
Storage of Multidimensional Arrays Based on Arbitrary Tiling

Paula Furtadoy Peter Baumann

FORWISS (Bavarian Research Center for Knowledge Based Systems)
Orleansstr.34, 81667 Munich, Germany

ffurtado,baumanng@forwiss.de

Abstract

Storage management of multidimensional arrays aims
at supporting the array model needed by applications and
insuring fast execution of access operations. Current ap-
proaches to store multidimensional arrays rely on parti-
tioning data into chunks (equally sized subarrays). Reg-
ular partitioning, however, does not adapt to access pat-
terns, leading to suboptimal access performance. In this
paper, we propose a storage approach for multidimensional
discrete data (MDD) based on multidimensional arbitrary
tiling. Tiling is arbitrary in that any partitioning into dis-
joint multidimensional intervals as well as incomplete cov-
erage of n-D space and gradual growth of MDDs are sup-
ported. The proposed approach allows the storage structure
to be configured according to user access patterns through
tunable tiling strategies. We describe four strategies and
respective tiling algorithms and present performance mea-
surements which show their effectiveness in reducing disk
access and post-processing times for range queries.

1. Introduction

Multidimensional discrete data, resulting from sampling
and discretization of phenomena (e.g., light, color, temper-
ature, sound) over some multidimensional space or from
recording statistical and financial data, is a very important
type of data used in several applications areas, being re-
sponsible for the highest percentage of storage space used
in those applications. For example, in Geographic Informa-
tion Systems (GIS), Picture Archiving and Communication
Systems (PACS), On-line Analytical Processing (OLAP) as
well as in Multimedia or Scientific Database Systems, the
majority of the data created, managed and processed is mul-
tidimensional discrete data.

Some examples of MDD objects with low dimensional-

yPhD work sponsored by a JNICT, PRAXIS XXI scholarship.

ities are: 1-D sound or time series, 2-D images, 3-D video
or computer- assisted tomography (CAT) scan sequences
and 4-D spatio-temporal data resulting, for example, from
scientific experiments or simulations. Higher dimensional
MDD objects are common in scientific and OLAP applica-
tions.

An MDD object consists of a possibly sparse array
of cells of some base type in a regular multidimensional
grid. An MDD object can have varying lower and/or up-
per boundaries in any of the axes directions. Storage man-
agement of MDD imposes specific requirements due to the
special properties of MDD objects and the types of oper-
ations they are subject to. Chunking (or regular tiling) is
commonly used for multdimensional arrays in different ap-
plication areas [15], [13], [7]. Usage of tiling to fit different
access patterns, however, has not been fully exploited yet.
Only regular subdivision is supported by existing systems.
To our knowledge, a more flexible subdivision was only at-
tempted for fixed dimensionalities.

This is discussed in Section 2 where requirements for
storage management are presented. In Sections 3 and 4
we present the main concepts regarding multidimensional
discrete data and arbitrary multidimensional tiling, respec-
tively. In Section 5 we introduce the storage manager based
on this type of tiling. We describe the access model, which
is the basis for the storage management approach, and tiling
algorithms currently provided. In Section 6 the results of
perfomance comparisons for the two main tiling strategies
are shown. In Sections 7 and 8 we present related work,
main conclusions and perspectives for future work.

2. Motivation

Multidimensional discrete data is used in numerous ap-
plication areas. Even though each field has specific require-
ments, a few common requisites regarding storage manage-
ment of MDD in database management systems (DBMSs)
are shared by all of them. For that reason, the treatment of
this type of data in a uniform way, independent of the appli-

cation, dimensionality, cell type and other properties, is not
only feasible, but also advantageous.

The tasks of storage management are clear: support the
data model, optimize the most common types of data ac-
cess and minimize storage space. In order to better support
the data model, a storage manager for multidimensional ar-
rays should be able to manage not only different cell types
and dimensionalities, but also sparsity, growth and shrink-
age of arrays corresponding to the insertion and removal of
data. These are important features for statistic and OLAP
data having non-uniform distribution and sparse nature. In-
tegrated support for multidimensional arrays is important to
insure easy interoperation between arrays with different di-
mensionalities, cell types or other properties. Accesses to
MDD are range queries, i.e. retrieval of all cells which are
contained within a multidimensional interval, resulting in a
”sub-MDD” of the original object.

Multidimensional chunking has been proven by several
authors to be effective in improving access performance to
multidimensional arrays [13], [11], [14], [8] by allowing
optimization of access to subareas. To optimize an indi-
vidual access to an MDD, the amount of data as well as
the number of database pages retrieved must be minimized.
In the optimal case, the amount of data read corresponds
exactly to that of the multidimensional area queried. The
problem then reduces to perform tiling so that the tiles
intersected correspond exactly to the query rangeQ, i.e.
R1 [::: [Rn = Q, whereRi, i = 1; :::; n are the regions
covered by then tiles intersected byQ. Since accesses by
the storage system are to whole pages, tiles should be de-
fined so that database pages are as full as possible, i.e. tile
sizes should approximate integral multiples of the page size
of the storage system. In addition, given that tiles are the
units of access to the array, it is desirable to minimize the
number of tiles accessed, but at the same time to impose an
upper limit on the tile size, in order to insure that they can
be conveniently managed by the system.

