
2k - ((k’)2 - k2)/2k. The phase 4 and phase 5 
regions are exactly the same size and shape as the 
corresponding phase 2 and 1 regions, resp. The 
recursively solved region, 3AB, is an n’ x n’ grid 
with k’ x k’ corners removed, where n’ = n - 2k. 

The goal is to make the k’ x k’ region 2B as large 
as possible. There are two constraints on how large 
k’ can be. The most significant is that it cannot ex- 
tend past the ends of the 1A and IB regions without 
violating precedence constraints. Hence, we must 
have 

n - 2k - ((k’)2 - k2)/2k 2 k’. (1) 

Second, all the regions should be rectangles, as 
shown in Figure 2. (This is not necessary for cor- 
rectness, and worsens our bounds by a small con- 
stant factor, but is preferred for simplicity of ex- 
position, and is likely to be valuable in practice as 
well.) For the regions to be rectangular, it is neces- 
sary that ((k’)2-k2) b e a multiple of 2k; we will use 
the slightly simpler condition that k be even and 
k’ be a multiple of k. Hence, we want the great- 
est integer I such that k’ = kl is a solution to the 
inequality (1). Thus 

n - 2k - ((kZ)2 - k2)/2k 2 kl. 

Equivalently, 

(kl)2/2k + kl -n+3k/2<0 

Z2 + 2112n/k + 3 2 0 

Thus Z is the greatest integer such that 

z< -2+44+8nfk-12 
2 

or 

z= j/qc2-1 
I I 

and so it suffices to choose 
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which implies (3). 
Inequality (4) is shown by induction on i. The 

basis is straightforward. For the upper bound in- 
duction step, note 

Table 1: Decomposition Sequence for a Large Grid 

Thus, we obtain the following recurrences for the 
sizes of the successive subproblems. 

k. = 2 

no = n 

k. r+1 = k; J2n;lIc;-2-I L J for i 2 0 

ni+l = n; - 2k; for i 2 0 

Table 1 gives an example of the values of these 
sequences for n = 100,000. 

Roughly speaking, this recursive decomposition 
continues until regions 2B and 4B touch, which hap- 
pens when k/n exceeds M .15. 

These recurrences can be bounded as follows. 
Let a = .13, b = l/(1 + 2a), and c = b(,/z - 
fi)2 x .14. Note that c > a. Let j be the least 
integer such that kj/nj > a. Then, for all i < j, 
we claim: 

kilni 5 a (2) 

bn 5 ni < n (3) 

2cnl-2-i 5 k; 2n’-2-i 5 and, (4 

j 5 log, log, 72. (5) 

Inequality (2) is immediate from the definition of 
j. Inequalities (3)-(5) are shown as follows. First 
note 

Thus the ki’s are at least doubling with each step 
up to the j-th, and so for all i < j we have 

i-l 

n;=n-2. c k, 1 n-2-k; > n---an;, 
m=O 

ki+l = 

For the lower bound 

k* rfi = k; Jx-I L 1 
2 k; Ji-i7&5-2 

( > 

= 4 2niki - 2kf - 2ki 

= dsx(JG- JK) 

2J 2 bn 2cnx-2-i (diT-dq 

The fifth step uses Inequalities (2), (3) and the 
induction hypothesis. The last step relies on the 
choice of c. 

Inequality (5) is easily seen by contradiction. If it 
does not hold, then for i = log, log, n, Inequalities 
(4) and (3) hold for i, so we have 

kilni 2 kiln 2 2cn’-2-i/n = 2cnS2-’ 

= 2cn 
-2- ‘OS2 lwi: n = 2cn-t1/log2 n, = c > a, 

contradicting the minim.ality of j. 
This recursive decomposition continues until k is 

a large enough fraction of n that regions 2B and 
4B can be made to just touch (or overlap by one 
unit if n is odd). Namely, the base case is reached 
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when k’ = [n/21 - k is a solution to inequality (1). 
Except for small, odd n, this point is reached when 
k/n exceeds M .15. In the base case the schedule 
can be completed with at most 10 jobs (and 1 unit 
of idle time if n is odd) using a decomposition simi- 
lar to the one used above. (The details are omitted 
from this abstract.) Unlike the recursive decom- 
position presented above, in the base case the jobs 
might include “L’‘-shaped regions. If desired, these 
regions could be split into rectangles, with a small 
increase in overhead. 

