
1

Lecture 9

Bottom-up parsers
Datalog, CYK parser, Earley parser

Ras Bodik
Ali and Mangpo

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2013

UC Berkeley

Hidden slides

This slide deck contains hidden slides that may help in
studying the material.

These slides show up in the exported pdf file but when you
view the ppt file in Slide Show mode.

2

Today

Datalog

a special subset of Prolog

CYK parser

builds the parse bottom up

Earley parser

solves CYK’s inefficiency

3

Prolog Parser
top-down parser: builds the parse tree

by descending from the root

Parser for the full expression grammar

E ::= T | T + E T ::= F | F * T F ::= a

e(In,Out) :- t(In, Out).

e(In,Out) :- t(In, [+|R]), e(R,Out).

t(In,Out) :- f(In, Out).

t(In,Out) :- f(In, [*|R]), t(R,Out).

f([a|Out],Out).

parse(S) :- e(S,[]).

?- parse([a,+,a,*,a]). --> true
5

What answers does this query return?

parse([a,+,a],Out)?

Construct also the parse tree

E = T | T + E T = F | F * T F = a

e(In,Out,e(T1)) :- t(In, Out, T1).

e(In,Out,e(T1,+,T2)) :- t(In, [+|R], T1), e(R,Out,T2).

t(In,Out,t(T1)) :- f(In, Out, T1).

t(In,Out,t(T1,*,T2)) :- f(In, [*|R], T1), t(R,Out,T2).

f([a|Out],Out,f(a)).

parse(S,T) :- e(S,[],T).

?- parse([a,+,a,*,a],T).

T = e(t(f(a)), +, e(t(f(a), *, t(f(a))))

6

Construct also the AST

E = T | T + E T = F | F * T F = a

e(In,Out,T1) :- t(In, Out, T1).

e(In,Out,plus(T1,T2)) :- t(In, [+|R], T1), e(R,Out,T2).

t(In,Out,T1) :- f(In, Out, T1).

t(In,Out,times(T1,T2)):- f(In, [*|R], T1), t(R,Out,T2).

f([a|Out],Out, a).

parse(S,T) :- e(S,[],T).

?- parse([a,+,a,*,a],T).

T = plus(a, times(a, a))

7

Datalog
(a subset of Prolog, more or less)

Datalog: a well-behaved subset of Prolog

Datalog is a restricted subset of Prolog

disallows compound terms as arguments of predicates
p(1, 2) is admissible but not p(f1(1), 2). Hence can’t use lists.

only allows range-restricted variables,
each variable in the head of a rule must also appear in a not-negated
clause in the body of this rule. Hence we can compute values of
variables from ground facts.

imposes stratification restrictions on the use of negation
this can be satisfied by simply not using negation, is possible

From wikipedia: Query evaluation in Datalog is based
on first order logic, and is thus sound and complete.

See The Art of Prolog for why Prolog is not logic (Sec 11.3)

9

http://en.wikipedia.org/wiki/Predicate_(logic)
http://en.wikipedia.org/wiki/Stratification_(mathematics)
http://en.wikipedia.org/wiki/First_order_logic
http://en.wikipedia.org/wiki/Soundness
http://en.wikipedia.org/wiki/Completeness

Why do we care about Datalog?

Predictable semantics:

all Datalog programs terminate (unlike Prolog programs) –
thanks to the restrictions above, which make the set of all
possible proofs finite

Efficient evaluation:

Uses bottom-up evaluation (dynamic programming).

Various methods have been proposed to efficiently perform
queries, e.g. the Magic Sets algorithm,[3]

If interested, see more in wikipedia.

10

http://en.wikipedia.org/wiki/Algorithm

More why do we care about Datalog?

We can mechanically derive famous parsers

Mechanically == without thinking too hard.

Indeed, the rest of the lecture is about this

1) CYK parser == Datalog version of Prolog rdp

2) Earley == Magic Set transformation of CYK

There is a bigger cs164 lesson here:

restricting your language may give you desirable properties
Just think how much easier your PA1 interpreter would be to
implement without having to support recursion. Although it would
be much less useful without recursion. Luckily, with Datalog, we
don’t lose anything (when it comes to parsing). 11

CYK parser
(can we run a parser in polynomial time?)