Approaches usually followed to tile a particular array
are insufficient to match the most common access patterns.
This is due to the adoption of very simplified access models
and to the restriction of regular tiling. One of the prob-
lems of the access patterns as found in those cases is that
the exact position of a particular access is not considered,
only the shape of the subintervals accessed [13]. In a sys-
tem supporting only regular tiling, the exact position of ac-
cesses cannot be taken into account since alignment of tiles
to accessed areas is impossible. For that reason, a more sim-
plified access pattern has to be adopted. The only possible
optimization is the choice of a tile format that minimizes
number of tiles accessed per operation. Another disadvan-
tage of regular tiling is that it is impossible to adapt the
array partitioning to the distribution and properties of data
in different parts of the array.

In the following, we present an access model and a stor-
age approach for MDD that attempt to overcome those limi-
tations. In that model, accesses of different types are conve-
niently covered and completely specified, i.e. the position
as well as the shape of an access to a multidimensional sub-
array are taken into account. The storage approach is based
on arbitrary tiling, allowing maximum flexibility in adapt-
ing the storage structure of MDD objects to access patterns.
Among the most important issues regarding support for ar-
bitrary tiling are the need for tiling algorithms and to pro-
vide the user with adequate mechanisms to exploit the flex-
ibility of tiling. Our solution is based on tiling strategies
presented here.

Some key principles of our approach were first presented
in [9], where the combination of arbitrary tiling and mul-
tidimensional R+-tree-like indexes in the storage manage-
ment of multimedia data is described. These concepts have
been then extended for the RasDaMan system [4], where
the complete storage manager and tiling strategies, in ad-
dition to the application interface for tuning storage, were
developed.

3. Multidimensional Discrete Data

In this section, some terms are described which will be
needed in the following presentation. These terms define
the main concepts of the underlying MDD typing system as
seen from the point of view of storage management.

A multidimensional discrete dataobjectm is a set of
cells of a fixed typeT , the base type, which, therefore,
has a fixedcell size. Eachcell corresponds to one ele-
ment in the multidimensional spatial domain of the MDD
object. Thedefinition domain(or spatial domain)Dm of m
is a d-dimensional subinterval of a discrete coordinate set
S =S1�...�Sd, where eachSi, i = 1; :::; d is a finite to-
tally ordered discrete set andd is thedimension(or dimen-
sionality) of m. The definition domain of an MDD object
is expressed as a multidimensional interval by its lower and
upper bounds,li andui respectively, along each direction1

i of the domain, denoted as
Dm= [m:l1: m:u1; :::;m:ld: m:ud],

wherem:li�m:ui, i = 1; :::; d andli;ui2Si.
Cells of the MDD object have coordinates(x1; :::;xd),

wherem:li�xi�m:ui, i = 1; :::; d. A total ordering of the
pointsin the coordinates set is assumed. Given two points
x =(x1; :::;xd) andy =(y1; :::;yd) in the definition domain,
the following defines the ordering relationshiplower than
”<”:

x < y,9k21::d :xk<yk^xi=yi, i = 1; :::; k � 1.

1we use the geometrically more expressive terms ”direction” and ”axis”
instead of ”dimension”, except when we specifically discuss OLAP related
issues.

This ordering corresponds to the row major order used
for arrays in C and most other programming languages.
Based on this ordering, it is possible to refer to thelowest
andhighestpoints (corners or vertices) of the definition do-
main, which are(m:l1; :::;m:ld) and(m:u1; :::;m:ud), re-
spectively. The existence of this ordering also allows map-
ping of the coordinates to a subinterval ofZd. Definition
domains can haveunlimited (lower and/or upper) bounds
along one or more directions. An unlimited bound will be
denoted by an�. For example,

[m:l1: m:u1; :::;m:lk: m:�; :::;m:ld: m:ud]
expresses a definition domain which has no limited upper
limit along thek-th direction. The definition domain is a
property of the MDD type.

In addition to the definition domain, at any point of its
lifetime, the state of the MDD object is also characterized
by another property, thecurrent (spatial) domain, which
is the minimald-dimensional interval of the definition do-
mainDm containing all cells currently existing in the ob-
ject. Whereas the definition domain is a fixed property of
the MDD object, established by its MDD type, the cur-
rent domain is an object attribute that changes with time.
The concept of unlimited definition domain is important to
define MDD types whose instances have different, possi-
bly varying, current domains. Support for current domains
leads to minimization of the storage space used.

For storage of MDD objects, animplicit ordering of the
cells according to the ordering of the coordinates is as-
sumed. A default ordering is needed for the storage of MDD
in persistent storage media, which is of a linear nature. Us-
age of an intermediate storage system does not change this
state, since even database or file systems only provide linear
storage of arrays (as BLOBs in database systems).

The above formulated definition of the spatial domain for
an MDD object includes more than just the usual multidi-
mensional array supported in most programming languages.
For example, coordinates can be days of the year, months,
product models produced by a company, or other discrete
entities of the application area. However, it is always pos-
sible to establish a mapping from those coordinate sets to a
subinterval ofZd and this mapping has to be done at higher
levels than that of the storage management. Taking this into
consideration, and to simplify the explanation in the next
sections, the following discussion will assume that the map-
ping to coordinate sets which are subintervals ofZd has
been done already at higher levels of the DBMS. The terms
MDD object or array are then used interchangeably.

