
1

cs264: Program Analysis
catalog name: Implementation of Programming Languages

Ras Bodik
WF 11-12:30

slides adapted from Mooly Sagiv

Topics

• static program analysis
– principles: key ideas and connections

– techniques: efficient algorithms

– applications: from compilation to software engineering

• advanced topics, time permitting
– dynamic program analysis

• ex.: run-time bug-finding

– program representations
• ex.: Static Single Assignment form

Course Requirements

• Prerequisites
– a compiler course (cs164)

• Useful but not mandatory
– semantics of programming languages (cs263)

– algorithms

– discrete math

Course structure

• Source
– Nielsen, Nielsen, Hankin, Principles of Program Analysis
– research papers

• Format
– lectures (roughly following the textbook)
– discussions of research papers

• you’ll read the paper before lecture and send me a “mini-review”
• 4 paragraphs

• Grade
– 4-5 homeworks
– take-home exam
– project

Guest lectures

• Lectures may include several “guest lecturers”
– expert’s view on a more advanced topic

• Guest lecture time usually not during class; instead
– PS Seminar (Mondays 4pm in 320 Soda)
– Faculty candidate talks (TBD)
– CHESS Seminar (Tuesdays, 4pm, 540 Cory)

• First speaker
– Shaz Qadeer, Monday 4pm 320 Soda
– paper: KISS: Keep it Simple and Sequential
– you’ll write a mini-review (instructions to come)

Outline

• What is static analysis
– usage in compilers and other clients

• Why is it called abstract interpretation?
– handling undecidability

– soundness of abstract interpretation

• Relation to program verification

• Complementary approaches

2

Static Analysis

• Goal:
– automatic derivation of properties that hold on every

execution leading to a program location (label)

– (without knowing program input)

• Usage:
– compiler optimizations

– code quality tools
• Identify bugs

• Prove absence of certain bugs

Example Static Analysis Problem

• Find variables with constant value at a given program
location

int p(int x) {
return (x * x) ;

}
void main()
{

int z;
if (getc()) z = p(6) + 8;
else z = p(5) + 7;
printf (z);

}

int p(int x){
return (x * x);

}
void main()
{

int z;
if (getc()) z = p(3) + 1;
else z = p(-2) + 6;
printf (z);

}

A more problematic program

int x;
void p(a) {

c = read();
if (c > 0) {

a = a -2;
p(a);
a = a + 2;

}
x = -2 * a + 5;
print(x);

}
void main {

p(7); print(x);
}

Another example static analysis problem

• Find variables which are live at a given program location

– Definition: variable x is live at a program location p if x’s R-
value can be used before x is set

– Corresponding property: there exists an x-definition-free
execution path from p to a use of x

A simple liveness example

/* c */
L0: a := 0
/* ac */
L1: b := a + 1
/* bc */

c := c + b
/* bc */

a := b * 2
/* ac */

if c < N goto L1
/* c */

return c

a b

c

register interference graph

Typical compiler
Scanner

Parser

Semantic Analysis

Code Generator

Static analysis

Transformations

source program

tokens

AST

IR

IR + analysis info

AST + type information

3

Some Static Analysis Problems

• Live variables

• Reaching definitions

• Available expressions

• Dead code

• Pointer variables that never point to same location

• Points in the program in which it is safe to free an object

• A virtual method call whose target method is unique

• Statements that can be executed in parallel

• An access to a variable that must reside in the cache

• Integer intervals

The Need for Static Analysis

• Compilers
– Advanced computer architectures

(Superscalar pipelined, VLIW, prefetching)
– High-level programming languages

(functional, OO, garbage collected, concurrent)

• Software Productivity Tools
– Compile time debugging

• Strengthen type checking for C
• Detect Array-bound violations
• Identify dangling pointers
• Generate test cases
• Prove absence of runtime exceptions
• Prove pre- and post-conditions

Software Quality Tools. Detecting Hazards

• Uninitialized variables:
a = malloc() ;

b = a;

cfree (a);

c = malloc ();

if (b == c)

// unexpected equality

• References outside array bounds

• Memory leaks

List* reverse(List head)
{

List *rev, *n;
rev = NULL;
while (head != NULL) {

n = head next;
head next = rev;
head = n;
rev = head;

}
return rev;

}

leakage of address pointed to by head

typedef struct List {
int d;
struct List* next;

} List;

Memory leakage example

Challenges in Static Analysis

• Correctness

• Precision

• Efficiency

• Scaling

Foundation of Static Analysis

• Static analysis can be viewed as
– interpreting the program over an “abstract domain”

– executing the program over larger set of execution paths

• Guarantee sound results, ex.:
– Every identified constant is indeed a constant

– But not every constant is identified as such

4

Example Abstract Interpretation. Casting Out Nines

• A (weak) sanity check of decimal arithmetic using 9 values
– 0, 1, 2, 3, 4, 5, 6, 7, 8

• The casting-out-nine rule:
– whenever an intermediate result exceeds 8,

replace by the sum of its digits (recursively)

• Example “123 * 457 + 76543 = 132654?”
– 123*457 + 76543 = 132654?
– 6 * 7 + 7 = 21?
– 6 + 7 = 3?
– 4 = 3? NO. Report an error.

• Why this rule produces no false alarms:
– (10a + b) mod 9 = (a + b) mod 9
– (a+b) mod 9 = (a mod 9) + (b mod 9)
– (a*b) mod 9 = (a mod 9) * (b mod 9)

Even/Odd Abstract Interpretation

• Determine if an integer variable is even or odd at a given
program point

Example Program

while (x !=1) do {

if (x %2) == 0
{ x := x / 2; }

else
{ x := x * 3 + 1;

assert (x %2 ==0); }
}

/* x=? */

/* x=? */

/* x=E */

/* x=O */

/* x=? */

/* x=E */

/* x=O*/

α

γ

Abstract

Abstract Interpretation

Concrete

α

Sets of stores Descriptors of
sets of stores

α

Odd/Even Abstract Interpretation

{-2, 1, 5}

{0,2}

{2}{0}
E O

?