To finish the analysis, observe that in j 2 
log, log, n steps, k; has grown to be at least .13n;. 
If the base case hasn’t already been reached, then 
in one more step, while it is possible that ki won’t 
increase, ni will decrease enough that ki+l/ni+l > 
.28, and the base case will be reached. This gives 
at most I = log, log, n + 2 recursive levels (includ- 
ing the base case). The total overhead for 2 levels 
is 81 + 4 jobs (8 per level, plus two extra for the 
last level, plus two for the top level) with 8 units 
idle time for the top level, and one unit in the base 
case if n is odd. For all n > 2 this totals at most 
8 log, log, n + 29, as claimed. I 

We also have computed the number of recursive 
levels exactly for many values of n and find that 2 
levels suffice for all n < 138, 3 levels suffice for all 
n 5 19,260, and 4 levels suffice for many (perhaps 
all) n 5 300 million. Clearly, the overhead will 
be negligible for all but the smallest problems of 
practical size. 

It is worth noting that except for a few jobs at the 
base level, all jobs are simple, rectangular regions. 
Hence, we expect the method will be simple and 
practical to implement. 

5 Upper Bound for p Processors 

In this section we will give a very brief sketch of the 
ideas underlying the O(loglogn) upper bound for 
p > 2 processors. Although somewhat more com- 
plicated than the two processor case, the main idea 
is the same: work on narrow strips along the side 
of the grid until a large “corner” can be removed. 
In this case it is most convenient to remove an an- 
tidiagonal corner rather than a square one, and it 

n.6 

// 4ABCDE 

Figure 3: Part of a Five Processor Schedule 

is necessary to work on -about p/2 narrow strips, of 
differing widths, rather than just one. 

Figure 3 illustrates the schedule used when p = 
5, starting from a grid with an nB5 corner cut off. In 
phase 1, Processors B, C and D complete triangles 
of area Q(n), while A and E do O(n.2 x n.“) strips. 
In phase 2, A, C and E repeat this, while B and D 
do O(ne4 x n.“) strips. In the third phase, C clips 
off a corner of size O(nm6 x na6) while A and E do 
O(w2 x n’) strips, and B and D do O(n.4 x n-“) 
strips. 

The widths of the strips need to be chosen so that 
the longest one fits within the grid, and they need 
to increase in width so that, e.g., B doesn’t over- 
take A in the last phase. Also, in the general case, 
we won’t be starting from a “clean” antidiagonal 
corner of width k. Rather, there will be partially 
completed strips of width o(k) passed down from 
higher levels in the recursion. This also complicates 
the base case. Nevertheless, when appropriately 
parameterized, these ideas can be extended to give 
the desired 0 (log log n) schedule for any constant 
p. Details are deferred to the full paper. 
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6 Lower Bound 

The following lower bound shows that the sched- 
ules of the previous sections are essentially the best 
possible. There is a strong connection between the 
intuition of those algorithms and the intuition for 
the proof of the lower bound. 

Theorem 6.1 Any schedule for the n x n grid 
graph with p 2 2 processors has overhead at least 
R(loglog n). 

Proof: Fix some schedule for the n x n grid graph, 
Define diagonal job J; to be the i-th job in the 
schedule that involves a task t(j, j) on the diagonal 
of the grid. Let si be the largest index j of a task 
t(j, j) in job Ji. We claim roughly that either 3; 
grows slowly so that there are at least log log n diag- 
onal jobs or a processor is idle for at least loglogn 
units of time up to the end of job J;. 

More precisely let 

t1 = d- 

ti = TZti-1 + loglogn for i > 1. 

Claim: If for any i, si > ti then a processor is 
idle for at least log log n units of time up to the end 
of job Ji. 

Suppose that 3, s; 2 t;. Let i be the smallest 
such value. We have two cases: 

Case 1: i = 1 The first job J1 includes t(l,l) 
and during the execution of J1 any other processors 
are idle. If ~1 > tl = fll then Ji must 
contains more than loglogn tasks. Thus the other 
processor(s) are idle for at least loglogn steps. 

Case 2: i > 1: Since i was the smallest value such 
that si > t;, si-1 < t;-1. Because of the precedence 
enforced by the grid graph and the definition of job 
Ji, no job other than J; that begins prior to the 
completion of job .Ji can involve any task t(j, k) 
where both j and k: are larger than si-1 < ti-1. 