Turning our Prolog parser into Datalog

Recursive descent in Prolog, for E ::= a | a+E

e([a|Out], Out).

e([a,+|R], Out) :- e(R,Out).

Let’s check the datalog rules:

No negation: check

Range restricted: check

Compound predicates: nope (uses lists)

13

Turning our Prolog parser into Datalog, cont.

Let’s refactor the program a little, using the grammar

E --> a | E + E | E * E
Yes, with Datalog, we can use left-recursive grammars!

Datalog parser: e(i,j) is true iff the substring
input[i:j] can be derived from the non-terminal E.

input[i:j] is input from index i to index j-1

e(I,I+1) :- input[I]==‘a’.

e(I,J) :- e(I,K), input[K]==‘+’, e(K+1,J).

e(I,J) :- e(I,K), input[K]==‘*’, e(K+1,J).

14

A graphical way to visualize the evaluation

Initial graph: the input (terminals)

Repeat: add non-terminal edges until no more can be added.
An edge is added when adjacent edges form rhs of a grammar production.

a1 +2 *4

E6

a3

E11

a5

E9

E7 E8

Input: a + a * a

15

E10

Bottom-up evaluation of the Datalog program

Input:

a + a * a

Let’s compute which facts we know hold

we’ll deduce facts gradually until no more can be deduced

Step 1: base case (process input segments of length 1)

e(0,1) = e(2,3) = e(4,5) = true

Step 2: inductive case (input segments of length 3)

e(0,3) = true // using rule #2

e(2,5) = true // using rule #3

Step 2 again: inductive case (segments of length 5)

e(0,5) = true // using either rule #2 or #3

16

Visualize this parser in tabular form

17

5

4

3

2

1

0

0 1 2 3 4 5

Home exercise: find the bug in this CYK algo

We assume that each rule is of the form A→BC, ie two symbols on rhs.

for i=0,N-1 do

 add (i,i+1,nonterm(input[i])) to graph -- create nonterminal edges A→d

 enqueue((i,i+1,nonterm(input[i]))) -- nonterm() maps d to A !

while queue not empty do

 (j,k,B)=dequeue()

 for each edge (i,j,A) do -- for each edge “left-adjacent” to (j,k,B)

 if rule T→AB exists then

 if edge e=(i,k,T) does not exists then add e to graph; enqueue(e)

 for each edge (k,l,C) do -- for each edge “right-adjacent” to (j,k,B)

 ... analogous ...

end while

if edge (0,N,S) does not exist then “syntax error”

Constructing the parse tree

Nodes in parse tree correspond to edges in CYK
reduction

– edge e=(0,N,S) corresponds to the root of parse tree r

– edges that caused insertion of e are children of r

Helps to label edges with entire productions

– not just the LHS symbol of the production

– make symbols unique with subscripts

– such labels make the parse tree explicit

19

A graphical way to visualize this evaluation

Parse tree:

a1 +2 *4

E6

a3

E11

a5

E9

E7 E8

Input: a + a * a

20

E10

Example of CYK execution

int1 id2 id4

TYPE6-->int1

,3

DECL10 --> TYPE6 VARLIST9 ;5

;5

VARLIST9-->VARLIST7 ,3 id4

VARLIST7-->id2 VARLIST8-->id4

DECL10

TYPE6 VARLIST9

VARLIST7

id2

,3 id4

;5

int1

21

you should be able to reconstruct the grammar from

this parse tree (find the productions in the parse tree)

Grammars, derivations, parse trees

Example grammar

DECL --> TYPE VARLIST ;

TYPE --> int | float

VARLIST --> id | VARLIST , id

Example string

int id , id ;

Derivation of the string

DECL --> TYPE VARLIST ;

--> int VARLIST ;

--> … -->

--> int id , id ;

