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ABSTRACT

Physical scientists increasingly use large, shared data repositories
to make discoveries. The technology to manage these repositories
tends to be developed ad hoc; database technology has not signifi-
cantly penetrated this market. Diverse requirements, terabyte and
petabyte scale, non-standard data types, and rapid change are the
norm for scientific data management applications; each pose chal-
lenges for existing technology.

In this paper, we argue that traditional database systems are too
monolithic and uncompromising to be generally successful in
these extreme environments. We argue that these negative charac-
teristics are reflected in the crooked shape of the Return On In-
vestment curve, and that a smoother ROI can be achieved by
adopting a few simple strategies. We then describe our experi-
ences applying these strategies to build data services for an Envi-
ronmental Observation and Forecasting System.

Categories and Subject Descriptors

H.2.8 [Database Systems]: Database Applications — scientific
databases.

General Terms
Management, Design
Keywords

ROI, metadata, scientific data management, software engineering

1. INTRODUCTION

Scientific data acquisition is no longer a bottleneck to scientific
discovery. Physics [39] earth science [12] biology [1], and as-
tronomy [41] have all seen enormous growth in the amount of
data available for study. Scientists are “starting to die from data”
[11] — they are becoming increasingly inefficient due to time spent
on data management tasks. Software supporting these tasks are
usually developed ad hoc in response to specific requirements.
General-purpose database management systems (GPDBMS) have
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not been widely adopted in the scientific community, despite
some prominent successes [41]. Reasons cited for eschewing
GPDBMS include poor performance, lack of support for essential
data types (multidimensional arrays, irregular meshes, timeseries,
hierarchies), high cost of deployment and maintenance, and poor
integration with existing tools [5, 18].

In this paper, we argue that the “all or nothing” nature of database
technology is responsible for their lack of acceptance. Scientific
applications have extreme requirements: enormous scale [5, 41],
novel data types [23, 30], and diverse access patterns [39]. In
order to compete with the flexible tools already in use in these
extreme environments (the Unix filesystem, FORTRAN, MAT-
LAB, C, Perl), database projects must reward incremental effort
with incremental returns. Existing database technology, however,
requires enormous up front effort and has a transformational effect
on the data landscape. Reliable legacy applications must be re-
written to interact with the database. Users must learn new skills.
New employees must be hired to maintain the system, or else
programmers and system administrators must shoulder a signifi-
cant new burden.

We use the shape of the Return on Investment (ROI) curve as a
success indicator for scientific data management applications. We
offer general strategies for achieving a smooth ROI by building
loosely-coupled services, instead of deploying a GPDBMS
(though we do identify where a GPDBMS can be used as a com-
ponent). We will illustrate the strategies using examples from the
literature and our own experience with the CORIE Environmental
Observation and Forecasting System [2, 23] and its evolution into
a part of the Center for Coastal Margin Observation and Predic-
tion (CMOP) [12]. The CORIE system is designed to support
research, policy, and commercial interests in the estuarine and
ocean waters in the Pacific Northwest and elsewhere.

The bursty return on investment (ROI) produced by GPDBMS
projects can be visualized by plotting ROI against time. Return
On Investment (ROI) is usually reported as an annual percentage
of the initial project cost. A 100% ROI means that every year, the
project generates savings (or revenue) equal to its initial cost. A
better interpretation of ROI for software projects serving scientists
is time saved: How much time must scientists spend on data man-
agement relative to the status quo? More precisely, we calculate
ROI for a solution X at time t as:

ROL,(t) = ¥ Ty ()~ Ty 1)
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Figure 1. Return on Investment curves with different
characteristics. (a) ROI for a single-release project. (b)
The crooked ROI of a successful multiple-release project.
(¢) A smooth ROI curve representing incremental but
continuous improvement.

where Ty (i) is the (estimated) time spent on data management
tasks under solution X during time period i, and DN is the “Do
Nothing” alternative. Negative ROI indicates that, at time ¢, sci-
entists have spent more time on data management tasks, including
pre-deployment activities such as design meetings, than they have
saved by using the new software.

In Figure 1, we characterize ROI curves for three methodologies
applied to the same hypothetical project. Curve (a) assumes a
single release date at + = 0 . We interpret the “Do Nothing” alter-
native “do nothing right now, but perhaps do something in the
future.” That is, we acknowledge that after a few months, new
technology might become available or the existing system may be
upgraded in some significant but unpredictable way, therefore
lowering Tpy. Curve (a) is therefore sub-linear to capture the
effect of this opportunity cost.

Curve (b) represents a continuously developed system with a
three-month release cycle. We assume that the initial release costs
are identical to those of Curve (a). Just before each release, the
benefits of the system drop commensurate to the additional de-
sign, implementation, and testing effort. After each release, bene-
fits improve, hopefully enough to justify the cost of the release.
The opportunity costs do not affect Curve (b) as much, since each
release offers a chance to incorporate new technologies or other-
wise adapt.

Curve (c) represents the potential improvement offered by a
smoother, more incremental methodology. Note that the y-axis
carries less significance for this curve; there is no pre-defined
project completion date. Rather, the system is adapted to handle
additional and changing requirements incrementally in each time
period.

