€s264: Program Analysis

catalog name: Implementation of Programming Languages

Ras Bodik
WF 11-12:30

slides adapted from Mooly Sagiv

Topics

» static program analysis
- principles: key ideas and connections
- techniques: efficient algorithms
- applications: from compilation to software engineering

« advanced topics, time permitting
- dynamic program analysis
= ex. run-time bug-finding
- program representations
« ex. Static Single Assignment form

Course Requirements

» Prerequisites
- acompiler course (cs164)
» Useful but not mandatory
- semantics of programming languages (cs263)
- algorithms
- discrete math

Course structure

» Source
- Nielsen, Nielsen, Hankin, Principles of Program Analysis
- research papers
» Format
- lectures (roughly following the textbook)
- discussions of research papers

« you'll read the paper before lecture and send me a “mini-review”
= 4paragraphs
= Grade
- 4-5homeworks
- take-home exam
- project

Guest lectures

» Lectures may include several “guest lecturers”
- expert’s view on a more advanced topic
» Guest lecture time usually not during class; instead
- PS Seminar (Mondays 4pm in 320 Soda)
- Faculty candidate talks (TBD)
- CHESS Seminar (Tuesdays, 4pm, 540 Cory)

= First speaker
- Shaz Qadeer, Monday 4pm 320 Soda
- paper: KISS: Keep it Simple and Sequential
- you'll write a mini-review (instructions to come)

Outline

» What is static analysis
- usage in compilers and other clients

» Whyis it called abstract interpretation?
- handling undecidability
- soundness of abstract interpretation

« Relation to program verification

» Complementary approaches




Static Analysis

Example Static Analysis Problem

« Goal:
- automatic derivation of properties that hold on every
execution leading to a program location (label)

- (without knowing program input)

» Usage:
- compiler optimizations
- code quality tools
« Identify bugs
« Prove absence of certain bugs

« Find variables with constant value at a given program

location

int p(int x) {
return (x * x) ;

void main()

intz;
if (getc()) z=p(6) +8;
else z=p(5)+7;
printf (z);

}

int p(int x){
return (x * x);

void main()

intz;
if (getc() z=p(3) +1;
else z=p(-2) + 6;
printf (z);

}

A more problematic program

Another example static analysis problem

int x;
void p(a) {
c =read();
if (c>0){
a=a-2;
p(@);
a=a+2;
}
x=-2*a+5;
print(x);
}
void main {

P(7); print(x);

» Find variables which are live at a given program location

- Definition: variable x is live at a program location p if x's R-
value can be used before x is set

- Corresponding property: there exists an x-definition-free
execution path from p to a use of x

A simple liveness example

Typical compiler

source program

I*c ¥

LO: a:=0
I*ac*

L1: b:=a+1

@Q ©®

c:=c+b

I*be*/ e
a:=b*2

I*ac*
if c <N goto L1
I*c ¥

return ¢

register interference graph

Scanner

Parser

AST
Semantic Analysis

AST + type information

Code Generator
IR
Static analysis

IR + analysis info

Transformations




Some Static Analysis Problems

The Need for Static Analysis

» Live variables

» Reaching definitions

» Available expressions

» Dead code

» Pointer variables that never point to same location

« Points in the program in which it is safe to free an object
» Avirtual method call whose target method is unique

= Statements that can be executed in parallel

= An access to a variable that must reside in the cache

» Integer intervals

» Compilers
- Advanced computer architectures
(Superscalar pipelined, VLIW, prefetching)
- High-level programming languages
(functional, 00, garbage collected, concurrent)
» Software Productivity Tools
- Compile time debugging
Strengthen type checking for C
Detect Array-bound violations
Identify dangling pointers
Generate test cases
Prove absence of runtime exceptions
Prove pre- and post-conditions

Software Quality Tools. Detecting Hazards

« Uninitialized variables:
a=malloc();
b=a;
cfree (a);
c= malloc ();
if (b==c¢)
// unexpected equality

« References outside array bounds
» Memory leaks

Memory leakage example
List* reverse(List head) typedef struct List {
{ intd;
List *rev, *n; struct List* next;
rev = NULL; } List;

while (head != NULL) {
n = head>next;

head->next = rev;

leakage of address pointed to by head

rev = head;

}

return rev;

Challenges in Static Analysis

Foundation of Static Analysis

» Correctness
» Precision

« Efficiency
» Scaling

» Static analysis can be viewed as

- interpreting the program over an “abstract domain”

- executing the program over larger set of execution paths
» Guarantee sound results, ex.:

- Every identified constant is indeed a constant

- But not every constant is identified as such




Example Abstract Interpretation. Casting Out Nines

Even/0dd Abstract Interpretation

» A (weak) sanity check of decimal arithmetic using 9 values
- 012345678
» The casting-out-nine rule:

- whenever an intermediate result exceeds 8,
replace by the sum of its digits (recursively)

+ Example “123* 457 + 76543 = 1326542"
- 123457476543 =132654

- 677+7 =217
- 6+7 =3?
-4 =37 NO. Report an error.