4. Arbitrary Multidimensional Tiling

Multidimensional tiling defines the partitioning of an
MDD object into multidimensional subarrays. Atile is a
multidimensional sub-array of the MDD object with the

same dimensionality as the MDD to which it belongs. A
tile t of the MDD objectm with spatial domain

Dm = [m:l1 : m:u1; :::;m:ld : m:ud],
is therefore a multidimensional array with spatial domain

Dt= [t:l1: t:u1; :::; t:ld: t:ud],
wherem:li�t:li�t:ui�m:ui, i = 1; :::; d.

When a tile is inserted into the object, the current spatial
domain for the object is updated. The new current domain is
obtained by a closure operation with the domain of the new
tile, that is, it is set to the minimum d-dimensional inter-
val which includes both domains. Tiles always have fixed
bounds. Note that by havingt:li = t:ui, it is possible to
define a tile as a slice with length one in directioni, resem-
bling the traditional BLOB.

A particulartiling of a multidimensional array is a set of
disjoint tiles of the array. The tiles already inserted in the
MDD object do not have to completely cover the current do-
main. Areas left empty are considered to be covered by cells
with a default value. This is differently used depending on
the application area, for instance in OLAP it may represent
the absence of the combination of dimension values [1].

Figure 1. Aligned tiling.

Tiling of multidimensional arrays can be classified into
two main categories: aligned and nonaligned tiling.Aligned
tiling (Figure 1) means that the tiles of a multidimensional
array are defined by hyperplanes orthogonal to the axes of
the spatial domain,xi=cij , i = 1:::d, which cut the whole
array along thed different directions. Aligned tiling can be
further subdivided into regular and irregular tiling, depend-
ing on whether the parallel hyperplanes are equidistant or
not (Figure 1). Included in the aligned tiling category are
single tile, adequate for objects with small size which are
usually accessed as a whole, ortiling by cuts along a di-
rection k of the multidimensional domain (i.e. by planes
with constantxk wherek is one direction of the domain,
1�k�d). This type of tiling includes, as a special case, the
linear tiling of BLOBs found in most DBMS. In our case,
however, the linear tiling can be done along different direc-
tions, whereas with BLOBs it is done along one direction
only and regardless of the multidimensional spatial domain
of the object (as parts of the linearized array are not rect-
angular, in the general case the resulting partitions are no
subarrays of the object).

Figure 2. Nonaligned tiling.

An object with nonaligned tiling(Figure 2) has some
tiles whose vertices do not correspond to those of the neigh-
boring tiles. Figure 2 shows two different cases: partially
aligned (a), where at least along some of the directions tiles
are aligned, and totally nonaligned (b).

A system supportingarbitrary tiling is able to manage
objects with both aligned and nonaligned tiling schemes, as
well as partial coverage of the space. Nonaligned tiles can
have different sizes, making it impossible to adapt all tiles
optimally to the system page size. A compromise may have
to be found between the tile size and configurations that re-
flect access patterns. However, also in systems supporting
aligned tiling, such an optimal size is impossible to achieve
due to the multidimensionality and to the border tiles, which
have different sizes.

5. The Storage Manager for MDD

The storage approach described here was adopted for the
RasDaMan [4] system. In RasDaMan, an MDD object is
composed of a set of multidimensional tiles and an index on
tiles. Cells of each tile are stored in a separate BLOB. The
MDD object index stores the spatial information of the ob-
ject tiles. For each access to a multidimensional subinterval
of the object, the index returns the tiles intersected by the
query region for further processing by the system [10]. Ar-
bitrary tiling is supported and tunable through tiling strate-
gies. The choice of the tiling strategies was inspired by the
data access needs for different application areas. This will
be discussed in the next sections.

The user, either the database administrator or the appli-
cation developer, can set the tiling strategy for each MDD
object. In the current implementation, this is supported by
classes of the RasLib ODMG library [5]. In order to achieve
data independence, the physical storage layout is transpar-
ent to the user. The user is able to influence it at a point (typ-
ically when the MDD object is loaded into the database),
but when executing further operations on the object the user
does not see the physical storage layout and does not have
to know about it.

5.1 Access Patterns

A detailed study of types of accesses to MDD objects led
to the subdivision of individual region accesses into a few
cases:

(a) to the whole object;
(b) to a specific multidimensional subarea of the object

with the same dimensionality, for example, to select a par-
ticular subimage - range query where the query regionQ is
a subinterval of the MDD object domain with the same di-
mensionality,Q = [l1:u1; :::;ld:ud], where fori = 1; :::; d,
m:li�li < ui�m:ui;

(c) to a multidimensional subarea resulting from the se-
lection of linear ranges along one or more directions, for
example, in dicing and slicing in OLAP, or to perform a sub-
aggregation - partial range query where the query region is
the subinterval of points with coordinates(x1; :::;xd) such
thatli�xi�ui for some directionsi of the domain;

(d) to obtain asection, an MDD of lower dimensionality,
corresponding to a selection of cells with a fixed coordinate
along one or more directions - partial range query where
the query region is the subinterval of points with coordi-
nates(x1; :::;xd) such thatxi=ci for some directionsi of
the domain.

These types of access impose different tiling require-
ments. An access pattern will consist of one or more of
these basic access types.