Note that we have chosen to illustrate successful projects. After
the second release on Curve (b), for example, it is possible that
the benefit would stay flat or slope downward due to bugs, mis-
understood requirements, or other problems. These problems
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would not be apparent until after spending a considerable amount
on the release. A smoother ROI methodology enhances agility:
unneeded or buggy features can be identified and rolled back
earlier.

In the next section, we will develop the argument that 1) a smooth
ROI is required specifically and uniquely in the context of scien-
tific data management applications, and 2) a GPDBMS cannot
deliver a smooth ROI. Following that argument, we will recom-
mend a strategy for system designers to provide a smooth ROI,
and thereby penetrate the scientific data management market.

2. The Case for a Smooth ROI

We have established an interpretation of the shape of the ROI
curve, and reasoned that a smooth ROI is preferred. Our thesis,
however, is that the success of scientific data management appli-
cations, in particular, is correlated with a smooth ROI, and that
this property is specific to this domain.

The reader may be thinking of many general design principles that
implicitly advocate a smoother ROI. The debate of modular ver-
sus monolithic (e.g., for Operating Systems) is relevant, as are
component-based programming paradigms. More recently, Ser-
vice Oriented Architectures [45] have been proposed as a means
of decoupling subsystems by exploiting XML and HTTP. While
we support these initiatives for particular application domains
(especially scientific data management), we suggest that there are
circumstances where a monolithic design and the resulting
crooked ROI are desirable.

Large commercial data management applications do not al-
ways benefit from a smooth ROI. A smooth ROI is difficult to
realize for the transformational projects found in commercial do-
mains. Large-scope software projects have been the norm for at
least 15 years in commercial IT departments. Enterprise Resource
Planning (ERP), Customer Relationship Management (CRM),
Sales Force Automation (SFA), and more recently Business Proc-
ess Intelligence (BPI) projects all have tremendous scope, affect-
ing the majority of a company’s IT infrastructure. Such large pro-
jects are necessarily transformational, changing the way a com-
pany does business in a fundamental ways. The periods of uncer-
tainty between major releases are necessarily long for these trans-
formational projects, and the ROI curve is necessarily crooked.

We believe that such transformation is not just unavoidable, but
desirable. Rarely do companies spend 10s of millions of dollars
on software that does not promise to help them “re-engineer” their
processes. Monolithic database technology has been central to
these projects, perhaps even influencing the trend. These systems
offer enormous benefits if one is willing to surrender control to
the database and can endure a long-term deployment.

Scientists, however, are generally not looking for fundamental
transformations to their procedures, but rather to augment them so
that less time is spent finding and manipulating data and more
time is spent making discoveries. They want their process stream-
lined, but not necessarily replaced.

Scientific research projects typically have science programmers
on staff, domain specialists with significant programming experi-
ence. Science programmers tend to naturally borrow from extreme
programming [4]: do not design for the future, solve problems as
they arise, cheerfully redesign if necessary. Computer scientists



may sometimes look dimly on the result, seeing only a tangle of
interdependent Perl scripts, C programs, and cron jobs, all proc-
essing various ad hoc data formats. However, these systems tend
to work, and work rather efficiently.

Our recommendation is to let science programmers be extreme
programmers. Offer them services that enhance their ability to
implement desired features, rather than replace their trusted facili-
ties with something unfamiliar. The services should reflect the
principles and results of the database community, but packaged in
a manner palatable to efficacious and confident programmers who
have their own methods of software development.

Scientific Data Management Applications demand the flexibil-
ity indicated by a smooth ROI. A smooth ROI curve implies
near-continuous deployment of new applications and new features
and therefore more frequent opportunities to steer the project.
This flexibility is important in a scientific research environment
for the following reasons:

First, flexibility is required to make the best use out of limited
staff. Scientific research staff frequently have multiple roles
within the institution, due to requirements for specialized domain
knowledge and limited IT budgets. For example, a staff member
on the CORIE project writes and maintains domain-specific data
analysis algorithms, but also manages the project’s website. This
situation means that those developing a data management system
may also be users of the system. Frequent opportunities to change
roles from developer to user maximizes their utility on the project.
Research staff and their managers have more flexibility when
deciding whether to “fish” (polish and exploit their newly devel-
oped technology) or “cut bait” (design and implement additional
features).

Second, scientific research environments rarely have a large num-
ber of users with identical (or even similar) requirements. For
example, a company wishing to upgrade its call center defines a
single set of requirements. The benefit of meeting these require-
ments is multiplied by the large number of “identical” users. Sci-
entific staff tend to each ask different kinds of queries and require
different kinds of interfaces. Addressing each scientist’s individ-
ual requirements incrementally guarantees positive progress. The
alternative is to identify the union of everyone’s individual re-
quirements and make that a design target. Due to the diversity of
tasks, this set is expected to be rather large; a comprehensive sys-
tem may not be immediately feasible.

