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Abstract

Many real-world applications require large-scale data annotation, such as identi-
fying tissue origins based on gene expression profiles and classifying images into
semantic categories. Annotation classes are often numerous and subject to changes
over time, and annotating examples has become the major bottleneck for supervised
learning methods. In science and other high-value domains, large repositories of
data samples are often available, together with two sources of organic supervision:
a lexicon for the annotation classes, and text descriptions that accompany some data
samples. Distant supervision has emerged as a promising paradigm for exploiting
such indirect supervision by automatically annotating examples where the text
description contains a class mention in the lexicon. However, due to linguistic
variations and ambiguities, such training data is inherently noisy, which limits
the accuracy in this approach. In this paper, we introduce an auxiliary natural
language processing system for the text modality, and incorporate co-training to
reduce noise and augment signal in distant supervision. Without any manually
labeled data, our EZLearn system learned to accurately annotate data samples
in functional genomics and scientific figure comprehension, even substantially
outperforming state-of-the-art supervised methods trained on tens of thousands of
annotated examples.

Introduction

The confluence of technological advances and the open data movement [20] has led to an explosion
of publicly available datasets, heralding an era of data-driven hypothesis generation and discovery
in high-value applications [24]. A prime example is open science, which promotes open access to
scientific discourse and data to facilitate large-scale data reuse and scientific collaboration [7]. In
addition to enabling reproducibility, this trend has the potential to accelerate scientific discovery,
reduce the cost of research, and facilitate automation [25, 16].

However, progress is hindered by the lack of consistent and high-quality annotations. For example,
tissues from neurons to blood share the same genome, but vary in gene expression, which is crucial to
understanding cell differentiation and cancer [10, 9]. The NCBI Gene Expression Omnibus (GEO) [3]
contains over two million sample gene expression profiles, yet only a fraction of them have explicit
tissue annotation. As a result, only 20% of the datasets have ever been reused, and tissue-specific
expression studies are still being done at small scale [24]. Similarly, figures in scientific papers
convey rich information, but there is no principled way to search them by semantics [14].

Annotating data samples with standardized classes is the canonical multi-class classification problem,
but standard supervised approaches are difficult to apply. Hiring experts to annotate examples for
thousands of classes such as tissue types is unsustainable. Crowd-sourcing is generally not applicable,
as annotation requires expertise that most crowd workers do not possess. Moreover, the annotation
standard is often revised over time, incurring additional cost for labeling new examples.
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While labeled data is expensive and difficult to create at scale, unlabeled data is usually in abundant
supply. Many methods have been proposed to exploit it, but they typically still require labeled
examples to initiate the process [1, 18, 6]. Even zero-shot learning, where the name implies learning
with no labeled examples for some classes, still requires labeled examples for related classes [22, 26].

In this paper, we propose EZLearn, which makes annotation learning easy by exploiting two sources
of organic supervision. First, the annotation classes generally come with a lexicon for standardized
references (e.g., “liver”, “kidney”, “acute myeloid leukemia cell” for tissue types). While labeling
individual data samples is expensive and time-consuming, it takes little effort for a domain expert to
provide a few example terms for each class. In fact, in the sciences and other high-value applications,
such a lexicon is often available as part of an existing domain ontology. For example, the Brenda
Tissue Ontology specifies 4931 human tissue types, each with a list of standard names [8]. We
call such indirect supervision “organic” to emphasize that it is readily available as an integral
part of a given domain. Second, data samples are often accompanied by a text description, some
of which directly or indirectly mention the relevant classes (e.g., the caption of a figure, or the
description entered by a lab technician for a gene expression sample). Together with the lexicon, these
descriptions present an opportunity for exploiting distant supervision by generating noisy labeled
examples at scale [19].

In practice, however, there are serious challenges to enact this learning process. Descriptions are
created for general human consumption, not as high-quality machine-readable annotations. They are
provided voluntarily by data owners and lack consistency of any kind. Ambiguity, typos, abbreviations,
and non-standard references abound [15, 25]. Additionally, annotation standard evolves over time,
some terms become obsolete but were used in older samples. As a result, while there are potentially
many data samples whose description contains class information, only a fraction of them can be
identified using distant supervision, and noises are introduced due to reference ambiguity. This
problem is particularly acute for domains with a large number of classes and/or frequent update.