If an object is accessed as a whole (a), then aligned tiling
(note that single tile is a special case) is the best scheme for
that object. The tile configuration can be chosen depending
on whether a specific sequence of access to the cells will
improve performance. If a few subareas in the object are
accessed very frequently, corresponding to accesses of type
(b), tiles should be adapted to those areas. In most cases,
this will lead to a nonaligned tiling scheme. Combined with
scheme (a), a mixed solution where the background (areas
of no direct accesses) is regularly tiled can be the best so-
lution, depending on the relative frequency of the different
types of accesses.

Accesses of type (c) occur often in MOLAP applications,
where dimensions of a data cube have associated hierarchies
that specify aggregation levels [1]. Parents of dimension el-
ements (first level of the hierarchy, after the most detailed
one) would be typical candidates for tiling since cells cor-
responding to each of those parents have to be accessed
simultaneously for computation of a sub-aggregation. An
example data cube is illustrated in Figure 3. In this data
cube, subaggregations are performed by processing cells
corresponding to the parents of dimensions elements shown
along the dimensions, for example, types of products and
regions. If tiling reflects the hierarchies, individual accesses
to calculate subaggregates operate simultaneously on cells
of the same tile. In the example shown, for calculating the

Figure 3. Example 3-D tiling.

total number of units sold in different regions, of products
of each type, during some time frame, the cells in the ar-
eas shown in different shades of gray would be accessed
for each such calculation. The best tiling for such accesses,
guaranteeing a minimum amount of data read per calcula-
tion, will be that defined by hyperplanes orthogonal to the
axes as shown. Since subdivisions are irregular (e.g., some
types of products have more models than others), regular
tiling would be insufficient to support this type of subdivi-
sion. It is to expect that such a subdivision of the space will
also fit well to accesses of type (b) in such objects since,
due to access semantics, these are done to subareas corre-
sponding to the partitions defined by the subdivision of the
space. Such a subdivision of the space will lead to aligned
or partially aligned tiling.

Figure 4. Tiling by cuts along direction y.

Finally, when accesses of type (d) occur frequently, al-
ways in the same directions, there are preferential directions
of access, and the most efficient tiling corresponds to an
aligned tiling where tiles extend along these directions. For
example, if an object is always accessed sequentially along
hyperplanesx,z its tiles should be defined by cuts along di-
rectiony.

This is illustrated in Figure 4 for a 3-D object represent-
ing an animation sequence, which is to be accessed frame by
frame. This type of tiling, however, should only be adopted
when there are very clear directional preferences of access,

since performance is severely degraded for almost all other
types of access.

5.2. Tiling Strategies

The study of types of access and corresponding subdivi-
sions of space motivated us to present tiling strategies to the
end user. The strategies considered relevant for tiling reflect
the types of subdivision discussed in the previous section
for the different types of access: aligned tiling according
to a specified tile configuration, tiling by defining partitions
along the axes of the domain and tiling according to areas of
interest. In addition, default tiling is performed if no tiling
strategy is specified for an MDD object (the default tiling
is aligned) and automatic tiling based on access statistics
derives the best tiling for an object.

In the following, we describe the algorithms that imple-
ment the tiling strategies. All algorithms calculate a parti-
tion of the spatial domain (ortiling specification) based on
input parameters. The partition returned by the tiling al-
gorithm is then used for calculating the actual tiles in the
second phase. Only at that point are the cells that constitute
each tile copied together, the tiles stored and indexed. All
tiling algorithms receive as input the parameterMaxTile-
Size, which establishes a maximum size of each resulting
tile.

Aligned Tiling . In order to be able to specify prefer-
ences regarding aligned tiling, thetile configurationcan be
set. A tile configuration is specified by a multidimensional
range, i.e. a tuple(r1; :::;rd), where valuesri are interpreted
as relative sizes along directionsi, i = 1; :::d. While keep-
ing the tile configuration given by the user, tiles are sized in
a way to optimally fillMaxTileSize. If the user specified tile
configuration corresponds to tiles with a size different than
MaxTileSize, tiles are stretched equally by a factorf along
each direction. If allri are finite, the length of the tiles
along each directioni, ti, is obtained fromti=bf � ric, so
thatCellSize�

Qd

i=1 ti �MaxTileSize, i.e.,
f = d

p
MaxTileSize=(CellSize� r1 � :::� rd) .

Some of the elements of the range can be ”infinite” (de-
noted by an ”�”), meaning that tiles length should be max-
imized along that direction. An infinite element in the
range,rdj= �, is used to specify a preferential scan direc-
tion. If, for k directionsdj , rdj= �, 1�d1< ::: <dk� d,
j = 1; :::; k, the length of the tile is made as long as possible
along thedk direction first (i.e.,tdk= m:udk�m:ldk+1),
then along thedk�1, until eitherd1 or the maximum tile
size is reached. In this way, cells with consecutive coordi-
nates along directiondk are given precedence to group in a
tile over those alongdk�1, and so on. Higher order coordi-
nates are given precedence in accordance with the coordi-
nates ordering. If the tile size has achieved the maximum,

it will have length one along the remaining directions, else,
tile lengths along the remaining directions are defined ac-
cording to the relative sizes. For the example presented in
Figure 4, tiling configuration should be set to[�; 1; �], as-
sumingx; y; z order. For accesses of typex =c1^z =c2,
tiling configuration should be[1; �; 1].