Third, requirement changes are even more likely than in commer-
cial environments. A fixed set of requirements suggests a level of
certainty about how the system will be used and what the users are
trying to accomplish. By definition, however, scientists cannot
predict exactly what their research requires. For example, CORIE
was initially designed to study the Columbia River estuary. Now
CORIE runs 19 forecasts daily for estuaries and bays along the
Northwest coast of the United States and around the world. Even
with an experienced DBA on staff, a GPDBMS solution would
not have saved much effort compared to an application-specific
solution, due to the extensive schema changes required to accom-
modate multiple regions, multiple coordinate systems, additional
users, and additional data products.

The RHESSI Experimental Data Center [39] is an example of a
system designed explicitly to support diverse and changing usage
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patterns. Stolte et al. recognized “the need to accommodate con-
stant change,” and argue that such “a variety of data views cannot
be efficiently supported by any scientific data repository.” They
instead opt for an extensible design that can be grown incremen-
tally as new requirements general applicability of these techniques
remains to be seen, but the work is certainly aligned with our
observations.

Current database technology necessarily implies a crooked
ROI. Database systems have traditionally been monolithic, offer-
ing a thorough set of features but demanding complete control
over the data managed. Decoupling features from one another is
difficult or impossible. The ability to substitute a storage manager
that exploits existing file organizations (e.g., netCDF [28], or
HDF [22]) paired with the traditional query language facilities
would make a commercial database system much more enticing,
for example. The developers of Shore [9] proposed such a
mechanism. Previous research on mediators [36] and rich user-
defined types [38] for accessing native data outside the database
and loading native data into the database, respectively, are rele-
vant here. Also, many scientific file formats are basically storage
formats for a single data type: multidimensional arrays. Native
database support for multidimensional arrays has been proposed
[3, 33], though a monolithic architecture and demand for com-
plete control of the data still plague the design.

3. SMOOTHING STRATEGIES

Based on our experience and a review of the literature, we rec-
ommend the following strategies for developing data management
solutions for the scientific community, examples of which we
provide in Section 4:

Promote “pay as you go” solutions. Recently, dataspace man-
agement has been proposed as an approach that takes a holistic
view of all information in an enterprise, be it structured, semi-
structured or unstructured, and whether or not it is supported by
an explicit information system [15, 20]. While its goal is to pro-
vide services over the entirety of the data, dataspace management
takes the pragmatic view that initial limits on time and effort may
only permit simple services at first, such as cataloging and key-
word search. Additional services or capabilities can come later,
little by little, as resources permit.

Let a hundred flowers blossom. Consider deploying two or
more redundant solutions rather than forcing a guess. Although
fielding multiple parallel solutions flattens the ROI curve, you
avoid failures that result in negative ROI. To mitigate the extra
effort of fielding multiple solutions, consider limiting features:
only one or two capabilities, implemented end-to-end, should be
sufficient initially.

Consider that Amazon.com fielded web services with both a
RESTful [13] interface and a SOAP [37] interface. They found
that the RESTful interface saw 85% more traffic than the SOAP
interface. Forcing an up-front decision to use one technology
over the other would have obscured this evidence that developers
prefer REST.

In the CORIE system, four different web-based mapping tools are
in production: Mapserver based on PHP [44], the OpenLayers
javascript library (providing rich client side functionality) [35],
KaMap (extending a rich client with server-side caching) [29],
and the popular Google Maps [16]. Rather than conduct a lengthy
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Figure 2. A data product developed with the Gridfield Al-
gebra visualizing the plume of freshwater at the mouth of
the Columbia River. The right pane is shaded by salinity.
The left pane is restricted to regions of high salinity gradi-
ent—one way to define the plume front.

evaluation of these competing technologies, CORIE programmers
simply developed one or more potentially redundant mini-apps
with each as tool as it was discovered and made them available for
use.

Specialize to the current instance. Extreme programmers [4]
advise against over-design and attempts at future-proofing. Bet-
ter, they say, to build software that works in the current environ-
ment and be prepared to rebuild it when things change. The ana-
log for a data management might be “Extreme Schema Design.”
Build structures and indexes that work for the current dataset and
query workload, and be prepared to drop and reload data when
things change. The “rebuild and reload” procedures can and
should be at least partially automated to reduce the cost of their
frequent use.

Of course, schema changes break applications, and frequent
schema changes could prevent applications from ever working.
The solution here is to have a robust API — a level of indirection
between the physical structures used to house the data and the
applications requesting the data.

We exercise this strategy on the Quarry project [25], complete
with a robust API. We put no constraints on the metadata we
collect, and we index it automatically using the patterns in the
data. If users change the form or content of the metadata they
track, our index may no longer be efficient. We respond by re-
harvesting, re-loading, and re-indexing the new metadata, in a
single operation, as the need arises.

Strive for zero configuration. GPDBMS tend to require more
configuration and design effort than systems of similar scope and
complexity (e.g, operating systems and web servers). Many areas
are ripe for automation, including configuration, physical da-
tabase design [7], maintenance, and even logical database design
[25]. For inspiration, consider that the Google appliance [16]
begins to provide search capabilities after being simply plugged
into a server rack.

This strategy allows early live access to real data, which can re-
veal unforeseen problems (we discovered a crucial misspelling,
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for example). Further, feedback on actual user needs is easier to
gather with concrete examples of data idiosyncrasies available.