To best exploit indirect supervision using all instances, EZLearn introduces an auxiliary text classifier
for handling complex linguistic phenomena in descriptions. This auxiliary classifier first uses
the lexicon to find exact matches to teach the main classifier. In turn, the main classifier helps
the auxiliary classifier improve by annotating additional examples where class mentions are non-
standard or ambiguous. This co-supervision continues until neither classifier can improve any further.
Effectively, EZLearn represents the first attempt in combining distant supervision and co-training,
using text as the auxiliary modality for learning. Figure 1 shows the architecture.

To investigate the effectiveness and generality of EZLearn, we applied it to two important applications
in functional genomics and scientific figure comprehension, which differ substantially in domain
characteristics such as sample input dimension and description length. In functional genomics,
there are thousands of well-established classes. In scientific figure comprehension, prior work only
considers three coarse classes, and we expand them to twenty-four finer-grained ones. In both
scenarios, EZLearn successfully learned an accurate classifier with zero manually labeled examples.

EZLearn
Let X = {xi : i} be the set of data samples and C be the set of classes. Automating annotation
amounts to learning a multi-class classifier f : X → C. For example, xi may be a gene expression
profile, whereas C is the set of tissue types. Additionally, ti denotes the text description that
accompanies xi. Sometimes, the description is not available, in which case ti is the empty string.
By default, there are no available labeled examples (x, y∗) where y∗ ∈ C is the true class for
annotating x ∈ X . Instead, EZLearn assumes that a lexicon Lc is available with a set of example
terms for referencing c ∈ C. Note that we do not assume that Lc is complete, nor that such terms are
unambiguous. Rather, we simply require that Lc is non-empty for any c of interest.

To handle linguistic variations and ambiguities, EZLearn introduces an auxiliary classifier fT : T →
C, where T = {ti : i} is the set of text descriptions that accompany the data samples. fT is initialized
using the initial labeled set D0, which contains all (xi, c) where ti contains a class reference in
lexicon Lc. At iteration k, we first train a new main classifier fk using Dk−1. We then apply fk to
X and create a new labeled set Dk

T , which contains all (ti, c) where fk(xi) = c. We then train a
new text classifier fk

T using Dk
T , and create the new labeled set Dk with all (xi, c) where fk

T (ti) = c.
This process continues until convergence, which is guaranteed given conditional independence of the
two views [1]. Empirically, it happens quickly. Algorithm 1 shows the EZLearn algorithm.
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Method # Labeled # All AUPRC Prec@0.5 Use
expression

Use
text

Use
lexicon

Use
EM

URSA 14510 0 0.40 0.52 yes no no no
Co-EM 14510 116895 0.51 0.61 yes yes no yes
Dist. Sup. 0 116895 0.59 0.63 yes yes yes no
EZLearn 0 116895 0.67 0.83 yes yes yes yes

Table 1: Comparison of test results between EZLearn and state-of-the-art supervised, semi-supervised,
and distantly supervised methods on the Comprehensive Map of Human Gene Expression. We
reported the area under the precision-recall curve (AUPRC) and precision at 0.5 recall.
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Figure 1: EZLearn architecture: an
auxiliary text classifier is introduced to
bootstrap from the lexicon (often avail-
able from an ontology) and co-teach
the main classifier until convergence.

Algorithm 1 EZLearn

Input: Data samples X , text descriptions T ,
annotation classes C, and lexicon Lc contain-
ing example references for each class c ∈ C.
Output: Trained classifiers f : X → C
(main) and fT : T → C (auxiliary).
Initialize: Generate the initial training data
D0 by adding all (xi, c) where xi ∈ X and its
text description ti ∈ T mentions a term in Lc.
for k = 1 : Niter do

f ← Trainmain(D
k−1); Dk

T ← f(X)
fT ← Trainaux(D

k
T ); D

k ← fT (T )
end for

In both the initialization step and later iterations, a labeled set might contain more than one class for
a sample, which is not a problem for the learning algorithm and is useful when there is uncertainty
about the correct class. We can use any classifier for Trainmain and Trainaux. Features for the
main classifier are domain-specific and can be what any reasonable supervised approach might use.
For the text classifier, we use standard n-gram features, which are effective in both applications
we experimented on. It is possible to tailor them for specific domains. Generally, a classifier will
output a score for each class, rather than predicting a single class. The score reflects the confidence
in predicting the given class. EZLearn generates the labeled set by adding all (sample,class) pairs
for which the score crosses a threshold, which is a hyperparameter. We chose 0.3 in preliminary
experiments, which allows up to 3 classes to be assigned to a sample.