We favor the approach of specifying tile configuration
instead of exacttile format, i.e. (t1; :::; ti) described above,
because it is inconvenient and often impossible for the user
to define directly the tile format, since he has no knowledge
of low level storage parameters, e.g., database page size and
cell size.

Figure 5. Partition of dimensions 1 and 2.

Partitioning the Dimensions. Using this strategy, the
user can specify tiling according to partitions of the axes
of the multidimensional domain of the object. The input
parameter for this type of tiling,directional tiling, is a set
of partitions for some or all dimensions of the space:
f(i; pi;1; :::; pi;ni)g; i = 1; :::; d; ni � 1

(if ni = 1, no partition is given along dimensioni), and
such thatm:li = pi;1 < pi;2 < ::: < pi;ni = m:ui. Tiles
are defined by first partitioning the space by the hyperplanes
xi = pi;j ; j = 1; :::; ni, and then further splitting those that
still exceed the maximum tile size. If the partitioning speci-
fied by the user leads to tiles smaller than the maximum tile
size, the resulting tiling scheme is aligned, otherwise it will
be nonaligned (partially aligned) since cutting will be done
so that all tiles have size lower thanMaxTileSize(Figure 5).
Subpartitioning is done using the aligned tiling algorithm.
The user may further influence the way subpartitioning is
performed. A complete description of the algorithm and its
options can be found in [12].

The axes partitions given as input to directional tiling
define a set of iso-oriented multidimensional partitions of
the MDD. The algorithm optimizes the amount of data read
for all operations of access to any subset of those partitions.

Areas of Interest. An area of interest is a frequently
accessed subarray of an MDD object. Areas of interest
are hints for tiling, but are independent of tiles. An area
of interest can be contained in a tile, but it can also be
composed of a set of neighboring tiles. Areas of interest
are tiled separately with the objective of minimizing the
number of tiles and the amount of data to be accessed to
retrieve an area of interest. As input to this tiling strat-
egy, a set ofn intervalsaj of the MDD objectm is spec-
ified, aj = baj :l1 : aj :u1; :::; aj :ld : aj :udc where, for
i = 1; :::; d andj = 1; :::; n, m:li � aj :li � aj :ui � m:ui.

AreasInterestTiling(AreasInterest,MaxTileSize)
(1) DimPartitions =

Calculate Dimensions Partitions(AreasInterest);
(2) MDDTilesSpecs = Directional Tiling(DimPartitions);
(3) IntersectTable =

Classify Tiles(MDDTilesSpecs,AreasInterest);
(4) MDDTilesSpecs = Merge(IntersectTable,MDDTilesSpecs);
(5) MDDTilesSpecs =

AlignedTiling(MDDTilesSpecs,MaxTileSize);
(6) Return MDDTilesSpecs;

Figure 6. Areas of interest tiling algorithm.

The algorithm is summarized in Figure 6. It first calcu-
lates the partition of the MDD using the directional tiling
algorithm without subpartitioning (lines 1 and 2). The di-
mensions partitions are defined by the areas of interest,
i.e., pi;l, i = 1; :::; d, l = 1; :::; ni are taken from the
upper and lower coordinates along dimensioni of the ar-
eas of interesta1:::an. Each partition smaller thanMax-
TileSizeis then merged together with neighbor partitions if
they belong to the same areas of interest and are aligned
(lines 3 and 4). For that purpose, tiles are classified ac-
cording to the intersection with the areas of interest by
the ClassifyTiles() function. This function calcu-
lates theIntersectCode for each tile and writes it to
theIntersectTable array. TheIntersectCode has
one bit per area of interest, each bit being set to 1 if the tile
intersects the area of interest, 0 otherwise. The merging
function (4) only merges tiles with the same intersect code.
Finally, partitions bigger thanMaxTileSizeare split using
aligned tiling (5). This algorithm guarantees that an access
to an area of interest only reads data belonging to the area
of interest.

Statistic Tiling . Statistic tiling automatically calcu-
lates areas of interest from a list of accesses to an MDD.
This list is obtained from an application or database log
file of access operations. To avoid very small tiles, ac-

cesses are first filtered to derive the areas of interest. For
that purpose, the algorithm takes two input parameters,
FrequencyThreshold and DistanceThreshold .
Accesses closer thanDistanceThreshold are merged
into one area of interest and only those which occur more
thanFrequencyThreshold are considered to be of in-
terest. The areas of interest tiling algorithm is then used
with the calculated areas of interest as input.

6. Performance Comparison

All the tests described below were executed on a Sun
Ultra I/140 with 256 MB of main memory running Solaris
2.5. The data was stored in one local 4GB disk. Two of our
tiling approaches, directional tiling and tiling according to
areas of interest, were tested against regular tiling (obtained
using our aligned tiling strategy), since this is the type of
tiling found in related systems. For each query, times were
calculated based on five runs. Each test consists of a set of
region queries to MDD objects in RasQL, the RasDaMan
query language. The times measured in the tests were:

� to, the time taken to retrieve the intersected tiles from
disk through the storage system (theO2 system [3]),
this is the optimized time component;

� tix, the time to access the index to determine the tiles
affected by the query;

� tcpu, time to evaluate the query, or post-processing
time, in this case, the time taken to compose tiles
parts into the result array;

� ttotalaccess = to + tix, the total retrieval time from
disk;

� ttotalcpu = to + tix + tcpu, the total time to execute
the query.

The total timesttotalaccess andttotalcpu show the influence
of optimization ofto in the total query execution times.

