
“Here is my data. Where do I start?” Examples of Ad Hoc Databases

Automatic Example Queries
for Ad Hoc Databases

Bill Howe1, Garret Cole2, Nodira Khoussainova3, Leilani Battle4

{1billhowe, 2gbc3, 3nodira, 4leibatt}@cs.washington.edu, University of Washington, Seattle, WA, USA

Tabular data extracted from
 files, spreadsheets, DBs, the web
  No schema available
  No query logs available
  No DBAs available
  Unknown relationships, semantics, utility
  Temporary, time-sensitive applications

An ad hoc database is a collection of tables with unknown relationships
gathered to serve a specific, often transient, often urgent, purpose.

“Ad Hoc Databases”

•  A researcher assembles an ad hoc database of recent
experimental results to prepare a paper or proposal.

•  Emergency workers responding to a natural disaster assemble
an ad hoc data-base from lists of addresses of nearby schools,
locations of resources (e.g., ambulances), and contact
information for emergency workers.

•  A consulting business analyst assembles an ad hoc database
from a set of spreadsheets provided by management for a
short term engagement

•  A security analyst assembles an ad hoc database from a set of
application trace logs after an attack

 Approach
1. Model each operator independently using

curated sts of example queries from the web
2. Compose operators to generate a search

space of example queries
3. Rank each set using scores derived from

configurable patterns called idioms

 SQLShare: Database-as-a-Service for Ad Hoc Data

1.  Streamlined for a single workflow:
2.  No DDL; schema inferred from data
3.  Views as first-class citizens
4.  Unfettered sharing; cloud-hosted
5.  Full SQL; no restrictions

http://sqlshare.escience.washignton.edu

Upload

Query

Share

http://escience.washington.edu

Q: Are users willing and able to write SQL?
A: Yes! But they need access to high-quality examples

(c.f. Gray, Szalay et al. 2005; Howe 2010)

Modeling Each Operator

Join Project
Finding: Important attributes appear near

the far left or far right of the table.

Select
Finding: Good queries return around
5-10% of the tuples in the table/join.

Group by

Grouping column: a column is selected
if it has manageable distinct values.

Aggregates: In most cases, project

count(*). If a separate numeric column
is also discovered, demonstrate

functions sum, min, max, and avg.

Union

Idea: two tables are good candidates
for a union if they share sequence of

columns with matching data types.

Finds more matches than just
considering column name matches.

A histogram of the weighted positional scores of
columns from the example queries of the SDSS
database.

0
1.43

2.86
4.29

5.71
7.14

8.57
10

11.43
12.86

14.29

0.000
2.000
4.000
6.000
8.000

10.000
12.000

Histogram of Percentage of Tuples Returned by
Example Queries for the SDSS Dataset

% of tuples returned (out of 100)

Fr
eq

ue
nc

y

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

0
10
20
30

Histogram of Percentage of Tuples Returned by
Example Queries for the GO Dataset

% of Tuples Returned (out of 100)

Fr
eq

ue
nc

y

Finding: “Good” joins characterized by
linear relationships among a handful
of set properties

We train a decision tree over these
features using existing sets of example
queries (with > 80% precision and recall)
Buid a graph (V,E) where V is the set of
tables and E is the set of “good” joins.
Each quey is a minimum spanning tree of
a connected component of this graph.

What makes a good set of queries? It is application-dependent.
e.g. for a DB class, the queries should demonstrate various SQL
concepts vs. if user is familiar with SQL but not with the schema,
better to have queries that refer to important tables or views.

What is an idiom? A function I : Q  [0, 1]. Takes a query and outputs
score between 0 and 1. Examples:

 - outputs 1 if query includes GROUP BY clause, 0 otherwise
 - rewards queries with more joins

 - outputs a score based on which important views the query references
 - outputs 1 if query demonstrates a self-join, 0 otherwise

Evaluating “Good” Queries
How to use idioms to select the set of starter queries?
Represent queries as vectors of idiom
scores

We use a greedy algorithm by selecting best query first, then iteratively add best
additional query given the queries collected up to this point.

I1 . . . Im

q1 I1(q1) Im(q1)

.

.

.

. . .

qn

I1(qn)

Im(qn)

Goals:
 - maximize idiom scores
 - select diverse set of queries

Score of a set of k queries:

!

w" I j (qi)
j=1

m

#
i=1

k

+ (1$ w)" d(qi,q j)
j=1

k

#
i=1

k

#