Operate on In Situ Data. Apply your logical model to their
physical representation. It may be possible to re-implement logi-
cal operators over in situ data, but this approach can result in a
separate implementation for every new application. Converting
data en masse to native formats is also a possibility, but this proc-
ess tends to disrupt legacy systems. Wrapping schemes (e.g.,
Garlic [36]) avoid these two extremes, but incremental develop-
ment and deployment of wrappers has received less attention.

The Aqualogic system from BEA [10] provides a Service Ori-
ented development platform for writing wrappers declaratively
that produce XML and then composing and transforming the
XML with XQuery. Aqualogic can “introspect” relational and
XML sources to automatically make them available as services.
Introspection considers more than just the structure of the data
model; foreign key relationships, for example, are interpreted as
nesting in the produced XML. These services are not opaque to
the query optimizer. Selection predicates and joins can be pushed
down into the relational engine to improve performance.

4. CASE STUDIES

We have been working extensively with environmental scientists
who are developing the CORIE Environmental Observation and
Forecasting System (EOFS) at the OGI School of Science & En-
gineering at Oregon Health & Science University. The CORIE
system [2, 12, 23], named for the Columbia River Estuary, is a
multi-purpose platform for studying the fluid dynamics of coastal
waters around the world. Customers of CORIE's data products
include commercial fisheries, environmental policy makers, and
external research institutions. For example, fisheries are inter-
ested in the location of the plume front (Figure 2), because salmon
are known to congregate there.

The CORIE project has cultivated a dataspace consisting of three
loosely-coupled participant subsystems: the Forecast Factory, the
Hindcast Archive, and the Observation Pipeline. The Forecast
Factory manages an increasing number of forecasts for bodies of
water around the world (currently 19). The priorities of the Fore-
cast Factory are daily reliability first, and accuracy second. The
Hindcast Archive is a collection of repositories covering various
time periods from 1880 to the present using different code ver-
sions and configurations. The top priority of the Hindcast Ar-
chive is to provide consistent long-term coverage, and to offer a
“best available” model for any given time period. The Observa-
tion Pipeline provides reliable near-real-time access to the meas-
urements of a sensor network consisting of 18-25 fixed stations
around the Pacific Northwest. Data from vessel cruises, under-
water autonomous vehicles, and other mechanisms are also avail-
able or forthcoming.

In this section, we will describe three tools designed to support
the CORIE dataspace: the Quarry metadata engine, the ForeMan
Forecast Manager, and a toolkit for retrofitting a data model to ad
hoc file formats. First, we briefly introduce each tool.

The Quarry engine was developed to provide browse and search
capabilities for the global data inventory [25]. Each of the three
subsystems (the Forecast Factory, the Hindcast Archive, and the
Observation Pipeline) has a footprint on the shared filesystem
consisting of plots, images, documents, configuration files, and
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Figure 3. Property-value pairs extracted for a file.

annotations. The Quarry tool allows access to these resources by
logical metadata rather than by physical location without requir-
ing an integrated schema design and without retreating to full-text
indexing services.

The ForeMan Forecast Manager [6] provides an interface for in-
specting, analyzing, and experimenting with different assignments
of forecast jobs to compute nodes. ForeMan relies on information
extracted from existing developer log files and was deployed with
only a small amount of extra work for the developers. We note
that log file formats are subject to change, which may require
modifications to the existing ForeMan implementation. However,
we believe the advantages of rapid deployment and minimal work
for developers outweigh this potential overhead.

The third project we describe involves a toolkit for retrofitting a
data model onto existing environmental data [24]. The toolkit
was developed in conjunction with the Gridfield algebra, a lan-
guage for manipulating simulation results in the physical sci-
ences—including both forecasts and hindcasts. To allow grid-
field-powered programs access to ad hoc file formats, we use
simple declarative descriptions of filesystem data to generate ac-
cess methods. We prefer this approach to the two obvious
alternatives: converting the data en masse to a new format or
hand-coding individual wrappers for each data type.

4.1 Quarry Metadata Manager

CORIE data produced or consumed by any of the three subsys-
tems, including supplementary data such as derived images, con-
figuration settings, annotations, and logs, are stored as files using
naming conventions specific to the subsystem by which or for
which they were created. Metadata is encoded in the file names,
directory structures, file headers, or in ancillary files (Figure 3).
Scientific inquiries involve accessing data from one or more of
these subsystems.

Different people know about different datasets and data products.
How can we regularize the metadata to let anyone find and re-
trieve any file? We could try to negotiate a global metadata
schema up front, or we could get started by just gathering the facts
that are already available. The Quarry system takes the latter
approach.
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Quarry has three components, which we describe in this section:
the Harvester, the Triple Store, and the Quarry Metadata Explorer
(QME) web interface.

4.1.1 Harvester

Anyone with files they wish to describe writes a script that, given
a file name, produces a set of (property, value)-pairs describing
the file. Scripts may be written in any language, and there are no
restrictions on the properties or values they may use.