6.1. Directional Tiling

For the purpose of evaluating the performance of our di-
rectional tiling against that of regular tiling, we created a
small synthetic benchmark. The data set used in the ex-
periments consists of 3-D data cubes representing the sales
from a distributor. Dimension 1 represents the time axis,
dimension 2 the products sold and dimension 3 the stores
on which the products are sold. Each dimension of the data
cube is subdivided into different categories. Table 1 shows,
using the notation previously defined in this paper, the de-
tailed specification of the smallest data cubes.

To analyze the results of using regular and directional
tiling, several data cubes that follow the specification in
Table 1 were created. Each data cube contained 16.7MB

Dim Cells Categories Partition
1 Days Months [1,31,...,730]

(730) (24)
2 Products Product classes [1,27,42,60]

(60) (3)
3 Stores Country districts [1,27,35,41,59,

(100) (8) 73,89,97,100]

Table 1. Benchmark data cube specification.

of information and has been tiled using differentMaxTile-
Sizevalues. For both regular and directional tiling different
MaxTileSizes were used (Table 2). Directional tiling was
applied using two different dimension partitions specifica-
tions, one having only partitions along two dimensions (in-
dicated by 2P), months and country districts, and the other
one with partitions along the 3 dimensions (3P). Directional
tiling with tiles bigger than 64K and partitions in the 3 di-
mensions was not performed, since the result would be the
same as that for Dir64K3P. Load time was approximately
the same, 3 minutes, for each tiling. This is due to the fact
that the time taken to insert such big amounts of data in the
database is very high compared to that taken by the tiling
algorithms to calculate tiling.

MaxTileSize Regular Til. Directional Til. (2P, 3P)
32K Reg32K Dir32K2P, Dir32K3P
64K Reg64K Dir64K2P, Dir64K3P

128K Reg128K Dir128K2P, -
256K Reg256K Dir256K2P, -

Table 2. Data cubes used in the tests.

The test for directional tiling consists of the queries
shown on Table 3. Note that the 2P tiling schemes de-
fined would be used if accesses were expected to select
months and/or country districts, whereas 3P assumes ac-
cesses which also select product classes. Queryj corre-
sponds to an unexpected access since, by partitioning the
time dimension into months, the user did not expect queries
to select one week only. The query region was deliberately
chosen to fall between tiles (the week starts in one month
and ends in another). It is included in the test to evalu-
ate penalties to other unexpected types of accesses, when a
particular tiling scheme is chosen. Queriesb,e, f, h and
i are expected to be executed very efficiently with tiling
schemes of type 2P, since no restriction is imposed on prod-
uct classes. The remaining queries are expected to run fast
with both 2P and 3P schemes.

The directional tiling schemes showed better perfor-
mance than regular tiling for all queries, when consider-
ing ttotalcpu. Directional tiling schemes resulted in lower
ttotalaccess times for all queries except queryd. For query

Query Size Selected (Months,
Region (KB) Product classes,

Country Districts)
a [32:59,28:42,28:35] 13 1,1,1
b [32:59,*:*,28:35] 52.5 1,all,1
c [32:59,28:42,*:*] 164 1,1,all
d [*:*,28:42,28:35] 342 all,1,1
e [32:59,*:*,*:*] 656 1,all,all
f [*:*,*:*,28:35] 1400 all,all,1
g [*:*,28:42,*:*] 4300 all,1,all
h [182:365,*:*,*:*] 4300 6,all,all
i [32:396,*:*,*:*] 8500 12,all,all
j [28:34,*:*,*:*] 164 1 week,all,all

Table 3. Queries for the directional tiling test.

d, the lowestttotalaccess was 0.51s of Reg128K. This was
due to a highto, in comparison withtix, of the directional
tiling (0.58s of Dir256K2P), for which smaller tiles are re-
trieved. However, the directional tiling schemes only re-
trieve data which is really needed and this was visible for the
same queryd in ttotalcpu, for which the speedup achieved
by using Dir64K3P in relation to the best of regular tiling
for this query (Reg128K) was 1.5. The CPU time for this
query,tcpu, is much higher in the regular tiling due to the
bigger amount of data to be processed. As expected, 2P
tiling was the most efficient in queriesb, e, f, h andi. The
unexpected queryj was executed most efficiently by direc-
tional 2P tiling schemes. In other queries, 3P tiling was the
most efficient type of tiling.

Figure 7. Times (in s) for queries e, f and g,
and schemes Dir64K3P and Reg32K.

Taking the average total times for the query set, the best
regular tiling scheme is Reg32K and the best of directional
tiling is Dir64K3P. Figure 7 shows the time components for

to
a b c d e f g h i j
4.1 4.4 4.6 2.5 3.2 1.6 1.4 1.6 1.3 1.5

ttotalaccess
a b c d e f g h i j
2.1 2.7 3.5 1.2 3.0 1.3 1.3 1.5 1.3 1.5

ttotalcpu
a b c d e f g h i j
1.6 2.5 3.8 1.9 5.1 3.4 1.5 3.3 2.2 1.4

Table 4. Speedup of Dir64K3P over Reg32K
for to, ttotalaccess and ttotalcpu.

some representative queries. As can be seen in the figure,
to represents a significant part of the whole time taken.

