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Lecture 9 
 
Bottom-up parsers 
Datalog, CYK parser, Earley parser 

Ras Bodik      
Ali and Mangpo 

Hack Your Language! 
CS164: Introduction to Programming  
Languages and Compilers, Spring 2013 

UC Berkeley 



Hidden slides 

This slide deck contains hidden slides that may help in 
studying the material.   

These slides show up in the exported pdf file but when you 
view the ppt file in Slide Show mode. 
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Today 

Datalog 

a special subset of Prolog 

CYK parser 

builds the parse bottom up 

Earley parser 

solves CYK’s inefficiency 
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Prolog Parser 
top-down parser: builds the parse tree  

by descending from the root 



Parser for the full expression grammar 

E ::= T | T + E            T ::= F | F * T         F ::= a  

 
e(In,Out) :- t(In, Out). 

e(In,Out) :- t(In, [+|R]), e(R,Out). 
 

t(In,Out) :- f(In, Out). 

t(In,Out) :- f(In, [*|R]), t(R,Out). 
 

f([a|Out],Out).  

 

parse(S) :- e(S,[]). 

 

?- parse([a,+,a,*,a]). --> true 
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What answers does this query return? 

parse([a,+,a],Out)? 



Construct also the parse tree 

E = T | T + E            T = F | F * T         F = a  

 
e(In,Out,e(T1))      :- t(In, Out, T1). 

e(In,Out,e(T1,+,T2)) :- t(In, [+|R], T1), e(R,Out,T2). 

t(In,Out,t(T1))      :- f(In, Out, T1). 

t(In,Out,t(T1,*,T2)) :- f(In, [*|R], T1), t(R,Out,T2). 

f([a|Out],Out,f(a)).  

 

parse(S,T) :- e(S,[],T). 

 

?- parse([a,+,a,*,a],T). 

T = e(t(f(a)), +, e(t(f(a), *, t(f(a)))) 
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Construct also the AST 

E = T | T + E            T = F | F * T         F = a  

 
e(In,Out,T1)          :- t(In, Out, T1). 

e(In,Out,plus(T1,T2)) :- t(In, [+|R], T1), e(R,Out,T2). 

t(In,Out,T1)          :- f(In, Out, T1). 

t(In,Out,times(T1,T2)):- f(In, [*|R], T1), t(R,Out,T2). 

f([a|Out],Out, a).  

 

parse(S,T) :- e(S,[],T). 

 

?- parse([a,+,a,*,a],T). 

T = plus(a, times(a, a))  
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Datalog 
(a subset of Prolog, more or less) 



Datalog: a well-behaved subset of Prolog 

Datalog is a restricted subset of Prolog 

disallows compound terms as arguments of predicates 
p(1, 2) is admissible but not p(f1(1), 2).  Hence can’t use lists. 

only allows range-restricted variables,  
each variable in the head of a rule must also appear in a not-negated 
clause in the body of this rule.  Hence we can compute values of 
variables from ground facts. 

imposes stratification restrictions on the use of negation 
this can be satisfied by simply not using negation, is possible 

 

From wikipedia:  Query evaluation in Datalog is based 
on first order logic, and is thus sound and complete. 

See The Art of Prolog for why Prolog is not logic (Sec 11.3) 
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http://en.wikipedia.org/wiki/Predicate_(logic)
http://en.wikipedia.org/wiki/Stratification_(mathematics)
http://en.wikipedia.org/wiki/First_order_logic
http://en.wikipedia.org/wiki/Soundness
http://en.wikipedia.org/wiki/Completeness


Why do we care about Datalog? 

Predictable semantics: 

all Datalog programs terminate (unlike Prolog programs) – 
thanks to the restrictions above, which make the set of all 
possible proofs finite 

Efficient evaluation: 

Uses bottom-up evaluation (dynamic programming). 

Various methods have been proposed to efficiently perform 
queries, e.g. the Magic Sets algorithm,[3] 

 

If interested, see more in wikipedia. 
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http://en.wikipedia.org/wiki/Algorithm


More why do we care about Datalog? 

We can mechanically derive famous parsers 

Mechanically == without thinking too hard. 

Indeed, the rest of the lecture is about this 

 

1) CYK parser == Datalog version of Prolog rdp  

2) Earley == Magic Set transformation of CYK 

 

There is a bigger cs164 lesson here: 

restricting your language may give you desirable properties 
Just think how much easier your PA1 interpreter would be to 
implement without having to support recursion.  Although it would 
be much less useful without recursion. Luckily, with Datalog, we 
don’t lose anything (when it comes to parsing). 11 



CYK parser 
(can we run a parser in polynomial time?) 