Each script is associated with a regular expression over the file
path identifying those files for which it is applicable. The har-
vester traverses a filesystem and evaluates each regular expression
against the full path of each file. On a match, the harvester calls
the script with the name of the file provided as an argument. The
script accesses whatever information it needs and calls a function
Assert(prop, val) to emit a metadata descriptor. The harvester
gathers all the descriptors for a particular resource, merges dupli-
cate property assertions into multi-valued descriptors, then writes
them to a descriptor file formatted to be compatible with Post-
greSQL’s bulk load mechanism. For example, the descriptors
produced for the file in Figure 3 would be

{vear=2003, day=184, output_step=1, variable=salinity,
nodes=55817, sea_level=4285, implicitness=0.8}

4.1.2 Triple Store

Once the descriptors are harvested, they are loaded into a Post-
greSQL table [40] with three string attributes: resource, property,
and value. Using SQL, we then identify the signature S(r) of each
resource r. The signature of a resource is simply the set of proper-
ties used to describe it. Using SQL and external scripts, we then
create a materialized view for each distinct signature and populate
it with one tuple for each resource. For example, the file in
Figure 3 has the signature

{year, day, output_step, variable,
nodes, sea_level, implicitness}

so we would create a materialized view with seven attributes, one
for each property. This materialized view will have at least one
tuple in it, the one corresponding to the file in Figure 3:

(2003, 184, 1, salinity, 55817, 4285, 0.8)

Since we create a separate materialized view for each distinct
signature, we want the number of distinct signatures to not be too
large. Our hypothesis is that although data owners are unre-
stricted in their choice of properties and values for each resource,
the number of unique signatures occurring for a particular system
will be small relative to the number of resources. Our hypothesis
is supported by some preliminary applications in medical infor-
matics and earth sciences. We find that although there are mil-
lions of resources, there are only tens or hundreds of “types” of
resources.

We considered (but rejected) an even less restrictive metadata
model: keyword tags. Tagging schemes provide a “bare mini-
mum” approach to metadata: users provide arbitrary terms (or
phrases) and associate them with resources [14, 26, 42]. Such
schemes were designed to encourage metadata attachment by
minimizing overhead: users need not struggle with rigid metadata
standards or even consider the semantics of their tags. They sim-
ply describe their resources using terms from their own mental
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Figure 4. Conjunctive query performance using Quarry
and YARS. YARS uses a generic index scheme based on
redundant B-Trees, while Quarry clusters resources by
their signature. When YARS chooses the wrong join
order, the system cannot respond at interactive speeds.

model of their data. This approach works well with very large
numbers of users (and hence very large numbers of mental mod-
els). In the aggregate, patterns emerge in the tags that enable
querying.

However, there is evidence that tags provide too much freedom.
Tagging communities are beginning to adopt conventions to emu-
late a richer data model: the tag “geo:1at=39.234" implicitly repre-
sents a namespace (“geo”), a property (“lat”), and a value (“
39.234”). Our source data tends to have more structure than, say,
a vacationer’s photos, so we adopt a data model of (property,
value) pairs rather than keywords alone. We do not use name-
spaces, however, since shared namespaces are a kind of global
schema that we cannot assume exists in the general case.

4.1.3 API
Since the materialized views are generated by the system, users do
not know their names and cannot refer to them in the FROM
clause of a SQL statement. We provide an API that avoids the
need to know.

The query API contains three functions
Properties(conditions)
Values(conditions, property)
Description(resource)

Properties returns unique properties for resources matching con-
ditions. Values returns unique values of property for resources
matching conditions. Description returns the set of (property,
value) pairs for a given resource. Property queries are evaluated
using global index information. Value queries are evaluated by
dispatching a SQL query to each table whose signature subsumes
the signature of the query and unioning the results. For example,
the query

Values(region=estuary,year=2004, plottype)
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Figure 5. The base interface to Quarry. Several successive
steps of a query session are shown superimposed.

returns the values of the property plottype associated with re-
sources in any table with attributes “region” and “plottype.” The

query
Properties(region=estuary,year=2004)

produces a set of properties generated from the columns of any
table that (1) has the columns “region” and “year”, and (2) has
tuples that satisfy the condition. Finally, the query

Description(/forecasts/2003-184/runs/1_salt.d)

returns the complete set of (property, value)-pairs shown in Figure
3.

Harvesting and processing of metadata can be expensive, but is
entirely automated. Once the materialized views are created, que-
ries turn out to be quite efficient relative to existing generic triple-
store methods. The “Yet Another RDF Store” (YARS) system
[21] for storing arbitrary RDF graphs has been shown to outper-
form other popular triple stores. YARS uses a collection of B-
Trees implemented in BerkeleyDB to efficiently answer complex
RDF queries with joins. However, as with relational systems, the
performance of YARS is sensitive to the choice of join order. In
Figure 4, we compare the performance of Quarry and YARS for a
set of randomly generated conjunctive queries over a medical
informatics dataset. Note that the y-axis is logarithmic. Those
queries for which response times are under the dotted line corre-
sponding to one second are not particularly interesting, since the
small difference between Quarry and YARS can be attributed to
the different technologies used (Java and BerkeleyDB vs. Python
and PostgreSQL). However, when YARS selects the wrong join
order, the response time is no longer interactive and therefore
unsuitable for our purposes. Our API is not as expressive as the
RQL query language which YARS supports, however.