22

DECL10

TYPE6 VARLIST9

VARLIST7

id2

,3 id4

;5

int1

CYK execution

TYPE6-->int1

DECL10 --> TYPE6 VARLIST9 ;5

VARLIST9-->VARLIST7 ,3 id4

VARLIST7-->id2

int1 id2 id4 ,3 ;5

VARLIST8-->id4

DECL10

TYPE6 VARLIST9

VARLIST7

id2

,3 id4

;5

int1

23

Key invariant

Edge (i,j,T) exists iff T -->* input[i:j]

– T -->* input[i:j] means that the i:j slice of input can be
derived from T in zero or more steps

– T can be either terminal or non-terminal

Corollary:

– input is from L(G) iff the algorithm creates the edge (0,N,S)

– N is input length

Constructing the parse tree from the CYK graph

TYPE6-->int1

DECL10 --> TYPE6 VARLIST9 ;5

VARLIST9-->VARLIST7 ,3 id4

VARLIST7-->id2

int1 id2 id4 ,3 ;5

VARLIST8-->id4

DECL10

TYPE6 VARLIST9

VARLIST7

id2

,3 id4

;5

int1

25

CYK graph to parse tree

Parse tree nodes

obtained from CYK edges are grammar productions

Parse tree edges

obtained from reductions (ie which rhs produced the lhs)

26

CYK Parser

Builds the parse bottom-up

given grammar containing A → B C, when you find
adjacent B C in the CYK graph, reduce B C to A

27

CYK: the algorithm

CYK is easiest for grammars in Chomsky Normal Form

CYK is asymptotically more efficient in this form

O(N3) time, O(N2) space.

Chomsky Normal Form: production forms allowed:

A → BC or

A → d or

S → ε (only start non-terminal can derive )

Each grammar can be rewritten to this form

CYK: dynamic programming

Systematically fill in the graph with solutions to
subproblems
– what are these subproblems?

When complete:
– the graph contains all possible solutions to all of

the subproblems needed to solve the whole
problem

Solves reparsing inefficiencies
– because subtrees are not reparsed but looked up

Complexity, implementation tricks

Time complexity: O(N3), Space complexity: O(N2)

– convince yourself this is the case

– hint: consider the grammar to be constant size?

Implementation:

– the graph implementation may be too slow

– instead, store solutions to subproblems in a 2D array
• solutions[i,j] stores a list of labels of all edges from i to j

Earley Parser

Inefficiency in CYK

CYK may build useless parse subtrees

– useless = not part of the (final) parse tree

– true even for non-ambiguous grammars

Example

grammar: E ::= E+id | id

input: id+id+id

Can you spot the inefficiency?

This inefficiency is a difference between O(n3) and O(n2)

It’s parsing 100 vs 1000 characters in the same time!

Example

grammar: E→E+id | id

three useless reductions are done (E7, E8 and E10)

id1 + +

E6-->id1

id3

E11 --> E9 + id5

id5

E9-->E6 + id3

E8-->id5 E7-->id3

E10-->E7 + E8

Earley parser fixes (part of) the inefficiency

space complexity:
– Earley and CYK are O(N2)

time complexity:
– unambiguous grammars: Earley is O(N2), CYK is O(N3)

– plus the constant factor improvement due to the inefficiency

why learn about Earley?
– idea of Earley states is used by the faster parsers, like LALR

– so you learn the key idea from those modern parsers

– You will implement it in PA4

– In HW4 (required), you will optimize an inefficient version of Earley

Key idea

Process the input left-to-right

as opposed to arbitrarily, as in CYK

Reduce only productions that appear non-useless

consider only reductions with a chance to be in the parse tree

Key idea

decide whether to reduce based on the input seen so far

after seeing more, we may still realize we built a useless tree

The algorithm

Propagate a “context” of the parsing process.

Context tells us what nonterminals can appear in the parse at
the given point of input. Those that cannot won’t be reduced.

Key idea: suppress useless reductions

grammar: E→E+id | id

id1 + + id3 id5

The intuition

37

Use CYK edges (aka reductions), plus more edges.