Turning our Prolog parser into Datalog 

Recursive descent in Prolog, for E ::= a | a+E   

e([a|Out], Out).  

e([a,+|R], Out) :- e(R,Out). 

 

Let’s check the datalog rules: 

No negation: check 

Range restricted: check 

Compound predicates: nope (uses lists) 
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Turning our Prolog parser into Datalog, cont. 

Let’s refactor the program a little, using the grammar 

E --> a  |  E + E  |  E * E 
Yes, with Datalog, we can use left-recursive grammars! 

 

Datalog parser: e(i,j) is true iff the substring 
input[i:j] can be derived from the non-terminal E. 

input[i:j] is input from index i to index j-1 

 

e(I,I+1) :- input[I]==‘a’.  

e(I,J)   :- e(I,K), input[K]==‘+’, e(K+1,J). 

e(I,J)   :- e(I,K), input[K]==‘*’, e(K+1,J). 
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A graphical way to visualize the evaluation 

Initial graph: the input (terminals) 

Repeat: add non-terminal edges until no more can be added. 
An edge is added when adjacent edges form rhs of a grammar production. 

a1 +2 *4 

E6 

a3 

E11 

a5 

E9 

E7 E8 

Input:  a + a * a 
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E10 



Bottom-up evaluation of the Datalog program 

Input:   

a + a * a 

Let’s compute which facts we know hold 

we’ll deduce facts gradually until no more can be deduced 

Step 1: base case (process input segments of length 1) 

e(0,1) = e(2,3) = e(4,5) = true 

Step 2: inductive case (input segments of length 3) 

e(0,3) = true     // using rule #2 

e(2,5) = true     // using rule #3 

Step 2 again: inductive case (segments of length 5) 

e(0,5) = true    // using either rule #2 or #3 
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Visualize this parser in tabular form 
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Home exercise: find the bug in this CYK algo 

We assume that each rule is of the form A→BC, ie two symbols on rhs. 

 

for  i=0,N-1 do   

 add (i,i+1,nonterm(input[i])) to graph  -- create nonterminal edges A→d 

 enqueue( (i,i+1,nonterm(input[i])) )      -- nonterm() maps d to A !  

while  queue not empty do 

 (j,k,B)=dequeue() 

 for each edge (i,j,A) do  -- for each edge “left-adjacent” to (j,k,B) 

  if rule T→AB  exists then               

      if edge e=(i,k,T) does not exists then  add e to graph; enqueue(e) 

 for each edge (k,l,C) do        -- for each edge “right-adjacent” to (j,k,B) 

  ... analogous ... 

end while 

if edge (0,N,S) does not exist  then “syntax error” 



Constructing the parse tree 

Nodes in parse tree correspond to edges in CYK 
reduction 

– edge e=(0,N,S) corresponds to the root of parse tree r 

– edges that caused insertion of e are children of r 

 

Helps to label edges with entire productions 

– not just the LHS symbol of the production 

– make symbols unique with subscripts 

– such labels make the parse tree explicit 
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A graphical way to visualize this evaluation 

Parse tree:  

a1 +2 *4 

E6 

a3 

E11 

a5 

E9 

E7 E8 

Input:  a + a * a 
 

20 
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Example of CYK execution 

int1 id2 id4 

TYPE6-->int1 

,3 

DECL10  -->  TYPE6   VARLIST9    ;5 

;5 

VARLIST9-->VARLIST7   ,3   id4 

VARLIST7-->id2 VARLIST8-->id4 

DECL10 

TYPE6 VARLIST9 

VARLIST7 

id2 

,3 id4 

;5 

int1 
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you should be able to reconstruct the grammar from  

this parse tree (find the productions in the parse tree) 



Grammars, derivations, parse trees 

Example grammar 

DECL  -->  TYPE   VARLIST  ; 

TYPE  -->  int  |  float 

VARLIST  -->   id   |  VARLIST  ,  id 

Example string 

int id , id ; 

Derivation of the string 

DECL --> TYPE VARLIST ;  

--> int VARLIST ;  

--> … -->  

--> int id , id ; 
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DECL10 

TYPE6 VARLIST9 

VARLIST7 

id2 

,3 id4 

;5 

int1 



CYK execution 

TYPE6-->int1 

DECL10  -->  TYPE6   VARLIST9    ;5 

VARLIST9-->VARLIST7   ,3   id4 

VARLIST7-->id2 

int1 id2 id4 ,3 ;5 

VARLIST8-->id4 

DECL10 

TYPE6 VARLIST9 

VARLIST7 

id2 

,3 id4 

;5 

int1 
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Key invariant 

Edge (i,j,T)  exists  iff  T -->* input[i:j]  

