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Overview

• Scientific workflows and Grids
– Taxonomy
– Example systems

• Kepler revisited
• Data Grids

– Chimera
– GridDB
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Workflows and Grids
•Given a set of workflow tasks and a set of resources,
how do we map them to Grid resources?

•What are some other challenges?



4

Executing Scientific Workflows on 
Grids

• Grids can address many challenges of 
scientific workflow execution
– Scalability
– Detached execution

• Many systems have been developed to aid 
in design and execution of Grid workflows



5

Taxonomy

• Classifies 4 elements of workflow systems 
in context of Grid computing
– Workflow design
– Workflow scheduling
– Fault Tolerance
– Data Movement
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Workflow Design

• Workflow structure indicates temporal 
relationship between tasks
– Can be Directed Acyclic Graph (DAG) or non-DAG

• DAG-based
– Sequence (ordered series of tasks)
– Parallel (tasks that run concurrently)
– Choice (task executed at runtime if all conditions 

are true)

• Non-DAG
– Iteration (sections of workflow can be repeated)
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Workflow Design

• Workflow Model/Specification defines workflow 
including task definition and structure definition

• Abstract model
– Workflow specified without referring to specific 

resources

• Concrete model
– Bind workflow tasks to specific resources

• Applications that use abstract can generate 
concrete model before or during execution
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Workflow Design

• Workflow Composition System enables users 
to assemble components into workflows

• User-directed
– Users edit workflows directly
– Language-based (e.g., XML)
– Graph-based (e.g., Kepler)

• Automatic
– Generate workflows from higher-level 

requirements, e.g., data products, input values
– Difficult to capture functionality of components
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Workflow Scheduling

• Scheduling architecture can be centralized, 
hierarchical, or decentralized

• Centralized- one central scheduler makes 
decisions for all tasks in a workflow

• Hierarchical- central manager assigns sub-
workflows to lower-level schedulers

• Decentralized- multiple schedulers that can 
communicate with each other and balance load

• Optimality/scalability tradeoff
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Workflow Scheduling

• How to map workflows onto resources?
• Decisions can be based on current task or 

subworkflow (local) or entire workflow 
(global)

• Global decisions may produce better 
results, but high overhead
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Workflow Scheduling

• How to translate abstract models to 
concrete models?

• Static – concrete models generated before 
execution
– User directed or simulation based

• Dynamic – make decisions at runtime
– Prediction-based or just in time
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Workflow Scheduling
• Scheduling workflow applications in distributed 

system is NP-complete
• Use heuristics to match users Quality of Service 

constraints (deadline, budget)
• Performance-driven –minimize overall 

execution time
• Market-driven –minimize usage price
• Trust-driven- select resources based on trust 

properties (security, reputation, site 
vulnerability, etc)
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Fault Tolerance

• Failures may occur for a variety of reasons: 
network failure, overloaded resource 
conditions, non-availability of components

• Failure handling: task-level and workflow-
level
– Task-level – mask the effects of the failure
– Workflow-level – manipulate workflow 

structure
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Fault Tolerance
• Task level

– Retry
– Alternate resource
– Checkpoint/restart
– Replication

• Workflow level
– Alternate task
– Redundancy
– User-defined exception handling
– Rescue workflow
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Intermediate Data Movement

• Input files of tasks need to be staged at 
remote site before processing tasks

• Output files may be required by child tasks 
processed on other resources

• User directed – movement specified as 
part of workflow

• Automatic – system does it automatically
• Approaches can be centralized, mediated, 

or peer-to-peer
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Intermediate Data Movement
• Centralized

– Easy to implement
– Good when large-scale data flow not required

• Mediated
– Intermediate data managed by distributed data 

management system
– Good when want to keep data for later use

• Peer-to-Peer
– Good for large-scale data transfer
– But more difficulties to deployment
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Some examples

• Kepler
• Taverna
• Triana
• GrADS
• Pegasus
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Kepler Classification

• Structure – non-DAG
• Graph-based
• Centralized architecture
• Many user-defined features

– Scheduling
– Fault tolerance
– Data movement
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Taverna
• Workflow management system of the myGrid

project
• Workflow can be expressed either graphically 

(Kepler-like GUI) or XML-based language 
(SCUFL)

• Allows implicit iteration over incoming datasets
• Allows multithreading to speed up interation
• Good for services capable of simultaneous 

processing, e.g., those backed by a cluster
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Triana
• Visual workflow-oriented data analysis 

environment
• Clients can log in to Triana Controlling 

Service (TCS)
• TCS can execute locally or distribute 

based on distribution policy
– Parallel – no host-based communication
– Peer-to-peer – intermediate data passed 

between hosts

• Resources dynamically allocated
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GrADS

