
Synthesizing Programs with
Constraint Solvers
CAV 2012 invited tutorial

Ras Bodik
Emina Torlak

Division of Computer Science
University of California, Berkeley

Abstract

Classical synthesis derives programs from a specification. We show an alternative approach where
programs are obtained through search in a space of candidate programs. Searching for a program
that meets a specification frees us from having to develop a sufficiently complete set of derivation
rules, a task that is more challenging than merely describing the syntactic shape of the desired
program. To make the search for a program efficient, we exploit symbolic constraint solving, lifted
to synthesis from the setting of program verification.

We start by describing the interface to the synthesizer, which the programmer uses to specify the
space of candidate programs 𝑃 as well as the desired correctness condition 𝜙. The space 𝑃 is defined
by a program template whose missing expressions are described with a grammar. The correctness
condition is a multi-modal specification, given as a combination of assertions, input / output pairs,
and traces.

Next, we describe several algorithms for solving the synthesis problem ∃ 𝑃 ∀ 𝑥 . 𝜙(𝑥, 𝑃(𝑥)). The key
idea is to reduce the problem from 2QBF to SAT by sampling the space of inputs, which eliminates
the universal quantification over 𝑥.

Finally, we show how to encode the resulting SAT problem in relational logic, and how this encoding
can be used to solve a range of related problems that arise in synthesis, from verification to program
state repair. We will conclude with open problems on constraint-based synthesis.

2

What is program synthesis

Find a program P that meets a spec 𝜙(input,output):

∃𝑃 ∀𝑥 . 𝜙(𝑥, 𝑃(𝑥))

When to use synthesis:

productivity: when writing 𝜙 is faster than writing 𝑃

correctness: when proving 𝜙 is easier than proving 𝑃

3

What is this tutorial about

Not to learn how to use a synthesizer but to build one

cf. PLDI’12 tutorial on Sketch programming (Solar-Lezama)

http://bit.ly/sketch2012

Recipe for building build a lightweight synthesizer

a semester of work, by building a partial evaluator for a DSL

Concepts and algorithms of solving ∃𝑃 ∀𝑥 . 𝜙(𝑥, 𝑃(𝑥))

how to solve this second-order formula

how to write the specification 𝜙

Discuss how to make program synthesis more general

many artifacts are “programs”: protocols, invariants, data
structures, formulas, compilers, biological cell models, etc

4

http://bit.ly/sketch2012

Why this tutorial might be interesting to you

Solvers / decision procedures:

Synthesis is a new application for your solver; internally,

one can synthesize inductive invariants, encodings, etc.

Controller synthesis:

View controllers as programs, synthesize them with solvers.

Software model checking:

Solver-based synthesis is to classical synthesis what model
checking is to theorem proving. We lift your techniques.

5

A peek at classical synthesis

Controller synthesis, automata-based (CAV world)

cf. Madhusudan Parthasarathy’s talk at SYNT 2012

Program synthesis, deductive (PLDI world)

we will examine key ideas next

6

Denali: synthesis with axioms and E-graphs

∀ 𝑛 . 2𝑛 = 2∗∗𝑛

∀ 𝑘, 𝑛 . 𝑘 ∗ 2𝑛 = 𝑘<<𝑛

∀𝑘, 𝑛: : 𝑘 ∗ 4 + 𝑛 = s4addl(𝑘, 𝑛)

reg6 ∗ 4 + 1
specification

s4addl reg6,1
synthesized program

[Joshi, Nelson, Randall PLDI’02]

7

Two kinds of axioms

∀ 𝑛 . 2𝑛 = 2∗∗𝑛

∀ 𝑘, 𝑛 . 𝑘 ∗ 2𝑛 = 𝑘<<𝑛

∀𝑘, 𝑛: : 𝑘 ∗ 4 + 𝑛 = s4addl(𝑘, 𝑛)

Instruction semantics: defines (an interpreter for) the language

Algebraic properties: associativity of add64, memory modeling, …

8

Properties of deductive synthesizers

Efficient and provably correct

– thanks to semantics-preserving rules

– only correct programs are explored

– Denali is scalable: prior super-optimizers gen-and-test

Successfully built for axiomatizable domains

– expression equivalence (Denali)

– linear filters (FFTW, Spiral)

– linear algebra (FLAME)

– statistical calculations (AutoBayes)

– data structures as relational DBs (P2; Hawkins et al.)