– T -->* input[i:j] means that the i:j slice of input can be 
derived from T in zero or more steps 

– T can be either terminal or non-terminal 

 

Corollary: 

– input is from L(G) iff the algorithm creates the edge (0,N,S) 

– N is input length 

 



Constructing the parse tree from the CYK graph 

TYPE6-->int1 

DECL10  -->  TYPE6   VARLIST9    ;5 

VARLIST9-->VARLIST7   ,3   id4 

VARLIST7-->id2 

int1 id2 id4 ,3 ;5 

VARLIST8-->id4 

DECL10 

TYPE6 VARLIST9 

VARLIST7 

id2 

,3 id4 

;5 

int1 
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CYK graph to parse tree 

Parse tree nodes 

obtained from CYK edges are grammar productions  

 

Parse tree edges 

obtained from reductions (ie which rhs produced the lhs) 
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CYK Parser 

 

Builds the parse bottom-up 

given grammar containing  A → B C, when you find 
adjacent B C in the CYK graph, reduce B C to A 
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CYK: the algorithm 

CYK is easiest for grammars in Chomsky Normal Form 

CYK is asymptotically more efficient in this form 

O(N3) time, O(N2) space. 

 

Chomsky Normal Form: production forms allowed: 

A → BC  or 

A → d  or 

S → ε (only start non-terminal can derive ) 

 

Each grammar can be rewritten to this form 



CYK: dynamic programming 

Systematically fill in the graph with solutions to 
subproblems 
– what are these subproblems? 

When complete: 
– the graph contains all possible solutions to all of 

the subproblems needed to solve the whole 
problem 

Solves reparsing inefficiencies 
– because subtrees are not reparsed but looked up 

 



Complexity, implementation tricks 

Time complexity: O(N3),  Space complexity: O(N2) 

– convince yourself this is the case 

– hint: consider the grammar to be constant size? 

Implementation: 

– the graph implementation may be too slow 

– instead, store solutions to subproblems in a 2D array 
• solutions[i,j] stores a list of labels of all edges from i to j 



Earley Parser 



Inefficiency in CYK 

CYK may build useless parse subtrees  

– useless = not part of the (final) parse tree 

– true even for non-ambiguous grammars 
 

Example  

grammar:   E ::= E+id | id   

input:            id+id+id 

 

Can you spot the inefficiency? 

This inefficiency is a difference between O(n3) and O(n2) 

It’s parsing 100 vs 1000 characters in the same time! 



Example 

grammar: E→E+id | id  

 

 

 

 

 

 

 

 

three useless reductions are done (E7, E8 and E10) 

id1 + + 

E6-->id1 

id3 

E11  -->  E9 + id5 

id5 

E9-->E6  +   id3 

E8-->id5 E7-->id3 

E10-->E7  +  E8 



Earley parser fixes (part of) the inefficiency 

space complexity:  
– Earley and CYK are O(N2) 

time complexity:  
– unambiguous grammars: Earley is O(N2), CYK is O(N3) 

– plus the constant factor improvement due to the inefficiency 

why learn about Earley? 
– idea of Earley states is used by the faster parsers, like LALR 

– so you learn the key idea from those modern parsers 

– You will implement it in PA4 

– In HW4 (required), you will optimize an inefficient version of Earley 



Key idea 

Process the input left-to-right 

as opposed to arbitrarily, as in CYK 

Reduce only productions that appear non-useless  

consider only reductions with a chance to be in the parse tree 

Key idea 

decide whether to reduce based on the input seen so far 

after seeing more, we may still realize we built a useless tree 

The algorithm 

Propagate a “context” of the parsing process. 

Context tells us what nonterminals can appear in the parse at 
the given point of input.  Those that cannot won’t be reduced. 



Key idea: suppress useless reductions 

grammar: E→E+id | id  

 

 

id1 + + id3 id5 



The intuition 
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Use CYK edges (aka reductions), plus more edges. 

Idea: We ask “What CYK edges can possibly start in node 0?” 
1) those reducing to the start non-terminal 

2) those that may produce non-terminals needed by (1) 

3) those that may produce non-terminals needed by (2), etc 

 

 

37 

 

37 

id1 + + 

E-->id 

id3 

E -->  T0 + id 

id5 

grammar:   

 E --> T + id | id 

 T --> E T0 --> E 



Prediction 

Prediction (def):  

determining which productions apply at current point of input 

performed top-down through the grammar 

by examining all possible derivation sequences 

this will tell us  

which non-terminals we can use in the tree  
(starting at the current point of the string) 

we will do prediction not only at the beginning of parsing 

but at each parsing step 



Example (1) 