Table 4 depicts, for each query, the speedup regard-
ing to as well asttotalaccess and ttotalcpu of Dir64K3P
over Reg32K. Higher speedup ofttotalaccess (2 to 3.5) is
achieved for smaller queries (queriesa to c) than for queries
accessing larger amounts of data (queriesd to i). This is due
to the relatively big amount of data that is involved both
in regular as in directional tiling. The optimization in the
amount of data read due to directional tiling is in the border
tiles, which in big queries constitute a smaller percentage
of the whole data read. This is changed in thettotalcpu
(Table 4) for which speedup is high also in big queries.
This reflects the need to process larger amounts of data in
the regular case due to the misalignments (data has to be
copied from the border tiles to calculate the end result). Av-
erage performance increase of directional tiling Dir64K3P
against regular tiling Reg32K for this query set was 1.9 for
ttotalaccess and 2.7 for thettotalcpu.

The test was repeated with an extended version of the
cubes, this time only for Dir64K3P and Reg32K. These
cubes have one more year, 240 more products and 200 more
shops than the previous ones, with the partition described
before repeated, resulting in cubes of size 375MB each.
For queryd performance was worse for Dir64K3P than for
Reg32K (about 90% total times). Speedup obtained with
Dir64K3P for the other queries was between 1.1 and 2.7 for
ttotalaccess. The performance increase obtained for these
big data cubes is lower than with the previous ones since
tix is higher in comparison to the fixedto (note thatto re-
mains the same).

6.2. Areas of Interest

In order to test this tiling scheme, a 3-D animation se-
quence was used. Table 5 describes the MDD object and
tiling schemes used, as well as the queries. The areas of
interest overlap and correspond to the head and whole body
(including head) of the main character of the short anima-

tion, along all frames 0 to 120 of the sequence. Queriesa
andb correspond to the access pattern, the other two are
”unexpected”.

Cell Size 3 bytes (RGB)
Spatial Domain [0:120,0:159,0:119]

Array Size 6.8 MB
Areas of Interest 1.[0:120,80:120,25:60]

2.[0:120,70:159,25:105]
Tiling Schemes Reg32K, Reg64K, Reg128K, Reg256K

AI32K, AI64K, AI128K,AI256K
Queries (a) to the area of interest 1, 523 KB

(b) to the area of interest 2, 2.6 MB
(c) to the first 61 frames, 3.6 MB
(d) to the whole array, 6.8 MB

Table 5. Test for areas of interest.

Figure 8 illustrates the individual times for these queries
for the best of both approaches (AI256K and Reg64K). Ta-
ble 6 lists the speedups achieved by AI256K over Reg64K
for to, ttotalaccess andttotalcpu. Performance increases of
4.2 and 2.7 were obtained forttotalcpu for the queries of the
access pattern. This tuning for the areas of interest resulted
in a degradation of the access to other types of queries. This
is quite noticeable for queryc. In this query, big amounts
of data have to be copied in the AI256K scheme to obtain
the end result. Access times,ttotalaccess, are less affected.
For queriesc andd the access times for Reg64K are 90%
of those for AI256K.

Figure 8. Times (in s) for Reg64K and AI256K.

The tests performed show that the optimal tiles sizes for
arbitrary tiling schemes are higher than the optimal tile sizes
for regular tiling. This is so because the arbitrary tiling
strategies adapt to the areas of access. The tiling algo-
rithms described subdivide an MDD into smaller tiles in
parts of smaller accesses, whereas regions of big accesses
get a coarser tiling.

Queries Access pattern ”Unexpected”
a b c d

to 2.3 1.3 0.9 0.9
ttotalaccess 2.1 1.3 0.9 0.9
ttotalcpu 4.2 2.7 0.5 0.9

Table 6. Speedup of AI256K over Reg64K.

7. Related Work

In the Titan parallel shared-nothing database system
[6], large 3-D spatial-temporal remote sensing data is di-
vided into nonaligned tiles. Storage management is based
on declustering, clustering according to linearization algo-
rithms, and indexing of tiles based on a simplified R-tree. In
the approaches described in [8] and [11] 2-D raster data is
divided into regular tiles, which are optionally compressed.
In [11] the author studies performance for different com-
pression algorithms and indexing by two ordering methods:
scanline and Hilbert. Also in [2], different orderings and
3-D regular tiling into octants are exploited.

Such techniques have also been studied for data with
arbitrary dimensionalities. In [7], the authors describe a
system for scientific applications which partitions multidi-
mensional datasets into clusters based on device character-
istics and on analysis of data access patterns, for which a
very advanced model in the application area is adopted. In
this approach, there is no separation between coordinates
and variables, since coordinates are seen as variables or
attributes of a data cell. In [14] multidimensional regular
tiling is adopted for OLAP. A special type of compression,
the chunk-offset compression, is used selectively for tiles
with low data density.

One of the most complete works in this area is the one
reported in [13]. Storage of multidimensional arrays in ter-
tiary storage is based on a combination of different strate-
gies, namely chunking, reordering of the chunks, redun-
dancy and partitioning between platters of a tertiary storage
device to yield the most efficient internal structure for the
array. An access pattern, provided either by the end user
or from statistically sampling array accesses, is a collection
of accesses and associated probabilities of occurrence. An
access is modeled as a rectangle anywhere in the array, i.e.
as a multidimensional range, since the relative position of
different accesses is not taken into account, only the config-
uration. The optimal chunk configuration is calculated for a
specific access pattern.

