
Grids and Workflows

2

Overview

• Scientific workflows and Grids
– Taxonomy
– Example systems

• Kepler revisited
• Data Grids

– Chimera
– GridDB

3

Workflows and Grids
•Given a set of workflow tasks and a set of resources,
how do we map them to Grid resources?

•What are some other challenges?

4

Executing Scientific Workflows on
Grids

• Grids can address many challenges of
scientific workflow execution
– Scalability
– Detached execution

• Many systems have been developed to aid
in design and execution of Grid workflows

5

Taxonomy

• Classifies 4 elements of workflow systems
in context of Grid computing
– Workflow design
– Workflow scheduling
– Fault Tolerance
– Data Movement

6

Workflow Design

• Workflow structure indicates temporal
relationship between tasks
– Can be Directed Acyclic Graph (DAG) or non-DAG

• DAG-based
– Sequence (ordered series of tasks)
– Parallel (tasks that run concurrently)
– Choice (task executed at runtime if all conditions

are true)

• Non-DAG
– Iteration (sections of workflow can be repeated)

7

Workflow Design

• Workflow Model/Specification defines workflow
including task definition and structure definition

• Abstract model
– Workflow specified without referring to specific

resources

• Concrete model
– Bind workflow tasks to specific resources

• Applications that use abstract can generate
concrete model before or during execution

8

Workflow Design

• Workflow Composition System enables users
to assemble components into workflows

• User-directed
– Users edit workflows directly
– Language-based (e.g., XML)
– Graph-based (e.g., Kepler)

• Automatic
– Generate workflows from higher-level

requirements, e.g., data products, input values
– Difficult to capture functionality of components

9

Workflow Scheduling

• Scheduling architecture can be centralized,
hierarchical, or decentralized

• Centralized- one central scheduler makes
decisions for all tasks in a workflow

• Hierarchical- central manager assigns sub-
workflows to lower-level schedulers

• Decentralized- multiple schedulers that can
communicate with each other and balance load

• Optimality/scalability tradeoff

10

Workflow Scheduling

• How to map workflows onto resources?
• Decisions can be based on current task or

subworkflow (local) or entire workflow
(global)

• Global decisions may produce better
results, but high overhead

11

Workflow Scheduling

• How to translate abstract models to
concrete models?

• Static – concrete models generated before
execution
– User directed or simulation based

• Dynamic – make decisions at runtime
– Prediction-based or just in time

12

Workflow Scheduling
• Scheduling workflow applications in distributed

system is NP-complete
• Use heuristics to match users Quality of Service

constraints (deadline, budget)
• Performance-driven –minimize overall

execution time
• Market-driven –minimize usage price
• Trust-driven- select resources based on trust

properties (security, reputation, site
vulnerability, etc)

13

Fault Tolerance

• Failures may occur for a variety of reasons:
network failure, overloaded resource
conditions, non-availability of components

• Failure handling: task-level and workflow-
level
– Task-level – mask the effects of the failure
– Workflow-level – manipulate workflow

structure

14

Fault Tolerance
• Task level

– Retry
– Alternate resource
– Checkpoint/restart
– Replication

• Workflow level
– Alternate task
– Redundancy
– User-defined exception handling
– Rescue workflow

15

Intermediate Data Movement

• Input files of tasks need to be staged at
remote site before processing tasks

• Output files may be required by child tasks
processed on other resources

• User directed – movement specified as
part of workflow

• Automatic – system does it automatically
• Approaches can be centralized, mediated,

or peer-to-peer

16

Intermediate Data Movement
• Centralized

– Easy to implement
– Good when large-scale data flow not required

• Mediated
– Intermediate data managed by distributed data

management system
– Good when want to keep data for later use

• Peer-to-Peer
– Good for large-scale data transfer
– But more difficulties to deployment

17

Some examples

• Kepler
• Taverna
• Triana
• GrADS
• Pegasus

18

Kepler Classification

• Structure – non-DAG
• Graph-based
• Centralized architecture
• Many user-defined features

– Scheduling
– Fault tolerance
– Data movement

19

Taverna
• Workflow management system of the myGrid

project
• Workflow can be expressed either graphically

(Kepler-like GUI) or XML-based language
(SCUFL)

• Allows implicit iteration over incoming datasets
• Allows multithreading to speed up interation
• Good for services capable of simultaneous

processing, e.g., those backed by a cluster

20

Triana
• Visual workflow-oriented data analysis

environment
• Clients can log in to Triana Controlling

Service (TCS)
• TCS can execute locally or distribute

based on distribution policy
– Parallel – no host-based communication
– Peer-to-peer – intermediate data passed

between hosts

• Resources dynamically allocated

21

GrADS

• Grid Application Development Software
• Application-level task scheduling
• Goal: minimize overall job completion time