Initial predicted edges: 

id1 + + 

E--> .  id 

id3 

E -->  .  T + id 

id5 

grammar:   

 E --> T + id | id 

 T --> E 

T --> . E 



Example (1.1) 

Let’s compress the visual representation: 

 these three edges  single edge with three labels 

id1 + + id3 

E -->  .  T + id 
E--> .  id 
T --> . E 

id5 

grammar:   

 E --> T + id | id 

 T --> E 



Example (2) 

We add a complete edge, which leads to another 
complete edge, and that in turn leads to a in-
progress edge 

id1 + + id3 

E -->  .  T + id 
E--> .  id 
T --> . E 

id5 

grammar:   

 E --> T + id | id 

 T --> E 

E-->   id  . 
T -->  E  . 

E -->  T .  +  id 



Example (3) 

We advance the in-progress edge, the only edge we 
can add at this point. 
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id1 + + id3 

E -->  .  T + id 
E--> .  id 
T --> . E 

id5 

grammar:   

 E --> T + id | id 

 T --> E 

E-->   id  . 
T -->  E  . 

E -->  T .  +  id 

E -->  T  +  .   id 



Example (4) 

Again, we advance the in-progress edge.   But now we 
created a complete edge. 

 

43 

id1 + + id3 

E -->  .  T + id 
E--> .  id 
T --> . E 

id5 

grammar:   

 E --> T + id | id 

 T --> E 

E-->   id  . 
T -->  E  . 

E -->  T .  +  id 

E -->  T  +  .   id 

E -->  T  +  id  . 



Example (5) 

The complete edge leads to reductions to another 
complete edge, exactly as in CYK. 

id1 + + id3 

E -->  .  T + id 
E--> .  id 
T --> . E 

id5 

grammar:   

 E --> T + id | id 

 T --> E 

E-->   id  . 
T -->  E  . 

E -->  T .  +  id 

E -->  T  +  .   id 

E -->  T  +  id  . 
T -->  E  . 



Example (6) 

 

 

We also advance the predicted edge, creating a new 
in-progress edge. 
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id1 + + id3 

E -->  .  T + id 
E--> .  id 
T --> . E 

id5 

grammar:   

 E --> T + id | id 

 T --> E 

E-->   id  . 
T -->  E  . 

E -->  T .  +  id 

E -->  T  +  .   id 

E -->  T  +  id  . 
T -->  E  . 
E -->  T .  + id 



Example (7) 

We also advance the predicted edge, creating a new 
in-progress edge. 

id1 + + id3 

E -->  .  T + id 
E--> .  id 
T --> . E 

id5 

E-->   id  . 
T -->  E  . 

E -->  T .  +  id 

E -->  T  +  .   id 

E -->  T  +  id  . 
T -->  E  . 
E -->  T .  + id 

E -->  T  +  . id 



Example (8) 

Advance again, creating a complete edge, which leads 
to a another complete edges and an in-progress 
edge, as before.  Done. 

id1 + + id3 

E -->  .  T + id 
E--> .  id 
T --> . E 

id5 

E-->   id  . 
T -->  E  . 

E -->  T .  +  id 

E -->  T  +  .   id 

E -->  T  +  id  . 
T -->  E  . 
E -->  T .  + id 

E -->  T  +  . id 

E -->  T  +  id  . 
T -->  E  . 
E -->  T .  + id 
 



Example (a note) 

Compare with CYK: 

 We avoided creating these six CYK edges. 

id1 + + id3 id5 

E -->  id  
T -->  E  

E -->  id 
T -->  E 

E -->  T + id  
T -->  E  



Generalize CYK edges: Three kinds of edges 

Productions extended with a dot ‘.’ 

. indicates position of input (how much of the rule we saw) 

Completed:   A --> B C . 

We found an input substring that reduces to A 

These are the original CYK edges. 

Predicted:    A --> .  B C 

we are looking for a substring that reduces to A … 

 (ie, if we allowed to reduce to A)  

… but we have seen nothing of  B C yet 

In-progress:    A -->  B . C 

like (2) but have already seen substring that reduces to B 

 

 



Earley Algorithm 

Three main functions that do all the work: 

 

For all terminals in the input, left to right:  

 Scanner: moves the dot across a terminal  
  found next on the input 

 

 Repeat until no more edges can be added: 

  Predict: adds predictions into the graph 

  Complete: move the dot to the right across  
  a non-terminal when that non-terminal is found 

 



HW4 

You’ll get a clean implementation of Earley in Python 

It will visualize the parse. 

But it will be very slow. 

 

Your goal will be to optimize its data structures  

And change the grammar a little. 

To make the parser run in linear time. 
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