«  Why this rule produces no false alarms:
- (10a+b)mod 9=(a+b) mod9
- (a+b)mod 9 =(amod9) + (b mod 9)
- (a*b)mod 9 =(amod9)* (b mod9)

« Determine if an integer variable is even or odd at a given
program point

Example Program

Abstract Interpretation

1% x=2 %/

while (x!=1) do{ /*x=2%*/

if (x %2)==
I*x=E* {x:=x1/2;} [* x=2 */
else
[Fx=0* {x:=x*3+1; /* x=E */
assert (x %2 ==0); }
}
1* x=0%*/

Abstract

Concrete

a Descriptors of
| Sets Of Stores |—————= sets of stores

0dd/Even Abstract Interpretation

0dd/Even Abstract Interpretation

All concrete states

T xeEveny {-2,1,5
{0,2}

All concrete states




0dd/Even Abstract Interpretation

All concrete states a

0dd/Even Abstract Interpretation

a(X)=ifX=a return1 L
else if forall z in X (z%2 == 0) return E
else if forall zin X (z%2 !=0) return O

else return ?

y(a) = ifa= L retun @
else ifa=E return Even

else if a=0 return Odd

else return Natural

Example Program

while (x!=1) do {

if (x%2) ==
{x:=x/2;}
else
Px=0* {X:=x*3+1; [Fx=E*
assert (x %2 ==0); }

Concrete and Abstract Interpretation

+J0 1 2 3 0 123 .
0/0 1 2 3 00000
1/1 23 4 110 123.
212 345 20246 .
3/3 456 303609.
+][?2 O E »[2 O E
202 2 2 21?2 2 E
O[? EO O[? O E
E|? O E E|E E E

Abstract interpretation cannot be always precise

Operational
semantics
X :=x/2
{16, 32} I {8, 16}
i a o
:
X:=x/*2
E Abstract ? = E
semantics ';

Abstract (Conservative) interpretation

Operational
semantics

statement s
Set of states Setof states |\
\

e oo

statement s
abstract

. abstract - abstract
representation Abstract representation | = | representation

+
iC




Abstract (Conservative) interpretation

Operational
semantics

statement s
Set of states Set of states | = | Set of states

statement s :
abstract abstract 3
representation Abstract representation
semantics

Challenges in Abstract Interpretation

* Finding appropriate program semantics (runtime)
« Designing abstract representations
e What to forget
e What to remember
e Summarize crucial information
* Handling loops
* Handling procedures
e Scalability
e Large programs
* Missing source code
e Precise enough

Runtime vs. Abstract Interpretation
(Software Quality Tools)

Runtime Abstract

Effectiveness Missed Errors False alarms

Locate rare errors

Cost Proportional to Proportional to program’s
program’s size
execution

Example Constant Propagation

= Abstract representation set of
integer values and and extra

value "?" denoting variables +H1?2 0|1

not known to be constants 'L

» Conservative interpretation of o= Tolt
+

12 [1]2

2223

Example Constant Propagation (Cont)

» Conservative interpretation of

*

1?2 0 1 72
?? ?? 00 ?? ??
% [% % % %
11?2 0 1 2
22 ?? 00 22 44
?? 00

Example Program

X = 5;

y=T1;

if (getc())
yEx+2

z=x+y;




Example Program (2)

if (getc())
x=3;y=2

else
x=2y=3;

z=x+y;

Undecidability Issues

« Itis undecidable if a program point is reachable
in some execution

» Some static analysis problems are undecidable even if
the program conditions are ignored

The Constant Propagation Example

while (getc()) {
if (getc()) x_1=x_1+1;
if (getc()) x 2=x_2+1;

ifm(getc()) X_nN=x_n+1;

y = truncate (1/ (1 + p3(x_1, x_2, ..., X_n))
/*1s y=0 here? */

Coping with undecidabilty

» Loop free programs
« Simple static properties
« Interactive solutions

» Effects of conservative estimations
- Every enabled transformation cannot change the meaning of
the code but some transformations are not enabled
- Non optimal code

- Every potential error is caught but some “false alarms” may be
issued

Analogies with Numerical Analysis

» Approximate the exact semantics

= More precision can be obtained at greater computational
costs
- But sometimes more precise can also be more efficient

Violation of soundness

= Loop invariant code motion
« Dead code elimination
« Overflow
((x+y)+2) I= (x + (y+2))
» Quality checking tools may decide to ignore certain kinds
of errors
- Sound w.r.t different concrete semantics




Optimality Criteria

= Precise (with respect to a subset of the programs)

» Precise under the assumption that all paths are
executable (statically exact)

=« Relatively optimal with respect to the chosen abstract
domain

» Good enough

Program Verification

« Mathematically prove the correctness of the program
» Requires formal specification

» Example. Hoare Logic {P} S {Q}
- {x=Tx++;{x=2}
- {x=1}
{true}if (y>0)x=Telsex=2{?}
- {y=n}z=1while (y>0) {z=z"y--;}{?}

Relation to Program Verification

Program Analysis Program Verification
«  Fully automatic « Requires specification and loop
»  But can benefit from specification invariants
»  Applicable to a programming +  Not decidable
language «  Program specific
« Can be very imprecise
+  Mayyield false alarms + Relative complete
« Identify interesting bugs +  Must provide counter examples
«  Establish non-trivial properties +  Provide useful documentation

using effective algorithms

Complementary Approaches

» Finite state model checking
» Unsound approaches
- Compute underapproximation
» Better programming language design
» Type checking

Proof carrying code

Just in time and dynamic compilation
« Profiling
= Runtime tests