(makespan) – performance driven
• Scheduler maps tasks to resources using

heuristics
– Weighted sum of expected execution time on

resource and expected cost of data movement
– Monitors performance of executing tasks and

reschedules as needed

22

Pegasus
• Workflow manager in GriPhyN
• Maps abstract workflow to available Grid

resources and generates executable
workflow

• DAG structure
• Two methods for resource selection:

– Random allocation
– Performance prediction

• Intermediate data registered with replica
service (mediated approach)

23

Summary and Challenges
• Many projects have graphical workflow modeling

language
– Standardization needed

• Quality of Service (QoS) not well addressed
– QoS needed at both specification and execution level
– Market-driven strategies will become increasingly important

• Optimal schedule requires estimates of task execution
time
– Analytical models (GrADS) or historical performance

(Pegasus)

• Better fault tolerance needed

24

Executing Kepler on the Grid

• Many challenges to Grid workflows, including:
– Authentication
– Data movement
– Remote service execution
– Grid job submission
– Scheduling and resource management
– Fault tolerance
– Logging and provenance
– User interaction

• May be difficult for domain scientists

25

Example Grid Workflow
Stage-execute-fetch:

Local server Remote server

1. Stage local files to
remote server

2. Execute
computational
experiment on
remote resource

3. Fetch results back to
local environment

26

Why not use a script?

• Script does not specify low-level task
scheduling and communication

• May be platform-dependent
• Can’t be easily reused

27

Some Kepler Grid Actors

• Copy – copy files from one resource to
another during execution
– Stage actor – local to remote host
– Fetch actor - remote to local host

• Job execution actor – submit and run a
remote job

• Monitoring actor – notify user of failures
• Service discovery actor – import web services

from a service repository or web site

28

Data Grids

• Chimera
• GridDB

29

Data Grids

• Communities collaboratively construct
collections of derived data
– Flat files, relational tables, persistent object

structures

• Relationships between data objects
corresponding to computational
procedures used to derive one from the
other

30

Relationships among
Programs,Computations, Data

ComputationsPrograms

Data

Created by

Execution of

Produced by
Consumed by

31

Challenges
• “I’ve come across some interesting data, but I need to

understand how it was constructed before I can trust it
for my purposes.”

• “I want to search an astronomical database for
galaxies with certain characteristics. If a program that
does this exists, I won’t need to write one from
scratch.”

• “I want to apply an astronomical analysis program to
millions of objects. If the program has already been
run and the results stored, I’ll save weeks of
computation.”

• “I’ve detected a calibration error in an instrument and
want to know which derived data to recompute”.

32

Virtual Data
• Track how data products are derived
• Ability to create and/or recreate products using

this knowledge
• “Virtual data management” operations

– “Re-materialize” deleted data products
– Generate data products defined but not created
– Regenerate data when dependencies or programs

change
– Create replicas at remote locations when cheaper

than transfer

33

Chimera (Foster et al., 2002)
(now GriPhyN VDS)

• Virtual data system
• Two main components:

– Virtual data catalog (VDC)
• Implements virtual data schema

– Virtual data language interpreter
• Implements tasks to call VDC operations

• Queries can return a representation of
tasks that will generate a specified data
product

34

Chimera Architecture

Virtual Data
Applications

Chimera

VDL Interpreter
(manipulate derivations and

Transformations)

Virtual Data Catalog
(implements Chimera Virtual

Data Schema)

Virtual Data Language
(definition and query)

SQL

Data Grid Resources
(distributed execution
and data management)

Task Graphs
(compute and data
movement tasks, with
Dependencies)

35

Some definitions

• Transformation – an executable program
• Derivation – an execution of a

transformation
• Data object – named entity that may be

consumed or produced by a derivation
– Logical file name
– Replica catalog maps logical name to physical

location
– Data objects can also be relations or objects

36

Chimera Virtual Data Language
TR t1 (output a2, input a1,

none env=“100000”,
none pa = “500”) {

app vanilla=“/usr/bin/app3”;
app parg = “-p “${none:pa};
app farg = “-x –y “;
arg stdout = ${output:a2};
profile env.MAXMEM = ${none:env};

}

t1 reads input file a1 and produces a2
app is application to run (/usr/bin/app3)
args are default argument values
stdout redirects output to a2