Application: Functional Genomics
Annotation task The goal is to annotate tissue types based one gene expressions. The input is a
gene expression profile (a 20,000-dimension vector with a numeric value signifying the expression
level for each gene). The output is a tissue type. We used the BRENDA Tissue Ontology [8], which
contains 4931 human tissue types. For gene expression data, we used the Gene Expression Omnibus
[5], a popular repository run by the National Center for Biotechnology Information. We focused
on the most common data-generation platform (Affymetrix U133 Plus 2.0), and obtained a dataset
of 116895 human samples. Each sample was processed using UPC to minimize batch effects and
normalize expression values to [0,1] [23]. Text descriptions were obtained from GEOmetadb [31].

Main classifier We implemented Trainmain using deep denoising auto-encoder (DAE) with three
LeakyReLU layers to convert the gene expression profile to a 128-dimensional vector [30], followed
by multinomial logistic regression, trained in Keras [2], using L2 regularization with weight 1e− 4
and RMSProp optimizer [27] with default parameters.

Auxiliary classifier We implemented Trainaux using the fastText classifier with their recom-
mended parameters (25 epochs and starting learning rate of 1.0) [13]. The auxiliary classifier is
initialized by simply predicting the most specific class in BRENDA with one of its standard terms
appearing in the description. It is possible to have multiple matching classes, in which case all were
added to the labeled set for training a new main classifier. In principle, we can continue the alternating
training steps until convergence, when neither classifier’s predictions change significantly. In practice,
convergence usually comes quickly [21], and we simply ran all experiments with five iterations.
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Figure 2: (a) Comparison of test accuracy with varying amount of unlabeled data.(b) Comparison of
number of unique classes in high-confidence predictions with varying amount of unlabeled data.

Systems We compared EZLearn with URSA [15], the state-of-the-art supervised method that is
trained on a large labeled dataset of 14,510 examples and used a sophisticated Bayesian method
to refine SVM classification based on the ontology. We also compared it with co-training [1] and
its variant co-EM [21], two representative methods for leveraging unlabeled data that also use an
auxiliary view to support the main classification. Unlike EZLearn, they use labeled data to train their
initial classifiers. After the first iteration, high-confidence predictions on the unlabeled data are added
to the labeled examples. In co-training, once a unlabeled sample is added to the labeled set, it is not
reconsidered again, whereas in co-EM, all of them are re-annotated in each iteration. We found that
co-training and co-EM performed essentially the same, and so only report the co-EM results.

Evaluation We evaluated the classification results using ontology-based precision and recall. For
each singleton class, predicted or gold, we expand it to include its ancestors other than the root
(representing everything). We can then measure precision and recall in the standard way. Namely,
precision is the proportion of correct predicted classes among all predicted classes, and recall is
the proportion of correct predicted classes among gold classes, with ancestors included in all cases.
This closely resembles the approach by [29], except that we are using the “micro” version (i.e., the
predictions for all samples are first combined before measuring precision and recall), which is more
appropriate in our applications. If the system predicts an irrelevant class in a different branch under
the root, the overlap between the predicted and gold set is empty and the penalty is severe. If the
predicted class is an ancestor (more general) or a descendent (more specific), there is overlap and the
penalty is less severe, with overly general or specific predictions penalized more than close neighbors.
We tested on the Comprehensive Map of Human Gene Expression (CMHGP), the largest expression
dataset with manual tissue annotations [28]. CMHPG used tissue types from the Experimental
Factor Ontology (EFO) [17], which can be mapped to the BRENDA Tissue Ontology. To make the
comparison fair, 7,209 CMHGP samples that were in the supervised training set for URSA were
excluded from the test set. The final test set contains 15,129 samples of 628 tissue types.