• Grid Application Development Software
• Application-level task scheduling
• Goal: minimize overall job completion time 

(makespan) – performance driven
• Scheduler maps tasks to resources using 

heuristics
– Weighted sum of expected execution time on 

resource and expected cost of data movement
– Monitors performance of executing tasks and 

reschedules as needed
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Pegasus
• Workflow manager in GriPhyN
• Maps abstract workflow to available Grid 

resources and generates executable 
workflow

• DAG structure
• Two methods for resource selection:

– Random allocation
– Performance prediction

• Intermediate data registered with replica 
service (mediated approach)
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Summary and Challenges
• Many projects have graphical workflow modeling 

language
– Standardization needed

• Quality of Service (QoS) not well addressed
– QoS needed at both specification and execution level
– Market-driven strategies will become increasingly important

• Optimal schedule requires estimates of task execution 
time
– Analytical models (GrADS) or historical performance 

(Pegasus)

• Better fault tolerance needed
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Executing Kepler on the Grid

• Many challenges to Grid workflows, including:
– Authentication
– Data movement
– Remote service execution
– Grid job submission
– Scheduling and resource management
– Fault tolerance
– Logging and provenance
– User interaction

• May be difficult for domain scientists
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Example Grid Workflow
Stage-execute-fetch:

Local server Remote server

1. Stage local files to
remote server

2. Execute
computational
experiment on 
remote resource

3. Fetch results back to
local environment
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Why not use a script?

• Script does not specify low-level task 
scheduling and communication

• May be platform-dependent
• Can’t be easily reused



27

Some Kepler Grid Actors

• Copy – copy files from one resource to 
another during execution
– Stage actor – local to remote host
– Fetch actor - remote to local host

• Job execution actor – submit and run a 
remote job

• Monitoring actor – notify user of failures
• Service discovery actor – import web services 

from a service repository or web site
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Data Grids

• Chimera
• GridDB
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Data Grids

• Communities collaboratively construct 
collections of derived data
– Flat files, relational tables, persistent object 

structures

• Relationships between data objects 
corresponding to computational 
procedures used to derive one from the 
other



30

Relationships among 
Programs,Computations, Data

ComputationsPrograms

Data

Created by

Execution of

Produced by
Consumed by
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Challenges
• “I’ve come across some interesting data, but I need to 

understand how it was constructed before I can trust it 
for my purposes.”

• “I want to search an astronomical database for 
galaxies with certain characteristics.  If a program that 
does this exists, I won’t need to write one from 
scratch.”

• “I want to apply an astronomical analysis program to 
millions of objects.  If the program has already been 
run and the results stored, I’ll save weeks of 
computation.”

• “I’ve detected a calibration error in an instrument and 
want to know which derived data to recompute”.
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Virtual Data
• Track how data products are derived
• Ability to create and/or recreate products using 

this knowledge
• “Virtual data management” operations

– “Re-materialize” deleted data products
– Generate data products defined but not created
– Regenerate data when dependencies or programs 

change
– Create replicas at remote locations when cheaper 

than transfer
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Chimera (Foster et al., 2002)
(now GriPhyN VDS)

• Virtual data system
• Two main components:

– Virtual data catalog (VDC)
• Implements virtual data schema

– Virtual data language interpreter
• Implements tasks to call VDC operations

• Queries can return a representation of 
tasks that will generate a specified data 
product
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Chimera Architecture

Virtual Data
Applications

Chimera

VDL Interpreter
(manipulate derivations and 

Transformations)

Virtual Data Catalog
(implements Chimera Virtual

Data Schema)

Virtual Data Language
(definition and query)

SQL

Data Grid Resources
(distributed execution
and data management)

Task Graphs
(compute and data
movement tasks, with
Dependencies)
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Some definitions

• Transformation – an executable program
• Derivation – an execution of a 

transformation
• Data object – named entity that may be 

consumed or produced by a derivation
– Logical file name
– Replica catalog maps logical name to physical 

location
– Data objects can also be relations or objects
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Chimera Virtual Data Language
TR t1 ( output a2, input a1,

none env=“100000”,
none pa = “500”) {

app vanilla=“/usr/bin/app3”;
app parg = “-p “${none:pa};
app farg = “-x –y “;
arg stdout = ${output:a2};
profile env.MAXMEM = ${none:env};

}

t1 reads input file a1 and produces a2
app is application to run (/usr/bin/app3)
args are default argument values
stdout redirects output to a2
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Chimera VDL