10

Downsides of deductive optimizers

Completeness hinges on sufficient axioms

some domains hard to axiomatize (e.g., sparse matrices)

Specification must be complete, to seed derivation

we want partial and multi-modal specs (more on this later)

Control over the “shape” of the synthesized program

we often want predictable, human-readable programs

Solver-based Inductive synthesis achieves these

11

Some of the challenges ahead of us

Completeness: want to synthesize any program

while teaching the synthesizer minimal rules. Which ones?

Ideally, just the (operational) semantics of the language!

Efficiency: ∃𝑃 ∀𝑥 . 𝜙 𝑥, 𝑃 𝑥 is second-order formula

but first-order solvers (SAT, SMT) generally more efficient

How to encode this SO problem for these solvers?

12

Outline

Part I: in a nutshell

– partial programs

– inductive synthesis

– a minimalistic synthesizer

Part II: in depth

- a more expressive synthesis language: specs and holes

- a DIY program-to-formula translator

- turning solvers into “synthesis engines”

13

Preparing your language for synthesis

14

spec: int foo (int x) {

return x + x;
}

sketch: int bar (int x) implements foo {

return x << ??;
}

result: int bar (int x) implements foo {

return x << 1;
}

Extend the language with two constructs

14

𝜙 𝑥, 𝑦 : 𝑦 = foo(𝑥)

?? substituted with an
int constant meeting 𝜙

instead of implements, assertions over safety properties can be used

Synthesis as search over candidate programs

Partial program (sketch) defines a candidate space

we search this space for a program that meets 𝜙

Usually can’t search this space by enumeration

space too large (≫ 1010)

Describe the space symbolically

solution to constraints encoded in a logical formula gives
values of holes, indirectly identifying a correct program

What constraints? We’ll cover this shortly.
15

Synthesis from partial programs

spec

sketch

program-to-formula
translator

𝜙 solver
“synthesis engine”

𝒉 ↦ 𝟏

code generator
sketch 𝑃[ℎ]

𝑃[𝟏]

Example: Parallel Matrix Transpose

17

Example: 4x4-matrix transpose with SIMD

a functional (executable) specification:

int[16] transpose(int[16] M) {

int[16] T = 0;

for (int i = 0; i < 4; i++)

for (int j = 0; j < 4; j++)

T[4 * i + j] = M[4 * j + i];

return T;

}

This example comes from a Sketch grad-student contest

1818

Implementation idea: parallelize with SIMD

Intel SHUFP (shuffle parallel scalars) SIMD instruction:

return = shufps(x1, x2, imm8 :: bitvector8)

19

x1 x2

return

19

imm8[0:1]

High-level insight of the algorithm designer

Matrix 𝑀 transposed in two shuffle phases

Phase 1: shuffle 𝑀 into an intermediate matrix 𝑆 with some
number of shufps instructions

Phase 2: shuffle 𝑆 into an result matrix 𝑇 with some number
of shufps instructions

Synthesis with partial programs helps one to
complete their insight. Or prove it wrong.

20

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {

int[16] S = 0, T = 0;

S[??::4] = shufps(M[??::4], M[??::4], ??);

S[??::4] = shufps(M[??::4], M[??::4], ??);

…

S[??::4] = shufps(M[??::4], M[??::4], ??);

T[??::4] = shufps(S[??::4], S[??::4], ??);

T[??::4] = shufps(S[??::4], S[??::4], ??);

…

T[??::4] = shufps(S[??::4], S[??::4], ??);

return T;

}
21

Phase 1

Phase 2

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {

int[16] S = 0, T = 0;

repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);

repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);

return T;

}

int[16] trans_sse(int[16] M) implements trans { // synthesized code

S[4::4] = shufps(M[6::4], M[2::4], 11001000b);

S[0::4] = shufps(M[11::4], M[6::4], 10010110b);

S[12::4] = shufps(M[0::4], M[2::4], 10001101b);

S[8::4] = shufps(M[8::4], M[12::4], 11010111b);

T[4::4] = shufps(S[11::4], S[1::4], 10111100b);

T[12::4] = shufps(S[3::4], S[8::4], 11000011b);

T[8::4] = shufps(S[4::4], S[9::4], 11100010b);

T[0::4] = shufps(S[12::4], S[0::4], 10110100b);

}
22

From the contestant email:
Over the summer, I spent about 1/2

a day manually figuring it out.

