
1

Background for 
“KISS: Keep It Simple and Sequential”

cs264
Ras Bodik

spring 2005

Guest Lecture

• Shaz Qadeer, Microsoft Research
– Monday, Jan 24, 4pm in 320 Soda

– title: Context-Bounded Model Checking of Concurrent Software

– based on two papers
• KISS: Keep It Simple and Sequential [PLDI’04]

• Context-Bounded Model Checking of Concurrent Software [MSR-TR]

• guest lecture replaces Wed, Jan 26, cs264 lecture

• read the first paper and write a summary
– due Monday 3pm 

– email it to cs264@imail.eecs.berkeley.edu

– graded Pass / Fail

Paper summary: 5 short paragraphs

1. Summary: what’s the problem? what’s the solution?
• paraphrase the paper

• offer a different spin

• cut through the hype (if applicable)

2. Key new ideas: what’s good about the paper?
• what new insights or techniques made this paper possible?

• or simply, what did you like?

3. Limitations: what’s weak in the paper?
• limitations not mentioned in the paper

• impact of limitations, whether mentioned or not

Paper summary: 5 short paragraphs

4. What next?
• applications of the technique

• future directions

• cs264 project ideas

5. Missing background
• which parts of the paper you didn’t understand

• background you didn’t have to understand the paper

• unfamiliar formalisms: e.g., type inference rules, semantics

• unfamiliar techniques: e.g., model checking

• unfamiliar lingo: e.g., happens-before relation

Upcoming reading assignment

• Read Chapter 1 from textbook by Friday next week
– overview of analysis techniques

– 30 pages, somewhat technical 

– textbook may not be in the bookstore by Monday

– but I’ll have photocopies of Chapter 1 for you on Monday

– pick them up at the guest talk or from mailbox on my door

Topics

• some background for the KISS paper
– data race

– assertions

– model checking 

– instrumenting the program 

– under-approximation

– abstract language



2

Data race

• Concurrency bugs 
– like other bugs, have various forms
– is there one pattern that describes many of them?

• Data race: a race condition on data accesses
– when two threads (may) access same memory location 

simultaneously (but two loads ok)

• It’s (only) a heuristic
– false positives: some data races are not bugs (example?)
– false negatives: doesn’t catch all bugs (example?)

• False positives inspire a refined definition
– data race: when two accesses are not separated by a 

synchronization

Assertions

• Some bugs are program-specific
– cannot be described with a general pattern like “data race”

• Programmers have a way to catch these bugs: assertions
– check the program state at some program point

• ex. does ‘x.parent’ indeed point to x’s parent node? 

– check the program state across several program points
• ex. has the tree been traversed in sorted order by the ‘data’ field?
• may require instrumenting the program with a “state” variable
• ex. a global variable storing the value of last ‘data’ field

• A programmer evaluates assertions at run-time
– but they can also be “evaluated” by a static analyzer
– static debugging: prove that no assertion can fail, for any input

Model checking

• KISS reduces parallel analysis into sequential analysis
– translates a multithreaded program P into a sequential P’

– P’ simulates (some) parallelism in P

– simulation by P’ serving as its own scheduler

• The sequential P’ analyzed in a model checker SLAM

• What’s a model checker?
– very simplified view:

constant propagator that checks if any assertion can fail

– an important detail:
i) analyze branches to exclude infeasible paths
ii) may also analyze each path separately (no path merges)

Instrumentation

Serves two purposes!

1. Adds assertions to check for temporal properties
• ex. thread must not enter driver after driver was stopped

• in this paper, done manually

2. Translates P into P’
• adds simulation of thread scheduling

• automatic

Abstract language

• Explain the technique for C is too hard
– so the paper explains it on a simplified language

• Side note: KISS translates twice
– from P in C to P in the “parallel language”

– from parallel P to sequential P’

• The parallel language defined
– using (abstract) syntax (in Fig 3)

– semantic defined informally in the text

Under-approximation

• Soundness is hard for this problem
– because the problem is undecidable

– would likely lead to many false positives

• Solution: 
– under-approximate

– in contrast to sound (conservative) static analysis, this collects 
a subset of facts that may happen 

– because it examines a subset of possible parallel executions

• how to approximate is the art of program analysis