DV t1 (
a2=@{output:run1.exp15.T1932.summary},
a1=@{input:run1.exp15.T1932.raw},
env =“20000”, pa=“600” );

String after DV indicates transformation to be 
invoked (t1)

Corresponding invocation:
export MAXMEM=20000
/usr/bin/app3 –p 600 \

-f run1.exp15.T1932.raw –x –y \
> run1.exp15.T1932.summary
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Queries

• VDL implemented in SQL
• Queries allow one to search for 

transformations by name, application 
name, input LFN(s), output LFN(s), 
argument matches, or other metadata

• Query results indicate if desired 
transformations already exist in data grid
– Retrieve them if they do
– Create them if they do not
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Example: SDSS Galactic Structure 
Detection

• Applied virtual data to locating galactic 
clusters in image collection

• Sky tiled into set of “fields”
• For each field, search for clusters in that 

field and some set of neighbors
• Use “brightest cluster galaxy” (BCG) and 

“brightest red galaxy” (BRG) to determine 
cluster candiates
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SDSS Galactic Structure Detection
1. fieldPrep – extract required measurements 

from galaxies and produce files with this data 
(~40x smaller than original files)

2. brgSearch – unweighted BCG likelihood for 
each galaxy

3. bcgSearch – weighted BCG likelihood (most 
expensive step

4. bcgCoalesce – determine whether a galaxy is 
most likely galaxy in the neighborhood

5. getCatalog – remove extraneous data and 
store result in compact format
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SDSS Galactic Structure Detection

• getCatalog is a function that can invoke 
the four prior dependent steps

• Generate “virtual” results for entire sky by 
defining one derivation of getCatalog for 
each field
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Virtual Data Summary

• Performs “bookkeeping” to track large 
scale productions

• Can be thought of as paradigm for 
management of batch job production 
scripts or a “makefile” for data production

• Data production can be performed 
interactively in parallel by users
– Virtual data grid acts as a “cache”
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Pegasus and Chimera
• Pegasus can construct an abstract workflow 

using Chimera
• Before mapping tasks to resources, 

Pegasus reduces abstract workflow by 
eliminating materialized data products
– Assumes more costly to reproduce dataset than 

to access existing results

• Pegasus can automatically generate a 
workflow using metadata description of 
desired data product using AI planning
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GridDB (Liu and Franklin, 2004)

• Data-centric overlay for scientific grid data 
analysis

• Manage data entities rather than 
processes

• Idea: provide interactive database 
interface to Grid computing
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GridDB: Background

• Assumptions:
– Scientific analysis programs can be 

abstracted as typed functions, and 
invocations as function calls

– While most scientific data is not relational, 
there is a subset with relational characteristics
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Benefits of GridDB

• Declarative interface
• Type checking
• Interactive Query Processing
• Memoization support
• Data provenance
• Co-existence with process-centric 

middleware
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High-Energy Physics Example

• Scientists want to replace a slow but 
trusted detector simulation with faster, less 
precise one

• To ensure soundness of new simulation, 
need to compare response of new and old 
simulation for various physics events
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High Energy Physics Abstract 
Workflow

gen

atlfast atlsim

imas = x imas = y

<pmas>.evts

<pmas>

<pmas>.atlfast <pmas>.atlsim
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Grid Invocation

pmas

diff

101 200

101.atlfast 101.atlsim 200.atlfast 200.atlsim

…
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GridDB Modeling Principles

• Programs and workflows can be 
represented as functions

• An important subset of data in workflow 
can be represented as relations –
relational cover

• Represent inputs and outputs to workflows 
as relational tables
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High Energy Physics Example

200g99
……

101g00

pmasgID

…s99

……

100s00

sImassID

…f99

……

102f00

fImasfID

Output Output

Input

gRn

fRn sRn
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GridDB Architecture

Request
Manager

Query
Processor

Scheduler data,catalog

RDBMS (PostgresQL)

DML streaming tuples

Grid Resources

GridDB
client

GridDB
overlay

Process-centric
middleware

procs,specs,files

y
x
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Basic actions

• Workflow setup – create sandbox entity-
sets and connect as inputs/outputs

• Data procurement – submission of inputs 
to workflow, triggering function evaluations 
to create output entities

• Automatic views – for streaming partial 
results
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Basic actions

1. gRn:set(g); fRn:set(f); sRn:set(s);
2. (fRn,sRn) = simCompareMap(gRn);
3. INSERT INTO gRn VALUES pmas= 

{100, …,200};
4. SELECT * FROM autoview(gRn, 

fRn,sRn);
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Summary

• GridDB can leverage relational database 
functionality

• Provides interactive data-centric interface
• What are some challenges/limitations?