Synthesis time: <5 minutes.

Demo: transpose on Sketch

Try Sketch online at http://bit.ly/sketch-language

23

http://bit.ly/sketch-language

Demo notes (1)

In the demo, we accelerated synthesis by changing

repeat(??) loop body

repeat(??) loop body

to

int steps = ??

repeat(steps) loop body

repeat(steps) loop body

→ can improve efficiency by adding more “insight”

here, the “insight” constraints state that both loops have
same (unknown) number of iterations

24

Demo notes (2)

How did the student come up with the insight that
two phases are sufficient?

We don’t know but the synthesizer can prove that one
phase is insufficient (a one-phase sketch has no solution)

25

Inductive Synthesis,
Phrased as Constraint Solving

26

What to do with a program as a formula?

Assume a formula SP(x,y) which holds iff program P(x)
outputs value y

program: f(x) { return x + x }

formula: 𝑆𝑓 𝑥, 𝑦 : 𝑦 = 𝑥 + 𝑥

This formula is created as in program verification with
concrete semantics [CMBC, Java Pathfinder, …]

27

With program as a formula, solver is versatile

Solver as an interpreter: given x, evaluate f(x)

𝑆 𝑥, 𝑦 ∧ 𝑥 = 3 solve for 𝑦 𝒚 ↦ 𝟔

Solver as a program inverter: given f(x), find x

𝑆 𝑥, 𝑦 ∧ 𝑦 = 6 solve for 𝑥 𝒙 ↦ 𝟑

This solver “bidirectionality” enables synthesis

28

Search of candidates as constraint solving

𝑆𝑃(𝑥, ℎ, 𝑦) holds iff sketch 𝑃[ℎ](𝑥) outputs 𝑦.
spec(x) { return x + x }

sketch(x) { return x << ?? } 𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ : 𝑦 = 𝑥 ∗ 2ℎ

The solver computes h, thus synthesizing a program
correct for the given x (here, x=2)

𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ ∧ 𝑥 = 2 ∧ 𝑦 = 4 solve for ℎ 𝒉 ↦ 𝟏

Sometimes h must be constrained on several inputs

𝑆 𝑥1, 𝑦1, ℎ ∧ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧
𝑆 𝑥2, 𝑦2, ℎ ∧ 𝑥2 = 3 ∧ 𝑦2 = 6 solve for ℎ 𝒉 ↦ 𝟏

29

Inductive synthesis

Our constraints encode inductive synthesis:

We ask for a program 𝑃 correct on a few inputs.

We hope (or test, verify) that 𝑃 is correct on rest of inputs.

Part II will describe how to select suitable inputs

We do inductive synthesis with concrete inputs

important note: concrete inputs eliminate ∀x from

∃ℎ ∀𝑥 . 𝜙 𝑥, 𝑃[ℎ] 𝑥 , turning 2QBF into a SAT problem.

30

Translate program to a formula

31

It remains to show how to create a formula

Steps:

– make synthesis constructs (??) explicit in host language

– unroll program into a bounded acyclic program

– make it functional (get rid of side effects)

– “read off” the formula from this functional program

In Part I, we’ll translate transpose to formula manually.

In Part II, we’ll build a program-to-formula compiler.

32

33

Example of how a program is translated

int[16] trans_sse(int[16] M) implements trans {

int[16] S = 0, T = 0;

S[0::4] = shufps(M[??::4], M[??::4], ??);

S[4::4] = shufps(M[??::4], M[??::4], ??);

S[8::4] = shufps(M[??::4], M[??::4], ??);

S[12::4] = shufps(M[??::4], M[??::4], ??);

T[0::4] = shufps(S[??::4], S[??::4], ??);

T[4::4] = shufps(S[??::4], S[??::4], ??);

T[8::4] = shufps(S[??::4], S[??::4], ??);

T[12::4] = shufps(S[??::4], S[??::4], ??);

return T;

}

34

Example of how a program is translated

int[16] trans_sse(int[16] M) {

int[16] S = 0, T = 0;

S[0::4] = shufps(M[??::4], M[??::4], ??);

S[4::4] = shufps(M[??::4], M[??::4], ??);

