
CS264: Homework 1 (Pointer Analysis)

Assigned: Tuesday, Mar 1, 2005
Due: Tuesday, Mar 8, 2005, 7pm.

Submission

Please make sure your answers are brief and easy to understand. You can work on the problems with
fellow students, but you are responsible for preparing and submitting your own solution. Submit your
homeworks by email to cs264@imail.eecs.berkeley.edu.

1 Points-to Analysis vs. Alias Analysis

The pointer analysis we discussed in class is called points-to analysis. Points-to analysis approximates alias
analysis, which computes whether pairs of expressions may be aliased. Expressions e1, e2 are aliased at a
node n iff there exists a control-flow path from the program start node to the node n such that executing
statements along the path makes e1 and e2 point to the same memory location. In flow-insensitive alias
analysis, e1 and e2 are aliased iff one can construct a control-flow graph in which e1 and e2 are aliased at
some node n.

In this problem, consider a simple language that includes only simple assignments with C-like right-
hand-side expressions:

stmt → ID := exp

exp → &ID

| exp2
exp2 → ID

| ∗exp2

Note that expressions in this language may contain an arbitrary level of pointer dereferencing, for example,
the assignment a := ∗ ∗ ∗ ∗ b is a legal statement in this language.

1. Describe how to use Andersen’s points-to analysis to answer whether arbitrary expressions exp1, exp2

are aliased. For example, how to determine if ∗ ∗ ∗a and ∗b are aliased?

2. Construct a program in which Andersen’s points-to analysis computes an imprecise solution, that is,
it answers that exp1 and exp2 are aliased even when there is no sequence of statements that would
make them point to the same location. Explain the reasons for the loss of precision.

2 Andersen’s Analysis for Java using CFL Reachability

Section 4.4 in the paper “Program analysis via graph reachability” describes a CFL-reachability-based for-
mulation of points-to analysis. The paper presents the analysis for the C language; your task is to reformu-
late the analysis for Java, again using CFL reachability. Show the Java statements that your analysis will
handle (you can ignore arrays) and give a suitable context-free grammar for the reachability problem. You
can develop the Java analysis either by directly rewriting the grammar for C or by starting from scratch and
taking advantage of properties unique to Java. For the latter option, a hint is that pointer semantics in Java
leads to a balanced-parentheses grammar, which is not the case for C.

1