Thus all jobs that run in parallel with job J; must 
involve tasks t(‘, Ic) that have either j or k less than 
ti-1. Using a very crude upper bound we see that 
there are at most 2nti-1 such tasks. However the 
fact that si 1 ti implies that si - si-1 > ti - ti-1 = 
JZnt;-1 + log log n. Note that for i > 1, job Ji 
contains at least (si - si-r)2 tasks since it must 

contain all tasks in the square bounded by t(si-1 + 
1,s~I + l), t(si,si), t(s,i-1 + l,si), and t(si,si-1 + 
1). Thus Ji must contain at least 2ntiel + loglogn 
tasks. Since at most 2nti-1 can be run in parallel 
with J;, at least one other processor is idle for at 
least log log n tasks. 

The claim follows. Now since each unit of time 
during which an individual processor is idle con- 
tributes a unit of overhead, the proof is finished 
once it is shown that ti 2 n implies i is Q(loglogn) 
since this implies R(loglog n) overhead due to the 
initiation of the diagonal jobs. 

It is easy to see that for i > 1, ti 5 
2,/K. Then an easy induction yields ti+l 5 
p-2-i g-inl-2-i for all i 2 0. Substituting tl = 
Jlo’;gTogn and solving for i shows that t; 2 n 
implies that i is at least fl(loglog n) as required. 

I 

7 Extended Model for Processor 
Delays 

Up to now, our analysis has assumed that the com- 
putation is synchronized and all processors proceed 
at the same speed. However, there are many factors 
that can influence the rate that processors proceed 
and barring explicit synchronization we cannot ex- 
pect that the rate of work will be uniform. For 
example, on the microscopic level, processors can 
be delayed by hardware interrupts, by performing 
tasks that require several extra machine instruc- 
tions, and by delays in communication. On the 
macroscopic level some :processors may run slower 
than others, and a job m.ay be swapped out so that 
a processor executes another user’s job. Since there 
are many sources of delay, we are not able to make 
any assumptions about how delay occurs, such as 
assuming that the processing times of jobs are inde- 
pendent random variables. We instead model delay 
by allowing an adversary to set the delay, so that 
our results apply in the worst case. 

Our delay model is to assume that there are D 
units of delay available. An adversary decides when 
these units of delay are used. If a job usually takes 
t units of time, the adversary may decide that it 
takes t + s units of time, for 0 _< s 5 D, expend- 
ing s units of the adversary’s delay. There is no 

74 



restriction on which jobs the adversary may de- 
lay, other than the restriction bounding the total 
amount of delay that the adversary can apply. In 
this model, we allow more than one processor to 
be assigned to a job.* This means that the adver- 
sary cannot force all processors to idle by blocking 
a single job. We keep the same measure of perfor- 
mance for an algorithm: the number of jobs plus 
the amount of wasted computation, where wasted 
computation consists either of idleness or having 
more than one processor work on a job. 

Since the adversary has D units of delay avail- 
able, it can cause up to pD units of computation 
to be wasted if all processors must wait for the de- 
layed job. The goal is to reduce the overhead to as 
close to D as is possible. We can show that the ad- 
versary can force some additional delay, although 
the additional overhead is asymptotically less than 
D. 

Theorem 7.1 Scheduling an n x n grid graph 
with delay D requires overhead D + 52(D1i2) for 
.Z? processors. 

Sketch: We show that an adversary can cause the 
algorithm to spend R(D1j2) time with both proces- 
sors working on the same jobs. As soon as both pro- 
cessors are working on jobs inside the lower right 
D1i2 x D112 corner, we delay processor A. We de- 
lay the processor until processor B starts on the job 
that the A was working on and then release proces- 
sor A, so that both of the processors execute the 
job. This results in at least D1j2 duplicated work. 

Theorem 7.2 An n x n grid graph can be sched- 
uled in spite of delay D ujith overhead D + 0( D314) 
when D > log n on 2 processors. 

Sketch: The main idea is to decompose the upper 
left and lower right corners into O(D3i4) square 
jobs. If the entire grid were decomposed into 
D1j4 x D1i4 square jobs, then an algorithm that as- 
signed a second processor to a delayed job if there 
were no other available jobs, or if the job had been 
delayed D3i4 time units would lead to a schedule 

*A technical issue arises as to whether or not we require 
all processors that start a job to finish the job. The upper 
and lower bounds we have appIy to both cases. 

where the amount of duplicated work was 0( D3i4). 
However, the total number of jobs would be too 
large. The solution is to use D1i4 x D1j4 jobs close 
to the corners, and progressively larger jobs closer 
to the center, so as to keep the total number of jobs 
O(D3i4). n 

8 Conclusions 

We have introduced a task scheduling model that 
applies to small parallel machines. Our main tech- 
nical result is that it is possible to schedule grid 
graphs with remarkably small overhead. The most 
interesting directions for future work are to tighten 
and extend the results in the model with processor 
delay. 
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