37

Chimera VDL

DV t1 (
a2=@{output:run1.exp15.T1932.summary},
a1=@{input:run1.exp15.T1932.raw},
env =“20000”, pa=“600”);

String after DV indicates transformation to be
invoked (t1)

Corresponding invocation:
export MAXMEM=20000
/usr/bin/app3 –p 600 \

-f run1.exp15.T1932.raw –x –y \
> run1.exp15.T1932.summary

38

Queries

• VDL implemented in SQL
• Queries allow one to search for

transformations by name, application
name, input LFN(s), output LFN(s),
argument matches, or other metadata

• Query results indicate if desired
transformations already exist in data grid
– Retrieve them if they do
– Create them if they do not

39

Example: SDSS Galactic Structure
Detection

• Applied virtual data to locating galactic
clusters in image collection

• Sky tiled into set of “fields”
• For each field, search for clusters in that

field and some set of neighbors
• Use “brightest cluster galaxy” (BCG) and

“brightest red galaxy” (BRG) to determine
cluster candiates

40

SDSS Galactic Structure Detection
1. fieldPrep – extract required measurements

from galaxies and produce files with this data
(~40x smaller than original files)

2. brgSearch – unweighted BCG likelihood for
each galaxy

3. bcgSearch – weighted BCG likelihood (most
expensive step

4. bcgCoalesce – determine whether a galaxy is
most likely galaxy in the neighborhood

5. getCatalog – remove extraneous data and
store result in compact format

41

SDSS Galactic Structure Detection

• getCatalog is a function that can invoke
the four prior dependent steps

• Generate “virtual” results for entire sky by
defining one derivation of getCatalog for
each field

42

Virtual Data Summary

• Performs “bookkeeping” to track large
scale productions

• Can be thought of as paradigm for
management of batch job production
scripts or a “makefile” for data production

• Data production can be performed
interactively in parallel by users
– Virtual data grid acts as a “cache”

43

Pegasus and Chimera
• Pegasus can construct an abstract workflow

using Chimera
• Before mapping tasks to resources,

Pegasus reduces abstract workflow by
eliminating materialized data products
– Assumes more costly to reproduce dataset than

to access existing results

• Pegasus can automatically generate a
workflow using metadata description of
desired data product using AI planning

44

GridDB (Liu and Franklin, 2004)

• Data-centric overlay for scientific grid data
analysis

• Manage data entities rather than
processes

• Idea: provide interactive database
interface to Grid computing

45

GridDB: Background

• Assumptions:
– Scientific analysis programs can be

abstracted as typed functions, and
invocations as function calls

– While most scientific data is not relational,
there is a subset with relational characteristics

46

Benefits of GridDB

• Declarative interface
• Type checking
• Interactive Query Processing
• Memoization support
• Data provenance
• Co-existence with process-centric

middleware

47

High-Energy Physics Example

• Scientists want to replace a slow but
trusted detector simulation with faster, less
precise one

• To ensure soundness of new simulation,
need to compare response of new and old
simulation for various physics events

48

High Energy Physics Abstract
Workflow

gen

atlfast atlsim

imas = x imas = y

<pmas>.evts

<pmas>

<pmas>.atlfast <pmas>.atlsim

49

Grid Invocation

pmas

diff

101 200

101.atlfast 101.atlsim 200.atlfast 200.atlsim

…

50

GridDB Modeling Principles

• Programs and workflows can be
represented as functions

• An important subset of data in workflow
can be represented as relations –
relational cover

• Represent inputs and outputs to workflows
as relational tables

51

High Energy Physics Example

200g99
……

101g00

pmasgID

…s99

……

100s00

sImassID

…f99

……

102f00

fImasfID

Output Output

Input

gRn

fRn sRn

52

GridDB Architecture

Request
Manager

Query
Processor

Scheduler data,catalog

RDBMS (PostgresQL)

DML streaming tuples

Grid Resources

GridDB
client

GridDB
overlay

Process-centric
middleware

procs,specs,files

y
x

53

Basic actions

• Workflow setup – create sandbox entity-
sets and connect as inputs/outputs

• Data procurement – submission of inputs
to workflow, triggering function evaluations
to create output entities

• Automatic views – for streaming partial
results

54

Basic actions

1. gRn:set(g); fRn:set(f); sRn:set(s);
2. (fRn,sRn) = simCompareMap(gRn);
3. INSERT INTO gRn VALUES pmas=

{100, …,200};
4. SELECT * FROM autoview(gRn,

fRn,sRn);

55

Summary

• GridDB can leverage relational database
functionality

• Provides interactive data-centric interface
• What are some challenges/limitations?