S[8::4] = shufps(M[??::4], M[??::4], ??);

S[12::4] = shufps(M[??::4], M[??::4], ??);

T[0::4] = shufps(S[??::4], S[??::4], ??);

T[4::4] = shufps(S[??::4], S[??::4], ??);

T[8::4] = shufps(S[??::4], S[??::4], ??);

T[12::4] = shufps(S[??::4], S[??::4], ??);

assert equals(T, trans(M));

return T;

} Make the correctness condition
explicit: trans_sse implements trans

35

Example of how a program is translated

int[16] trans_sse(int[16] M) {

int[16] S = 0, T = 0;

S[0::4] = shufps(M[mx1_0::4], M[mx2_0::4], mi_0);

S[4::4] = shufps(M[mx1_1::4], M[mx2_1::4], mi_1);

S[8::4] = shufps(M[mx1_2::4], M[mx2_2::4], mi_2);

S[12::4] = shufps(M[mx1_3::4], M[mx2_3::4], mi_3);

T[0::4] = shufps(S[sx1_0::4], S[sx2_0::4], si_0);

T[4::4] = shufps(S[sx1_1::4], S[sx2_1::4], si_1);

T[8::4] = shufps(S[sx1_2::4], S[sx2_2::4], si_2);

T[12::4] = shufps(S[sx1_3::4], S[sx2_3::4], si_3);

assert equals(T, trans(M));

return T;

}

Name the holes: each corresponds
to a fresh symbolic variable.

36

Example of how a program is translated

int[16] trans_sse(int[16] M) {

int[16] S = 0, T = 0;

S[0::4] = shufps(rd4(M, mx1_0), rd4(M, mx2_0), mi_0);

S[4::4] = shufps(rd4(M, mx1_1), rd4(M, mx2_1), mi_1);

S[8::4] = shufps(rd4(M, mx1_2), rd4(M, mx2_2), mi_2);

S[12::4] = shufps(rd4(M, mx1_3), rd4(M, mx2_3), mi_3);

T[0::4] = shufps(rd4(S, sx1_0), rd4(S, sx2_0), si_0);

T[0::4] = shufps(rd4(S, sx1_1), rd4(S, sx2_1), si_1);

T[0::4] = shufps(rd4(S, sx1_2), rd4(S, sx2_2), si_2);

T[0::4] = shufps(rd4(S, sx1_3), rd4(S, sx2_3), si_3);

assert equals(T, trans(M));

return T;

}

Turn bulk array accesses into
explicit calls to a read function.

rd4(A, i) returns a new 4-element array
consisting of A[i], ..., A[i+3].

37

Example of how a program is translated

int[16] trans_sse(int[16] M) {

int[16] S = 0, T = 0;

S0 = wr4(S , shufps(rd4(M, mx1_0), rd4(M, mx2_0), mi_0), 0);

S1 = wr4(S0, shufps(rd4(M, mx1_1), rd4(M, mx2_1), mi_1), 4);

S2 = wr4(S1, shufps(rd4(M, mx1_2), rd4(M, mx2_2), mi_2), 8);

S3 = wr4(S2, shufps(rd4(M, mx1_3), rd4(M, mx2_3), mi_3), 12);

T0 = wr4(T , shufps(rd4(S3, sx1_0), rd4(S3, sx2_0), si_0), 0);

T1 = wr4(T0, shufps(rd4(S3, sx1_1), rd4(S3, sx2_1), si_1), 4);

T2 = wr4(T1, shufps(rd4(S3, sx1_2), rd4(S3, sx2_2), si_2), 8);

T3 = wr4(T2, shufps(rd4(S3, sx1_3), rd4(S3, sx2_3), si_3), 12);

assert equals(T3, trans(M));

return T3;

}

Convert to SSA by replacing bulk
array writes with functional writes.

wr4(A, Delta, i) returns a copy of A, but
with Delta[0::4] at positions i, ..., i+3.

Read out the formula

Once the program is functional, turn it into a formula.

Many encodings of programs as formulas are possible.

Solver solve some encodings faster than others.