4.1.4 OME

Figure 5 shows the base quarry interface, the Quarry Metadata
Explorer (QME) for browsing the harvested metadata. QME is a
logical hierarchy. The top level is an exhaustive list of all unique
properties used to describe any resource from any data source.
Selecting a property p returns the list of unique values used for
that property for any resource from any source. Subsequently



selecting a value v returns another list of unique properties, this
time restricted to those properties asserted for resources satisfying
the condition p = v. This alternation between properties and val-
ues provides an intuitive way to navigate through the metadata,
narrowing the results as conditions are appended.

The resources themselves can be accessed at the leaves of the
logical hierarchy. A resource with a known MIME type, such as
the gif image data product in Figure 2, can be viewed in the
browser. For other files, QME uses the Description API call to
display all the associated metadata.

To illustrate the use of QME, consider a modeler who wants to
find some salinity observations. She can browse the sorted proper-
ties for relevant items such as “variable,” “quantity” or “units.”
Selecting variable, she see values such as “SAL,” “sal,” and “Sa-
linity” in Figure 5, each of which seems to refer to salinity. She
also sees a value “VRES12” that she is not familiar with.

Selecting “VRES12” to investigate, she is presented with the set
of properties used to describe files for which variable=VRES12.
She knows the property “plottype” — it’s used to classify data
products. Following the plottype link, she finds that every re-
source with variable=VRES12 also has plottype=timeseries. Go-
ing back to select “VRES12” then “userkey” displays the file path
of every resource along with an estimate of the number of files
matching the conditions. From here, she can view all the timeser-
ies data products for the variable VRES12, and perhaps be able to
infer that VRES12 is shorthand for the residual velocity computed
over 12 hours.

4.1.5 Quarry Benefits

To keep the ROI curve smooth, we want to (a) let scientists get
started quickly, (b) see initial results quickly, and (c) adapt to
changing conditions.

Scientists are comfortable writing scripts; the CORIE staff pro-
duced a first round of metadata harvesting scripts in one after-
noon. After they drop their scripts in the Quarry directory, the
harvester picks them up and begins processing files — the scien-
tists” work is done. We are close to the zero configuration we
sought in Section 2.

Harvesting and processing metadata takes a few hours, mostly due
to the need to traverse a large filesystem (around 4 million files).
Once the data is processed however, users can access each other’s
files by metadata rather than by location using QME. The materi-
alized views that power the API are specialized to the current
instance (Section 2), resulting in interactive performance. Good
performance allows the scientists to browse for each other’s files;
they do not need to fully understand each other’s metadata con-
ventions and write queries. Finally, we did not disturb the loca-
tion or organization of the base data; we are operating on it in situ
to help keep the ROI smooth.

If and when the scientists want to change the metadata they har-
vest, they simply modify their scripts. The harvester can be con-
figured to run as a nightly job; the next day, the files are accessi-
ble by a new metadata scheme. Scientists are thus empowered to
change data organization without, say, a DBA. The more their
scripts agree on conventions, the easier it will be to find each
other’s data through QME; collectively, they can pay as they go.
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Figure 6. Each forecast is managed by a “master process”
script, responsible for kicking off the forecast itself, generat-
ing data products, and copying the results back to the public

server. Data products are generated incrementally as the

forecast results appear then copied (via rsync) back to the

data grid for dissemination via the web. Incremental gen-

eration of products give researchers the opportunity to de-
tect problems early and adapt quickly.

The Quarry API allows applications (such as QME) to remain
robust across these overnight rebuilds.

4.2 Managing the Forecast Factory

Since CORIE’s inception, the scope of the operational daily fore-
cast system has grown from three closely related forecasts of just
the Columbia River Estuary to 19 forecasts covering regions
throughout the Pacific Northwest and around the world. To ac-
commodate the growing scope, the scheduling, execution, and
result processing must be carefully optimized.

We have found a factory metaphor useful in modeling the daily
forecast workload [6]. Forecasts are allocated to specific compute
nodes using scripts that stage in all needed input files, launch the
workflow, and stage out data products (Figure 6). When a new
forecast is added, existing forecasts must be shifted to different
nodes to optimize the completion time of the overall daily work-
load. Due to the difficulty of estimating forecast running times at
different nodes, administrators can use a tool called ForeMan to
aid the decision-making process [6].

An excerpt of a screenshot of the ForeMan interface appears in
Figure 7. The top half the display is used to monitor forecast
execution. Each rectangle represents a forecast run. In this exam-
ple, all nodes have two CPUs. Narrow solid-colored rectangles
denote time periods where only a single forecast is running and a
single CPU is in use, and wide multi-colored rectangles denote
periods where both CPUs are being used concurrently by two or
more forecast runs.

The interface is driven by an open-source relational database. In
contrast with a transformative project-wide deployment of a
GPDBMS, this database is application-specific, managed by a
single developer, and contains only four or five tables (depending
on the version). Used in this way, we can take advantage of the
query and indexing capabilities of a GPDBMS without bending
the ROI curve with attempts to design a comprehensive schema.

