Section Notes on Dataflow Analysis

November 2, 2003

For many compiler optimizations, the compiler must determine the truth of some property at
a certain point in the program to perform the optimization safely. For example, to eliminate an
assignment statement X : = e asdead code, the compiler must know that X is not live immediately
after the statement, ie. no other statement reads the value written into x before it is re-assigned
(determining this information is known as liveness analysis). While finding this information for a
single basic block (local optimization) is fairly straightforward, things get more interesting when
you try to handle conditionals and loops (global optimization). Luckily, dataflow analysis is a
general, well-understood method by which we can solve this and many other program analysis
problems.

A key property of dataflow analysis is that the information we need to compute often depends
on information transferred from preceding or subsequent program points. A transfer function suc-
cinctly captures this flow of information through statements. For liveness analysis, let L, (z, s) be
true if variable z is live immediately before statement s, and let L,y (z, s) be true if variable z is
live immediately after statement s. For a single basic block, we can define our transfer function as
follows:

Lin(z,8) = Lyy(z,s) if s does not mention x
Lin(z,s) true if s uses x
Lin(z,z :=e) false if e does not mention x

First, note that since we define L;, (z, s) in terms of what s and its successors do, this is a backwards
analysis; information gets transferred backwards through the program. The first rule states that
if s does not mention z, then z is live before s if and only if it is live after s (in which case some
statement following s makes it live). The second rule says that if s uses z, then clearly z is live
immediately before s. If we have a statement X : = e in which e does not mention z, then z is not
live immediately before the statement, since the statement kills the old value of z. If e mentions z,
then the second rule applies.
Let’s apply these rules to variable a in the following basic block:

s;: a = b +c
s,: d := a
S, e d + £

Assume that initially, Ly (a, s3) = false. Since s3 does not mention a, we have L;,(a, s3) = false
by the first rule. By the second rule, L;,(a, s2) = true, since it mentions a on its right-hand side.
Finally, by the third rule, L;,(a, s;) = false, since it assigns to a but does not mention it on its
right-hand side.



What happens when a statement has more than one successor, for example because of a condi-
tional branch? In general, a compiler cannot determine which branch of a conditional will be taken
at runtime, so it must assume that both branches can execute. Therefore, to be safe, we must con-
clude that Ly (z, s) = true if z is live before any of the successors of s. This intuition corresponds
to ORing together liveness information from successors, leading to the following additional rule:

Lowt(z,8) = V {Lin(z,8") | s € succ(s)}

Our new rule can be applied to the following simple example, when trying to figure out the
liveness of b:

s;: a :=b +c
S,: d = a
s, e :=d + f

Again, assume that L, is initialized to false for all statements and variables. By our previous
rules, we have Ly (z, s4) = false and L;,(z, s5) = true (you should be able to see why). Now, by
our new rule, we find that L,,;(x, s3) = true, since s5 uses z and we assume that either s4 or s5
can execute. Finding the rest of the liveness values for b should be straightforward.

With these four rules, we can compute liveness information for an entire control-flow graph,
including conditionals and loops. The algorithm essentially applies the rules to update liveness
values until all values stop changing. How do we know this process will terminate? Notice that
if we initialize all liveness values to false, our rules will only change a false value to true, and
not vice-versa. So, in the worst-case, eventually the analysis will make all liveness values true
and then will terminate. More formally, we can order our facts by making true higher than false,
and then our ORing of values at control-flow merge points corresponds to the least-upper-bound
operation discussed in lecture.