Times from our experiments with encoding transpose:

38

encoding solver time (sec)

QF_AUFLIA cvc3 >600

z3 159

QF_AUFBV boolector 409

z3 287

cvc3 119

QF_AUFBV-ne cvc3 >600

boolector >600

z3 25

stp 11

REL_BV rosette 9

REL kodkod 5

Why Kodkod?

a SAT-based solver optimized for reasoning over finite
domains (as used in inductive synthesis)

high level input logic

FOL with relational algebra, transitive closure, bitvector
arithmetic and partial models

model finder and minimal UNSAT core extractor for
this logic

enables both synthesis and diagnosis of synthesis failures

39

Some applications of Kodkod

lightweight formal methods

Alloy4 (Alloy), Nitpick (Isabelle/HOL), ProB (B, Even-B, Z, TLA+), ExUML
(UML)

checking code & memory models

Forge, Karun, Miniatur, TACO, MemSAT

declarative programming

Squander, PBnJ, Tarmeem, Cobbler

declarative configuration

ConfigAssure (networks), Margrave (policies)

test-case generation

Kesit, Whispec

... and many more

alloy.mit.edu/kodkod 40

MemSAT

Squander

41

Example of how a statement is translated

int[16] S = 0

mx1_0

rd4(A, i)

wr4(A, Delta, i)

Everything is a relation: a set
of tuples of equal length,
drawn from a finite universe.

‣universe: { 0, 1, 2, ..., 15 }

‣tuples: [0], [1, 2], [5, 3, 4]

‣three relations:

{ [0] }, // scalar value 0

{ [0], [3], [4] }, // a set

{ [1, 2], [2, 3], [3, 4] }

42

int[16] S = 0

mx1_0 // was ??

rd4(A, i)

wr4(A, D, i)

let S := { [0, 0], [1, 0] , ..., [15, 0] }

Example of how a statement is translated

Constant binary relation from
0 to 15, inclusive, to 0.

43

int[16] S = 0

mx1_0 // was ??

rd4(A, i)

wr4(A, D, i)

let S := { [0, 0], [1, 0] , ..., [15, 0] }

mx1_0 ⊆ { [0], [1] , ..., [12] } ∧ one mx1_0

Example of how a statement is translated

Unary relational variable that
may take any one of the values
in { [0], ..., [12] }; i.e., a scalar.

44

int[16] S = 0

mx1_0

rd4(A, i)

wr4(A, D, i)

let S := { [0, 0], [1, 0] , ..., [15, 0] }

mx1_0 ⊆ { [0], [1] , ..., [12] } ∧ one mx1_0

{[0]} × i.A ∪ ... ∪ {[3]} × add(i, 3).A

Example of how a statement is translated

Relational join (“map get”):

‣{ [a] } . { [a, c], [b, d] } = { [c] }

A = {[0,a],[1,b],[2,c],[3,d],[4,e]}

i = {[1]}

rd4(A,i,) = {[0,b],[1,c],[2,d],[3,e]}

45

int[16] S = 0

mx1_0

rd4(A, i)

wr4(A, D, i)

let S := { [0, 0], [1, 0] , ..., [15, 0] }

mx1_0 ⊆ { [0], [1] , ..., [12] } ∧ one mx1_0

{[0]} × i.A ∪ ... ∪ {[3]} × add(i, 3).A

Example of how a statement is translated

Relational product (“concat”):

‣{ [a], [b] } × { [c] } = { [a, c], [b, c] }

A = {[0,a],[1,b],[2,c],[3,d],[4,e]}

i = {[1]}

rd4(A,i,) = {[0,b],[1,c],[2,d],[3,e]}

46

int[16] S = 0

mx1_0

rd4(A, i)

wr4(A, D, i)

let S :={ [0, 0], [1, 0] , ..., [15, 0] }

mx1_0 ⊆ { [0], [1] , ..., [12] } ∧ one mx1_0

{[0]} × i.A ∪ ... ∪ {[3]} × add(i, 3).A

A ++ (i × {[0]}.D ∪ ... ∪ add(i, 3) × {[3]}.D)

Example of how a statement is translated

Relational override (“map put”):

‣{ [a, c], [b, d], [e, f] } ++ { [e, g] } =
{ [a, c], [b, d], [e, g] }

A = {[0,a],[1,b],[2,c],[3,d],[4,e]}

i = {[1]}

D = {[0,f],[1,g],[2,h],[3,j]}

wr4(A,D,i,) = {[0,a],[1,f],[2,g],[3,h],[4,j]}

47

Demo of how a program is translated

KODKOD

Summary of Part I

Partial programs define space of candidates

most of the candidates are wrong; find a correct one

Solver-based inductive synthesis finds the program

1. lift holes in partial programs to symbolic variables

2. translate the program to a formula,

3. carefully select sample inputs (aka observations)