Idea: We ask “What CYK edges can possibly start in node 0?”
1) those reducing to the start non-terminal

2) those that may produce non-terminals needed by (1)

3) those that may produce non-terminals needed by (2), etc

37

37

id1 + +

E-->id

id3

E --> T0 + id

id5

grammar:

 E --> T + id | id

 T --> E T0 --> E

Prediction

Prediction (def):

determining which productions apply at current point of input

performed top-down through the grammar

by examining all possible derivation sequences

this will tell us

which non-terminals we can use in the tree
(starting at the current point of the string)

we will do prediction not only at the beginning of parsing

but at each parsing step

Example (1)

Initial predicted edges:

id1 + +

E--> . id

id3

E --> . T + id

id5

grammar:

 E --> T + id | id

 T --> E

T --> . E

Example (1.1)

Let’s compress the visual representation:

 these three edges  single edge with three labels

id1 + + id3

E --> . T + id
E--> . id
T --> . E

id5

grammar:

 E --> T + id | id

 T --> E

Example (2)

We add a complete edge, which leads to another
complete edge, and that in turn leads to a in-
progress edge

id1 + + id3

E --> . T + id
E--> . id
T --> . E

id5

grammar:

 E --> T + id | id

 T --> E

E--> id .
T --> E .

E --> T . + id

Example (3)

We advance the in-progress edge, the only edge we
can add at this point.

42

id1 + + id3

E --> . T + id
E--> . id
T --> . E

id5

grammar:

 E --> T + id | id

 T --> E

E--> id .
T --> E .

E --> T . + id

E --> T + . id

Example (4)

Again, we advance the in-progress edge. But now we
created a complete edge.

43

id1 + + id3

E --> . T + id
E--> . id
T --> . E

id5

grammar:

 E --> T + id | id

 T --> E

E--> id .
T --> E .

E --> T . + id

E --> T + . id

E --> T + id .

Example (5)

The complete edge leads to reductions to another
complete edge, exactly as in CYK.

id1 + + id3

E --> . T + id
E--> . id
T --> . E

id5

grammar:

 E --> T + id | id

 T --> E

E--> id .
T --> E .

E --> T . + id

E --> T + . id

E --> T + id .
T --> E .

Example (6)

We also advance the predicted edge, creating a new
in-progress edge.

45

id1 + + id3

E --> . T + id
E--> . id
T --> . E

id5

grammar:

 E --> T + id | id

 T --> E

E--> id .
T --> E .

E --> T . + id

E --> T + . id

E --> T + id .
T --> E .
E --> T . + id

Example (7)

We also advance the predicted edge, creating a new
in-progress edge.

id1 + + id3

E --> . T + id
E--> . id
T --> . E

id5

E--> id .
T --> E .

E --> T . + id

E --> T + . id

E --> T + id .
T --> E .
E --> T . + id

E --> T + . id

Example (8)

Advance again, creating a complete edge, which leads
to a another complete edges and an in-progress
edge, as before. Done.

id1 + + id3

E --> . T + id
E--> . id
T --> . E

id5

E--> id .
T --> E .

E --> T . + id

E --> T + . id

E --> T + id .
T --> E .
E --> T . + id

E --> T + . id

E --> T + id .
T --> E .
E --> T . + id

Example (a note)

Compare with CYK:

 We avoided creating these six CYK edges.

id1 + + id3 id5

E --> id
T --> E

E --> id
T --> E

E --> T + id
T --> E

Generalize CYK edges: Three kinds of edges

Productions extended with a dot ‘.’

. indicates position of input (how much of the rule we saw)

Completed: A --> B C .

We found an input substring that reduces to A

These are the original CYK edges.

Predicted: A --> . B C

we are looking for a substring that reduces to A …

 (ie, if we allowed to reduce to A)

… but we have seen nothing of B C yet

In-progress: A --> B . C

like (2) but have already seen substring that reduces to B

Earley Algorithm

Three main functions that do all the work:

For all terminals in the input, left to right:

 Scanner: moves the dot across a terminal
 found next on the input

 Repeat until no more edges can be added:

 Predict: adds predictions into the graph

 Complete: move the dot to the right across
 a non-terminal when that non-terminal is found

HW4

You’ll get a clean implementation of Earley in Python

It will visualize the parse.

But it will be very slow.

Your goal will be to optimize its data structures

And change the grammar a little.

To make the parser run in linear time.

51

