XML for Scientific Applications

Outline
- SQ1 returned
- History
 - Manipulating XML
 - XML for Science
XML History

- late 1960s
 - “Generic Coding” for elect. manuscripts
 - ‘heading’ rather than ‘format-17’
- 1969
 - Goldfarb, Mosher, Lorie @ IBM
 - Generalized Markup Language
- 1980
 - SGML; Standardized by ANSI
 - IRS, DoD were early adopters

SGML

- Representation of documents
 - Device-Independent, Software-Independent
- Content
 - Tagged Text
- Structure
 - Document Type Definition (DTD)
- Style
 - Usually proprietary
SGML: Content

- **Tagged Text**
 - start tags and end tags
 - indentation not important

```xml
<section>
  <heading>SGML Example</heading>
  <paragraph>
    <line>first line of SGML</line>
    <line>second line of SGML</line>
  </paragraph>
</section>
```

SGML: Structure

- Document Type Definition (DTD)

```xml
<!ELEMENT section (heading?, paragraph+)>
<!ELEMENT paragraph (line+, quote)>
<!ELEMENT heading EMPTY>
<!ELEMENT line EMPTY>
<!ELEMENT quote EMPTY>
```

A section is an optional heading, followed by one or more paragraphs.

A paragraph is one or more lines or a quote.

A heading is just text.

A line is just text.
SGML: Benefits and Weaknesses

- **Benefits**
 - Human-readable
 - Portable
 - Structure-oriented

- **Weaknesses**
 - DTD difficult to define up-front
 - Difficult to implement
 - syntax abbreviations/rules inference

AN SGML Application: HTML

- **1990**
 - Tim Berners-Lee @ CERN
 - a Scientific Data Management problem...
 - writes a DTD for “Hypertext Markup Language”

- **1994-1996**
 - Web takes off
 - Page designers need guarantees about how their page is going to look
 - `` tags, etc. introduced; purists despair
 - MS and Netscape fight
Data on the Web

- `<title>`, `<h1>`, `` are for humans

- Back to SGML for data, but
 - Stricter syntax (must use end tags)
 - good for implementors
 - looser semantics (DTD not required)
 - good for users

- Non-standard markup is better than no markup at all

Growth

- Sun introduces Java
 - New hope for interoperability

- Microsoft pushes XML
 - because...it’s not Java

- Individuals can publish data *unilaterally*
 - Contrast: How do you publish relations?
 - Contrast: Documents? (MS Word? as pdf?)
 - A *non-partisan, unimpeachable* format
XML File Sample

```xml
<?xml version="1.0"?>
<dining-room>
    <manufacturer>The Wood Shop</manufacturer>
    <table type="round" wood="maple">
        <price>$199.99</price>
    </table>
    <chair wood="maple">
        <quantity>6</quantity>
        <price>$39.99</price>
    </chair>
</dining-room>
```

Abstract View of XML
Manipulating XML

XPath

1) //price
2) /*/*/wood
3) //wood/..
4) /dining-room/*[price>100]/type
5) //wood[1]/text()
XPath

- XML → [Node]
 - language is not “closed”
 - cannot compose xpath expressions
- Answers are references to nodes
 - works for local memory...

XSLT

```xml
<xsl:stylesheet version="1.0" xmlns:xsl="...">
  <xsl:template match="//wood">
    <xsl:if test="/price > 100">
      <material>
        <xsl:value-of select="."/>
      </material>
    </xsl:if>
  </xsl:template>
</xsl:stylesheet>
```
XSLT

- logically, a set of rules
 - pattern1 -> result1
 - pattern2 -> result2
 - ...
- physically, an XML document
 - why is this a good idea?
- XML → XML, via XML

XQuery

```
for $v in doc("example.xml")//wood
where $v/..//price > 100
return
  <material>
    $v
  </material>
```
XQuery

XQuery feels more like a Query language
- Joins are natural to express
- XML \(\rightarrow\) XML, via special syntax
XSLT and XQuery

Today’s author sums up:
- XSLT is for transformation
 - document-centric view of XML
- XQuery is for query
 - data-centric view of world

XML for Science

Exercise:
- Sensor Data again
Sensor Data

- Would Homework 1 be any easier with XML?

Benefits for Science

- “better, more precise searching of full-content;
- automatic extraction of object metadata;
- better support for compound document formats and dynamic formatting generally; and,
- improved processes for scholarly dissemination tasks such as peer review, versioning, and archiving.”

-- from NSF / NSDL Workshop on Scientific Markup Languages
XML for Science

- Recall features of Science Data:
 - Read-oriented access
 - Provenance
 - who, what, when, where, why
 - Interesting Data Types
 - timeseries
 - spatial
 - arrays
 - images
 - Scale

XML for Science

- Read-oriented access?
 - perfect!
- Provenance
 - requires some flexibility; no problem
- Interesting Data Types
 - ...and special file formats
- Scale
 - could get ugly
Interesting Data Types

- Data locked in binary file formats
 - **Binary Format Description Language**
 - [Myers, Chappell 2000]
 - **Data Format Description Language**
 - [OpenGrid Project]
 - **Retrofitting Data Models**
 - [Howe, Maier SSDBM 2005]
 - **PADX**
 - [Fernandez et al, PLANX 2006]
 - **XDTM**
 - [Foster, Voeckler et al. Global Grid Forum 2005]

Binary Format Description Language
1. **Precord** `struct` `summary_header_t` {
 2. "0|";
 3. `Puinttime` tstamp;
 4. `};`;
 5. **Pstruct** `no_ramp_t` {
 6. "no_iI";
 7. `Puint64` id;
 8. `};`;
 9. **Punion** `dib_ramp_t` {
 10. `Pint64` ramp;
 11. `no_ramp_t` genRamp;
 12. `};`;
 13. **Pstruct** `order_header_t` {
 14. `Puint32` order_num;
 15. '\|'; `Puint32` att_order_num;
 16. '\|'; `Puint32` ord_version;
 17. '\|'; `Popt` `pn_t` service_tn;
 18. '\|'; `Popt` `pn_t` billing_tn;
 19. '\|'; `Popt` `pn_t` nlp_service_tn;
 20. '\|'; `Popt` `pn_t` nlp_billing_tn;
 }
XML as Data

Maier’s Maxim:

Every popular data exchange format eventually becomes a data storage format.

XML Storage: Shredding

- Use RDBMS as your storage engine
- Two approaches:
 - Schema-aware
 - Schema-oblivious
XML Storage: Schema-aware

- DiningRoom(Manufacturer, Chairs, Quantity, Table)
- Chair(SKU, Wood, Price)
- Table(SKU, Wood, Type, Price)

XML Storage: Schema-oblivious

- Edge(NodeId, Tag, Value, ParentNodeId)

- Remember fancy node-labeling schemes...
Left/Right Labeling

Which queries are easy and fast?
What did we say the problems were?

Path Labeling

What queries are fast and/or easy?
What did we say the problems were?
Next time

- Geographic Information Systems
- Spatial Data

- Study Questions 2
 - (I’ll post them tonight)