4. find values of holes s.t. program is correct on these inputs

What semantics did we use: concrete, not abstract

turned the solver into bidirectional interpreter that maps
input and output to holes

48

Outline

Part I: in a nutshell

– partial programs

– inductive synthesis

– a minimalistic synthesizer

Part II: in depth

- a more expressive synthesis language: specs and holes

- a DIY program-to-formula translator

- turning solvers into “synthesis engines”

49

Outline of Part II

spec

sketch

program-to-formula
translator

𝜙 2QBF solver
“synthesis engine”

𝒉 ↦ 𝟏

code generator
sketch 𝑃[ℎ]

𝑃[𝟏]

language and programming

DIY translator

synthesis engines

Specs are partial and multi-modal

51

Why multi-modal specifications?

During specification writing, you run may into:

I find it very hard to write a full behavioral spec!

I find it very hard to write a declarative spec!

My synthesizer runs forever on this problem!

52

Multi-modal specifications

executable specification (a ref implementation)

spec :: Input → Output

declarative specification (a checker)

check :: Input x Output → Boolean

safety assertions (anywhere in the program)

- example: x==0 and p must be of type Foo

- implicit language assertions, eg bounds checks

input-output pairs

manually provided or computed from other specs

All these specs can be translated to constraints
53

Specifications constrain two aspects

Observable behavior: an input/output relation

– WHAT the program computes

– behavior spec could be full (executable spec)

– or partial (io pairs or safety property)

Structural properties: internal computational steps

- HOW the computation proceeds

- expressed in a sketch

- further constrained by assertions such as
assert number_of_iterations < 3 * log(input_size)

assert number_of_cache_misses < n

54

Lessons

I find it very hard to write a full behavioral spec!

a sketch constrains what programs synthesizable from it
can compute, thus compensating partial behavioral spec

I find it very hard to write a declarative spec!

don’t need to write FO spec → use ref implementations

My synthesizer runs forever on this problem!

assert that program agrees with a trace: asserting values at
intermediate programs points decompose the synthesis

56

Holes need not be constants

57

Synthesis of expressions

Unspecified parts of a sketch may be expressions, too:

Array index expressions: A[??*i+??*j+??]

Polynomial of degree 2 over x: ??*x*x + ??*x + ??

5858

Reusable expression “generators”

Following function synthesizes to one of
a, b, a+b, a-b, a+b+a, …, a-a+b-b, …

5959

inline int expr(int a, int b){ // generator
switch(??) {

case 0: return a;
case 1: return b;
case 2: return expr(a,b) + expr(a,b);
case 3: return expr(a,b) - expr(a,b);

}
}

Synthesizing polynomials

int spec (int x) {

return 2*x*x*x*x + 3*x*x*x + 7*x*x + 10;

}

int p (int x) implements spec {

return (x+1)*(x+2)*poly(3,x);

}

inline int poly(int n, int x) {

if (n==0) return ??;

else return x * poly(n-1, x) + ??;

}
Here, SKETCH performs polynomial division. Result of division is what

poly(3,x) is synthesized into. 6060

Programs with unbounded inputs

61

Unbounded input size

If desired program is to handle inputs of arbitrary size:

synthesize it on a sample of small inputs, then

check that it works on a set of larger inputs

Small-world hypothesis for verification:

if a program is correct on all inputs of to size k,
then it is also correct on all inputs greater than k

Corollary for synthesis:

synthesizing a program on small inputs produces program
correct on large inputs

Of course, there are no formal guarantees

our correctness is only as good as bounded model checking

62

DIY Synthesis

63

DIY synthesis: desiderata

may want a general-purpose language with “holes”

- loops, ADTs, etc., with basic integer/boolean holes

- support to grow the language to list-valued holes, etc

automatic synthesis of values/expressions for holes

- a compiler that translates partial programs to formulas

- inductive synthesizer: correct for given inputs

- DIY and do it fast!