All concrete states

α

γ

{x: x c Even}

∅ ⊥

Odd/Even Abstract Interpretation

∅

{-2, 1, 5}

{0,2}

{2}{0}

⊥

E O

?

α
α

α

All concrete states

γ α
{x: x c Even}

5

Odd/Even Abstract Interpretation

∅

{-2, 1, 5}

{0,2}

{2}{0}
⊥

E O

?

α

All concrete states

{x: x c Even}

γ
α

Odd/Even Abstract Interpretation

α(X) = if X= ∅ return z⊥

else if for all z in X (z%2 == 0) return E

else if for all z in X (z%2 != 0) return O

else return ?

γ(a) = if a=⊥ return ∅

else if a = E return Even

else if a = O return Odd

else return Natural

Example Program

while (x !=1) do {

if (x %2) == 0
{ x := x / 2; }

else
{ x := x * 3 + 1;
assert (x %2 ==0); }

}

/* x=O */ /* x=E */

Concrete and Abstract Interpretation

+ 0 1 2 3 …
0 0 1 2 3 …
1 1 2 3 4 …
2 2 3 4 5 …
3 3 4 5 6 …
M M M M M

* 0 1 2 3 …
0 0 0 0 0 …
1 0 1 2 3 …
2 0 2 4 6 …
3 0 3 6 9 …
M M M M M

+’ ? O E
? ? ? ?
O ? E O
E ? O E

*’ ? O E
? ? ? E
O ? O E
E E E E

Abstract interpretation cannot be always precise

E

{16, 32}

α

E

α

Operational
semantics

x := x/2 {8, 16}

Abstract
semantics

x := x /# 2
? t

a
⊒

Abstract (Conservative) interpretation

Set of states

abstract
representation

α

Abstract
semantics

statement s
abstract
representation

Operational
semantics

statement s
Set of states

⊒

abstract
representation

6

Abstract (Conservative) interpretation

abstract
representation

Set of states

Abstract
semantics

statement s
abstract
representation

Operational
semantics

statement s
Set of states Set of states

⊆

Challenges in Abstract Interpretation

• Finding appropriate program semantics (runtime)
• Designing abstract representations

• What to forget
• What to remember

• Summarize crucial information
• Handling loops
• Handling procedures

• Scalability
• Large programs
• Missing source code

• Precise enough

Runtime vs. Abstract Interpretation
(Software Quality Tools)

Locate rare errors

Proportional to program’s
size

Proportional to
program’s
execution

Cost

False alarmsMissed ErrorsEffectiveness

AbstractRuntime

Example Constant Propagation

• Abstract representation set of
integer values and and extra
value “?” denoting variables
not known to be constants

• Conservative interpretation of
+

432?2

………?…

321?1

210?0

?????

210?+#

Example Constant Propagation (Cont)

• Conservative interpretation of
*

420?2

……0?…

210?1
00000

??0??

210?*#

420?2

……0?…

210?1
00000

??0??

210?*#

Example Program

x = 5;

y = 7;

if (getc())

y = x + 2;

z = x +y;

7

Example Program (2)

if (getc())

x= 3 ; y = 2;

else

x =2; y = 3;

z = x +y;

Undecidability Issues

• It is undecidable if a program point is reachable
in some execution

• Some static analysis problems are undecidable even if
the program conditions are ignored

The Constant Propagation Example

while (getc()) {
if (getc()) x_1 = x_1 + 1;
if (getc()) x_2 = x_2 + 1;
...
if (getc()) x_n = x_n + 1;
}

y = truncate (1/ (1 + p2(x_1, x_2, ..., x_n))
/* Is y=0 here? */

Coping with undecidabilty

• Loop free programs

• Simple static properties

• Interactive solutions

• Effects of conservative estimations
– Every enabled transformation cannot change the meaning of

the code but some transformations are not enabled

– Non optimal code

– Every potential error is caught but some “false alarms” may be
issued

Analogies with Numerical Analysis

• Approximate the exact semantics

• More precision can be obtained at greater computational
costs

– But sometimes more precise can also be more efficient

Violation of soundness

• Loop invariant code motion

• Dead code elimination

• Overflow
((x+y)+z) != (x + (y+z))

• Quality checking tools may decide to ignore certain kinds
of errors

– Sound w.r.t different concrete semantics

8

Optimality Criteria

• Precise (with respect to a subset of the programs)

• Precise under the assumption that all paths are
executable (statically exact)

• Relatively optimal with respect to the chosen abstract
domain

• Good enough

Program Verification

• Mathematically prove the correctness of the program

• Requires formal specification

• Example. Hoare Logic {P} S {Q}
– {x = 1} x++ ; {x = 2}

– {x =1}
{true} if (y >0) x = 1 else x = 2 {?}

– {y=n} z = 1 while (y>0) {z = z * y-- ; } {?}

Relation to Program Verification

• Fully automatic
• But can benefit from specification
• Applicable to a programming

language
• Can be very imprecise
• May yield false alarms
• Identify interesting bugs
• Establish non-trivial properties

using effective algorithms

• Requires specification and loop
invariants

• Not decidable
• Program specific

• Relative complete
• Must provide counter examples
• Provide useful documentation

Program Analysis Program Verification

Complementary Approaches

• Finite state model checking

• Unsound approaches
– Compute underapproximation

• Better programming language design

• Type checking

• Proof carrying code

• Just in time and dynamic compilation

• Profiling

• Runtime tests