Currently there are 12 dedicated forecast nodes, each with two
CPUs, and 19 forecast runs, and new nodes will be added as the
number of forecasts grows to the expected 50-100 per day. The
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Figure 7. An interface for managing the growing number of
forecasts run daily in CORIE. The upper portion displays
currently running forecasts (striped bars indicate concurrent
execution.) The lower portion displays start and stop times
and allows access to additional features such as trend analysis
of forecast execution times (cf. Figure 8).

simulation model and data-product generation for a single forecast
run concurrently at the same node. Data products are incremen-
tally computed as additional model data is appended to output
files, so initial data products are available before an entire run has
completed.

Code versions of the simulation models, timestep granularities,
and meshes are frequently modified to optimize the forecast accu-
racy. Data from past forecast executions can aid programmers in
estimating the effects of such changes on forecast execution times
and improve the ability of programmers to determine a good map-
ping of forecasts to nodes. This historical data is stored in a rela-
tional database and can be retrieved and plotted by the ForeMan
interface to reveal trends. In Figure 8, the effect of a particular
code change and the effect of a new horizontal unstructured grid
can be observed. Around day 150 we observe changes to both
mesh size and code version, causing running times to decrease by
about 5000 seconds (about 1.5 hours). Around day 160 we ob-
serve a significant increase in the running time (about 7 hours) of
the forecast due to a major version change in the simulation code.
This kind of trend analysis leads to improved resource utilization
in the face of evolving forecasts.

4.2.1 Smoothing Strategies for Foreman

There are several possible strategies for populating the ForeMan
database. One approach is to ask developers to modify their code
to automatically update the database based on runtime events. For
example, developers could extend existing code to update the
database after each timestep is executed. The advantage of this
approach is that the database always contains the most up-to-date
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Figure 8. The effect of grid and code changes on the execu-
tion time of the CORIE development forecast in Spring
2005. All three dotted lines correspond to a code change;
the middle line indicates a grid change as well.

information on the state of the forecast run. However, there are
two major limitations to this approach. First, the model must be
compiled against database client libraries, reducing portability.
Second, the model developers must coordinate with the database
developers whenever the log content changes.

A second approach is to have ForeMan periodically parse the
existing log files that are generated by each forecast, and populate
the database. The advantage of this approach is that it requires
minimal work for model developers and does not require chang-
ing any existing code (we specialize to the current instance). We
chose this solution due to the limitations of the first approach (we
operate on in situ data). While this solution is less robust due to
possible log file format changes, we believe the savings in terms
of work for the model developers justifies our choice.

The ingest procedures were deployed in the production environ-
ment by adding a single line to an existing Perl script. Once de-
ployed, the ForeMan interface detects new Forecasts automati-
cally, without any notification from developers. All forecast data
and log files are stored in a filesystem, and data from each fore-
cast resides in its own directory. Whenever a new forecast direc-
tory is added, ForeMan's scripts will automatically parse the log
files in the new directory and display the forecast data in its
graphical interface (we strive for zero configuration). In fact, after
ForeMan deployment the authors observed several new forecasts
using ForeMan without any contact from the model developers.

A final benefit of ForeMan's implementation is that its automatic
log file parsing and visual display of forecast runs can alert devel-
opers to failures that might otherwise go unnoticed. In one case,
the authors observed through the ForeMan interface that several
forecasts appeared not to be running. We promptly notified the
model developers, who determined that one of the disks had gone
into read-only mode. Since no log data was being written for
these forecasts, the ForeMan parser did not extract any data for
these forecasts and ForeMan did not display them. The problem
might have gone undetected for several more days without Fore-
Man, resulting in even more lost data. Thus, ForeMan has en-
abled developers to more quickly detect and respond to problems.



4.3 Retrofitting a Data Model

While the daily forecasts are more likely to excite casual visitors
(and funding agencies), the Hindcast Archive is a richer source of
scientific insight. The goal of the Hindcast Archive is to manage
the results of simulation “campaigns” consisting of many runs that
share configuration parameters, assumptions, and code versions.
These campaigns are used to answer broader scientific questions;
e.g., “Is the temperature of the estuary rising over time?”

Although the information to answer these kinds of questions is
available, the interface to it is rather impoverished. The model
outputs for long sequences of contiguous simulations are stored as
packed binary files. Individual runs can be visualized using cus-
tom tools, but queries over multiple related runs must be coded by
hand.

The results of CORIE simulations can be manipulated and visual-
ized algebraically as gridfields [23]. An example of a data prod-
uct generated using gridfields appears in Figure 2. Both the left
and right panes correspond to the region just outside the mouth of
the Columbia River Estuary, where the shoreline is just out of
view to the east. On the right, the region is shaded by surface
salinity. The dark patch near the center is the plume of fresh wa-
ter jutting out into the ocean. On the left, most of the “grid” on
which the solutions are computed has been cut away. The retained
portion corresponds to regions where the salinity gradient is
high—one definition of the “plume front.” The plume front is an
important feature for studying ocean dynamics, but also for less
academic reasons: salmon like to congregate at the plume front, so
fisheries are interested in its location!