64

DIY synthesis: problem statement

Given a program 𝑃 ∷ (𝑋, 𝐻) → 𝑂 with two input
kinds

X: regular inputs

H: holes

Solve the inductive synthesis problem
∃ℎ . 𝜙(𝑃(𝑥1, ℎ), 𝑜1) ∧ … ∧ 𝜙(𝑃(𝑥𝑛, ℎ), 𝑜𝑛)

By building a partial evaluator/compiler to formulas

- SynthTranslator ∷ (𝑃, 𝑋, 𝑂) → Formula(𝐻)

- hardcodes (partially evaluates) the i/o pairs 𝑥, 𝑜

- produces a formula where holes ℎ are free variables

65

DIY synthesis in 3 steps

1. Define a small interpreted language: E ::= n | E + E | ...

- e.g., expressions over booleans, integers and lists;
conditionals and loops; function definition and application;
mutation

2. Add holes to the language: E ::= n | ??_int | E + E | ...

3. Extend the interpreter into SynthTranslate

- recall we have concrete values for the input and output

- interpret each hole as a fresh symbolic value: ?? --> x

- operations on concrete values remain the same: 1 + 1 --> 2

- operations on symbolic values return ASTs: 1 + ?? --> 1 + x

- at the end, compile the resulting AST to a formula
66

DIY synthesis, step 1: steal a language

with an interpreter, a small
core, and metaprogramming

quickly build SynthTranslate by
partially hijacking the host’s own
interpreter

grow the synthesizer by taking
over the interpretation of more
host constructs (eg to allow list-
valued holes)

you always have a working
system to experiment with!

67

Racket

DIY synthesis, step 2: add named holes ...

68

(define-symbolic id kind)

kind = number?
| boolean?

Example usage of Rosette named holes

69

#lang rosette

(define-symbolic z number?)

(define (sign y)
(if (< y z)

-1
(if (< z y)

1
0)))

#lang racket

(define z 0)

(define (sign y)
(if (< y z)

-1
(if (< z y)

1
0)))

DIY synthesis, step 2: add holes using macros

70

(define-syntax (define-symbolic stx)
(syntax-case stx (number? boolean?)
[(_ id number?) #`(define id (sym-var #'id number?))]
[(_ id boolean?) #`(define id (sym-var #'id boolean?))]))

(define-symbolic z number?) (define z (sym-var #'z number?))

z is bound to a
symbolic integer
variable called “z”

71

DIY synthesis, step 3: hijack the interpreter

(provide (rename-out [< sym/<]))

(define (sym/< x y)
(if (and (number? x) (number? y))

(< x y)
(sym-expr sym/< x y)))

(define (sym-expr op . args)
(sym op args))

(struct sym (op args))

operations on
symbolic values
produce symbolic
ASTs/terms that are
compiled to
formulas

72

DIY synthesis, step 3: hijack the interpreter

(provide (rename-out [if sym/if]))

; very simple conditional handling, assuming that both
; branches are possibly symbolic integer expressions
; with no side-effects (e.g., assertions or mutation)
(define-syntax-rule (sym/if testExpr thenExpr elseExpr)

(let ([test (! (sym/equal? testExpr #f))])
(match test
[#t thenExpr]
[#f elseExpr]
[_ (sym/phi test thenExpr elseExpr)])))

73

DIY synthesis: demo

ROSETTE

Synthesis “Engine”

75

Synthesis is a 2QBF problem

So far, we did not synthesize programs that were
actually correct for all inputs 𝑥. Instead of

∃ℎ ∀𝑥 . 𝜙(𝑥, 𝑃(𝑥, ℎ))

we solved the

∃ℎ . 𝜙(𝑃(𝑥1, ℎ), 𝑜1) ∧ … ∧ 𝜙(𝑃(𝑥𝑛, ℎ), 𝑜𝑛)

Now we show how to find the suitable inputs
𝑥1, … , 𝑥𝑛 such that we solve the actual 2QBF problem

76

1) CounterExample -Guided Inductive Synthesis (CEGIS)

77

Inductive Synthesizer

unrealizable

candidate implementation

add a (bounded) counterexample input

succeed

fail

fail

x1, 𝑜1 , … , (𝑥𝑘, 𝑜𝑘)

ok

verifier/checker

Your verifier/checker goes here

compute a candidate
implementation from
concrete inputs.