As opposed to those approaches, we support arbitrary
tiling and an access model that takes into account the exact
position of accessed areas. We also provide an advanced
interface to exactly specify tiling strategies according to the
access model and corresponding tiling algorithms.

8. Conclusions and Future Work

Multidimensional tiling has never been implemented
with enough flexibility as needed for data with known ac-
cess patterns found in many applications. The techniques
typically used for tiling, based on regular subdivisions of the
space, do not insure correct alignment of tiles to accessed
areas, leading to extra data being read for most accesses.

In this paper we proposed an approach which overcomes
these limitations. The approach described is based on ar-
bitrary tiling and advanced tiling algorithms that guarantee
optimal adjustment of tiles to the areas most commonly ac-
cessed regarding the amount of data read. Three tiling algo-
rithms were presented: aligned, directional tiling and tiling
according to areas of interest. We also described how we
implement automatic tiling based on access statistics. We
compared the main tiling algorithms, directional and areas
of interest, against the traditional regular tiling approach for
different queries. The results show that, if access patterns
to data are known, good performance increases can be ob-
tained by using the tuned arbitrary tiling schemes.

In our opinion, access patterns are known in most appli-
cations. For instance, it is very improbable that a user wants
to know average of sales of an area consisting of part of one
district and part of another. It is, in most cases, possible
to know which types of queries occur more frequently, and
therefore, which tiling strategy to use and how to tune it.

The RasDaMan storage manager also supports selective
compression of blocks and partial cover of data cubes, two
important features when supporting sparse data. In the fu-
ture we will test performance on sparse data with those op-
tions activated. Performance gains over regular tiling are
expected to be even higher, since arbitrary tiling adapts bet-
ter to sparse data distributions than regular tiling does. Cur-
rent work focus on extending the current tiling techniques
to optimize for total access time, i.e., including index time.

Acknowledgments

RasDaMan was sponsored by the European ESPRIT
Programm. We would like to acknowledge R. Ritsch, N.
Widmann and A. Dehmel for the teamwork in RasDaMan.
The first author would also like to thank the Dep. de
Matemática da Uni. de Coimbra, Portugal, for supporting
her research stay in FORWISS.

References

[1] R. Agrawal, A. Gupta, S. Sarawagi: Modeling Multidimen-
sional Databases.Proc. of ICDE97, pp. 232-243, 1997.

[2] M. Arya, W. F. Cody, C. Faloutsos, J. Richardson, A. Toya:
QBISM: Extending a DBMS to Support 3D Medical Images.
Proc. of ICDE94, pp. 314-325, 1994.

[3] F. Bancilhon, C. Delobel, P. Kanellakis:Building an Object-
Oriented Database System. Morgan Kaufmann Publishers,
San Mateo-California, 1992.

[4] P. Baumann, P. Furtado, R. Ritsch, N. Widmann:
Geo/Environmental and Medical Data Management in the
RasDaMan System.Proc. of VLDB’97, Athens, Greece, pp.
548-552, 1997.

[5] R. Cattell: The Object Database Standard: ODMG-93.
Morgan Kaufmann Publishers, 1996.

[6] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman,
J. H. Saltz: Titan: A High-Performance Remote Sensing
Database.Proc. of ICDE97, pp. 375- 384, 1997.

[7] L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem,
A. Shoshani: Efficient organization and access of multi-
dimensional datasets on tertiary storage systems.Informa-
tion Systems Journal, vol. 20, no. 2, pp. 155-183, 1995.

[8] D. DeWitt, N. Kabra, J. Luo, J. Patel, J. Yu: Client-Server
Paradise.Proc. of VLDB94, Santiago, Chile, 1994.

[9] P. Furtado, J. Teixeira: Storage Support for Multidimen-
sional Discrete Data in Databases,Computer Graphics fo-
rum - Special Issue on Eurographics93 Conference, vol. 12,
no.3, pp. 89- 100, 1993.

[10] P. Furtado, R. Ritsch, N. Widmann, P. Zoller, P. Baumann:
Object-Oriented Design of a Database Engine for Multidi-
mensional Discrete Data,Proc. of the OOIS’97, Brisbane,
Australia, pp. 411-421, 1997.

[11] P. Lamb: Tiling Very Large Rasters. Advances in GIS Re-
search.Proc. of the Sixth International Symposium on Spa-
tial Data Handling, Edimburgh, pp. 449-461, 1994.

[12] P. Marques, P. Furtado, P. Baumann. An Efficient Strategy
for Tiling Multidimensional OLAP Data Cubes.Proc. of the
Workshop on Data Mining and Data Warehousing, Magde-
burg, Germany, pp. 13-24, 1998.

[13] S. Sarawagi, M. Stonebraker: Efficient Organization of
Large Multidimensional Arrays.Proc. of ICDE94, pp. 328-
336, 1994.

[14] Y. Zhao, P. M. Deshpande, J. F. Naughton: An Array-based
Algorithm for Simultaneous Multidimensional Aggregates.
Proc. of ACM SIGMOD97, pp. 159- 170, 1997.

[15] Y. Zhao, K. Ramasamy, K. Tufte, J. F. Naughton: Array-
Based Evaluation of Multi-Dimensional Queries in Object-
Relational Database Systems.Proc. of ICDE98, pp. 159-
170, 1998.