To understand aggregate plume behavior, the average gradient
over long time periods is a useful quantity to have access to. How
can we use gridfields to access the hindcast archive? Our initial
solution was to hand-code custom access methods for each file
format and directory structure we encountered. To generate a
gridfield, routines to iterate over multiple files are layered on
routines to interpret each file's format. The results are used to
assemble gridfield objects suitable for manipulation with the grid-
field algebra. Creation of these routines became repetitive enough
to motivate a more general abstraction.

Another approach is to convert existing datasets to a special for-
mat already equipped with a gridfield interface. Indeed, database
vendors frequently assume this approach: Before your data can be
manipulated using the relational model, you must surrender con-
trol to the RDBMS via bulk-load operations. Unfortunately, the
growth rate of collected scientific data is sufficiently large that
sweeping conversion efforts are unlikely to succeed. Besides
scalability issues, legacy analysis tools dependent on a particular
format are common in scientific domains; mandatory rewrites of
these tools would be unpopular.

Instead, we derive access methods from lightweight ASCII de-
scriptions of the filesystem [24]. Users write schema files that
describe the organization of two kinds of data: those embedded in
the directory and file names, and those stored within the files
themselves. Figure 3 shows an example of data embedded in the
file name. This time, we extract the year not as a metadata tag,
but as an element of an array. The schema files allow runtime
parsing and navigation of these ad hoc file organizations, mean-
while providing three crucial abstractions: First, portions of data
files can be accessed by name rather than by address; second, the
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boundary between file name and file content becomes transparent,
and third, the boundary between neighboring files is elided.

The challenge of this approach was to mitigate the cost of abstrac-
tion: Can a general access method compete with a hand-coded
one?

The answer is “usually.” To mitigate the runtime costs of inter-
preting schema files and data files at runtime, we can pre-analyze
schema files and generate compilable access methods. For ex-
ample, many files in a CORIE campaign tend to use the same
header. We can capitalize on this redundancy by reading the
header once and generating an efficient access method for all files
with identical headers.

We also found it convenient to reason about optimization as an
operation on the schema rather than an operation on the query,
observing that many schema files can be used to describe the same
data files, each favoring particular parts of the file. For example,
the header of a file may be unnecessary to answer a particular
query, and can therefore be skipped entirely. Rather than derive a
query processor that understands how to stride through data, we
derive a schema that indicates the header is just “dead space,”
achieving the same effect.

4.3.1 Smoothing Strategies for Retrofitting

The obvious smoothing strategy used for accessing the hindcast
archive was to “work with in situ data.” Converting or otherwise
reorganizing the entire repository would be expensive, logistically
difficult, and probably inconvenient to the scientists (i.e, cause a
negative ROI slope).

The gridfield algebra itself is a test of the smooth ROI theme: Can
the development of a formal data model ever lead to smooth ROI
curve? Database researchers seem to favor a formal, algebraic
treatment of unusual data types; witness semi-structured data [8],
biological data [43], and free text documents [27].

We consider these efforts to be data-oriented examples of Do-
main Specific Languages (DSL) [31], which we refer to as Do-
main Specific Data Models (DSDMs). Proponents of DSLs argue
that the cost of designing and implementing a new language is
justified by the flexibility offered once the language is complete; a
similar argument applies to DSDMs Unfortunately, this situation
leads precisely to the ROI shape that we have argued is unhealthy
in scientific domains.

How can the DSDM approach favored by database researchers be
streamlined to exhibit a smooth ROI? Our experience with the
gridfield model suggests that there are two relevant techniques.

1. Deploy the model as a reasoning tool prior to
implementation.

Package and deploy the implementation incrementally
as specialized mini-apps.

A DSDM can be used as a tool for reasoning about, explaining,
and documenting existing applications even before an implemen-
tation is available.

The second recommendation seems contrary to the spirit of DSLs
and DSDMs: if the language is hidden inside mini-applications,
what is the advantage of using a language-based approach? Since
the language designers themselves are exercising the language



rather than the scientists, it is difficult to argue that this kind of
approach improves productivity for the scientists themselves.
However, it is important to observe that language-powered mini-
apps need not be the final deliverable; rather they act as a
smoothing agent (an iron?) on the path toward a full data
manipulation system.

5. CONCLUSIONS

We have argued that the success of scientific data management
projects is reflected in the shape of the ROI curve: a smooth ROI
is a correlated with successful projects. We argued that this ob-
servation may be a feature peculiar to the scientific domain; com-
mercial projects tend to require the transformative change associ-
ated with a crooked ROI. We then suggested several strategies for
smoothing the ROI in the scientific domain: pay-as-you-go, let a
hundred flowers blossom, specialize to the current instance, strive
for zero configuration, and operate on in situ data. We exercised
these strategies in the context of the CORIE Environmental Ob-
servation and Forecasting system by developing and deploying
three lightweight tools: the Quarry metadata system for browsing
and searching unstructured metadata, the ForeMan interface for
managing forecast simulations using a factory metaphor, and a
toolkit for retrofitting a logical model (gridfields) to ad hoc file
formats. We conclude that striving for a smooth ROI is crucial to
the success of these and related projects.
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