Number of counterexample vs. log(C)

78

C = size of candidate space = exp(bits of controls)

Space pruning by sketches; input pruning by CEGIS

Grammar space: Explore all programs in the language

– case study: a concurrent list: space of ~1030 candidates

– 1sec/validation: synthesis time ≫ age of universe

Sketched space: sketch reduces candidate space

– concurrent list sketch: candidate space goes down to 109

– synthesis time1: ~10-100 days

– sadly, our spaces may be 10800, so this alone not enough

CEGIS: reduce how many inputs you consider

– concurr. list sketch: 1min synth time, 3 CEGIS iterations

– 3 inputs (here, schedules) sufficed

1assuming that the space contains 100-1000 correct candidates 79

2) Disambiguating 2QBF solver

What if verification is impossible?

ex: we cannot translate the reference implementation to a
formula (its code too large, complex, or unavailable)

We can’t ask a symbolic verifier for a counterexample

but we can execute the specification (on a real machine)

Idea: ask a solver for disagreeing plausible candidates

find two plausible candidates (ie correct wrt observations)
that evaluate to a different value on a distinguishing input
𝑥? Problem: given 𝑃1, find 𝑃2 and 𝑥 s.t. 𝑃1(𝑥) ≠ 𝑃2(𝑥).

Example: synthesize deobfuscation of malware

spec is complex malware [Jha, Gulwani, Seshia, Tiwari, 2010]

80

3) Generate and Test

Don’t underestimate the simplicity of exhaustively
enumerating candidates

Works for small spaces of candidates

81

Our results: what was synthesized

Block ciphers, [ASPLOS 2006]

highly optimized matrix code

Stencils [PLDI 2007]

highly optimized matrix codes

Concurrent Data Structures [PLDI 2008]

lock free lists and barriers

Deutsch-Shorr-Waite [POPL 2010]

stack-free depth-first-search

Dynamic Programming Algorithms [OOPSLA 2011]

O(N) algorithms, including parallel ones

82

Sample of Results by Others

Instruction sequences [Jha et al, ICSE 2010]

including de-obfuscation of malware

Program inversion [Srivastava et al., PLDI 2011]

from compressors to decompressors

Sorting [Srivastava, Gulwani, Foster, POPL 2010]

lock free lists and barriers

Controller switching logic [Jha, Seshia, Tiwari 2011]

numerical constraints plus generalization

Geometric constructions [Gulwani et al. PLDI 2011]

not constraints-based

83

Recap

84

Inductive synthesis

Find a program correct on a set of inputs and hope (or
verify) that it’s correct on rest of inputs.

A partial program syntactically defines the candidate space.

Inductive synthesis search phrased as a constraint problem.

Program found by (symbolic) interpretation of a
(space of) candidates, not by deriving the candidate.

So, to find a program, we need only an interpreter,
not a sufficiently set of derivation axioms.

85

How General is Program Synthesis?

86

Generality boils down to “what’s a program?”

If you can view 𝑋 as a program, you can synthesize it.

A sample of “programs”:

– loop invariants

– controllers

– logical formulas (incl. encodings of other problems)

– network and other protocols

– data structures (layouts and maintenance methods)

– incremental and other algorithms

– biological models

– end-users scripts

87

Synthesis with partial programs

Partial programs can communicate programmer insight

Once you understand how to write a program,
get someone else to write it. Alan Perlis, Epigram #27

Suitable synthesis algorithm completes the mechanics.

When you see programming or a formalization problem,
think whether it is decomposable into a partial program
and its completion.

88

Acknowledgements

UC Berkeley
Gilad Arnold

Shaon Barman

Prof. Ras Bodik

Prof. Bob Brayton

Joel Galenson

Thibaud Hottelier

Sagar Jain

Chris Jones

Ali Sinan Koksal

Leo Meyerovich

Evan Pu

89

MIT
Prof. Armando Solar-Lezama

Rishabh Singh

Kuat Yesenov

Jean Yung

Zhiley Xu

IBM
Satish Chandra

Kemal Ebcioglu

Rodric Rabbah

Vijay Saraswat

Vivek Sarkar

Casey Rodarmor

Prof. Koushik Sen

Prof. Sanjit Seshia

Lexin Shan

Saurabh Srivastava

Liviu Tancau

Nicholas Tung