Results We report both the area under the precision-recall curve (AUPRC) and the precision at
0.5 recall. Table 1 shows the main classification results. All results were averaged over fifteen runs
(except URSA). Remarkably, without using any labeled data, EZLearn outperformed the state-of-the-
art supervised method by a wide margin, improving AUPRC by an absolute 27 points over URSA,
and over 30 points in precision at 0.5 recall. Compared to distant supervision, the use of EM led to
further significant gains of 8 points in AUPRC and 20 points in precision at 0.5 recall. Compared
to co-EM, EZLearn improves AUPRC by 16 points and precision at 0.5 recall by 22 points. To
investigate why EZLearn attained such a clear advantage even against co-EM, we compared their
performance using varying amount of unlabeled data (averaged over fifteen runs). Figure 2(a) shows
the results. Note that the x-axis (number of unlabeled examples in use) is in log-scale. Co-EM barely
improves with more unlabeled data, whereas EZLearn improves substantially from 2% to 100% of
unlabeled data. To understand why this is the case, we further compare the number of unique classes
predicted by the two methods. See Figure 2(b). Co-EM is confined to the classes in its labeled data
and its use of unlabeled data is limited to the extent of improving predictions for those classes. In
contrast, by using organic supervision to generate noisy examples, EZLearn can expand the classes in
its purview with more unlabeled data, while improving predictive accuracy for individual classes.

Application: Scientific Figure Comprehension
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Figure 3: Example annotations
by EZLearn, all chosen randomly
among figures with no class infor-
mation in their captions.

Figures communicate key results and provide visual explanations
of complex concepts. However, while text understanding has
been intensely studied, figures have received much less atten-
tion in the past. A notable exception is the Viziometrics project
[14], which annotated a large number of examples for classifying
scientific figures into semantic classes. Due to the considerable
cost of labeling examples, they only used five coarse classes:
Plot, Diagram, Image, Table and Equation. We exclude the
last two as they do not represent true figures. In practice, figure-
comprehension projects can be much more useful if they include
larger set of more fine-grained classes. To explore this direction,
we devised an ontology where Plot, Diagram, and Image are fur-
ther refined into a total of twenty-four classes, such as Boxplot,
MRI and PieChart. However, to cover these new classes, the
supervised-learning approach adopted by Viziometrics will re-
quire annotating an even larger number of examples. EZLearn,
on the other hand, does not require manually labeled data, and
can be applied directly to learning the fine-grained classifier.

Annotation task The goal is to annotate figures with semantic
types in the predefined ontology. The input is the image of a
figure with varying size. The output is the semantic type. We
obtained the data from the Viziometrics project [14] through
its open API. For simplicity, we focused on single-pane figures,
yielding 1,174,456 images along with free-text captions. As in
the gene expression case, captions might be empty or missing.

Systems Each figure image was first resized and converted to a 2048-dimensional real-valued
vector using a convolutional neural network [11] trained on ImageNet [4]. We follow [12] and use the
ResNet-50 model with pre-trained weights provided by Keras [2]. We used the same classifiers and
hyperparameters as in the functional genomics application. We used a lexicon that simply comprises
of the names of the new classes, and compared EZLearn with the Viziometrics classifier. We also
compared with a lexicon-informed baseline that annotates a figure with the most specific class whose
name is mentioned in the caption (or root otherwise).

Evaluation We followed the functional genomics application and evaluated on ontology-based
precision and recall. Since the new classes are direct refinement of the old ones, we can also evaluate
the Viziometrics classifier using this metric. To the best of our knowledge, there is no prior dataset or
evaluation for figure annotation with fine-grained semantic classes. Therefore, we manually annotated
an independent test set of 500 examples.

Results EZLearn substantially outperformed both the lexicon-informed baseline and the Viziomet-
rics classifier, scoring 79% in AUPRC compared to 44% (lexicon baseline) and 53% (Viziometric),
and 88% precision at 0.5 recall compared to 31% (lexicon baseline) and 43% (Viziometric). The
state-of-the-art Viziometrics classifier was trained on 3271 labeled examples, and attained an accuracy
of 92% on the coarse classes. So the gain attained by EZLearn reflects its ability to extract a large
amount of fine-grained semantic information missing in the coarse classes. Figure 3 shows example
figure annotations by EZLearn, all chosen from figures with no class mention in their captions.

Discussion
We propose EZLearn for large-scale data annotation, which exploits two readily available sources of
organic supervision: a lexicon containing standard class references and text descriptions provided
by data owners. By introducing an auxiliary text classifier to co-teach the main classifier, EZLearn
leverages co-training to reduce noise and amplify signal in distant supervision. EZLearn is well
suited to the sciences and other high-value domains that contain a large number of classes and/or
undergo frequent update. Experiments in functional genomics and scientific figure comprehension
show that EZLearn is broadly applicable, robust to noise, and capable of learning accurate classifier
without any manually labeled data, even outperforming state-of-the-art supervised systems by a wide
margin. Future directions include: incorporate word embedding and other known semantic similarity;
leverage hierarchical relations among annotation classes; apply EZLearn to other domains.
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