From SAT To SMT: Part |

Vijay Ganesh
MIT

Software Engineering & SMT Solvers
An Indispensable Tactic for Any Strategy

Formal Program
Methods Analysis

Reliable/Secure
Qwar’j

Automatic Program
Testing Synthesis

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Software Engineering & SMT Solvers
An Indispensable Tactic for Any Strategy

Formal Program
Methods Analysis

SAT/Q
Qy

Automatic Program
Testing Synthesis

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Foundation of Sofware Engineering
Logic Abstractions of Computation

Formal Program
Methods Analysis

Reasoning

Automatic Program
Testing Synthesis

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Foundation of Sofware Engineering

Logic Abstractions of Computation

Formal Program
Methods Analysis

(Boolean,...)

Automatic Program
Testing Synthesis

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Software Engineering using Solvers
Engineering, Usability, Novelty

Program Specification
e)1 Logic Formulas
v
. 4)
Program Reasoning SAT/SMT
Tool Solver
- J
< I

* SAT/UNSAT

Program is Correct?
or Generate Counterexamples (Test cases)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

SAT/SMT Solver Research Story
A 1000x Improvement

* Solver-based programming languages
* Compiler optimizations using solvers
* Solver-based debuggers

* Solver-based type systems

* Solver-based concurrency bugfinding
* Solver-based synthesis

1,000,000 Constraints « Bio & Optimization

* Concolic Testing
* Program Analysis
* Equivalence Checking

| O0,000 Constraints * Auto Configuration

* Bounded MC
* Program Analysis
e Al

10,000 Constraints

|,000 Constraints
1998 2001 2004 2007 2010

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

The SAT/SMT Problem

Logic SAT

Formula Solver
(QvpVnr) UNSAT

(Qv-pvr)

* Rich logics (Modular arithmetic, Arrays, Strings,...)
* NP-complete, PSPACE-complete,...
¢ Practical, scalable, usable, automatic

* Enable novel software reliability approaches

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

| ecture Outline

Topics Covered

[A Motivation for SAT/SMT solvers in software engineering

[High-level description of the SAT/SMT problem & logics

Rest of the lecture

* Modern SAT solver architecture & techniques
* Modern SMT solver architecture & techniques
e My own contributions: STP & HAMPI

e SAT/SMT-based applications

e Future of SAT/SMT solvers

* Some history (who, when,...) and references sprinkled throughout the talk

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

The Boolean SAT Problem
Basic Definitions and Format

A literal p is a Boolean variable x or its negation .

A clause C is a disjunction of literals: x, v ~x,, v x5

A CNF is a conjunction of clauses: (x; v ™x; v Xg) A (X5 v X)) A (X3 v "X, v "Xg)

All Boolean formulas assumed to be in CNF

Assignment is a mapping (binding) from variables to Boolean values (True, False).
A unit clause Cis a clause with a single unbound literal

The SAT-problem is:

Find an assignment s.t. each input clause has a true literal (aka input formula has a solution or is SAT)

OR establish input formula has no solution (aka input formula is UNSAT)

The Input formula is represented in DIMACS Format:

c DIMACS
pcnfé 3
2-150
6-20
3-4-60

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

DPLL SAT Solver Architecture

The Basic Solver

DPLL(Ocns, assign) {
Propagate unit clauses;
if “conflict”: return ;
if "complete assign”: return

“pick decision variable x”;

return
DPLL(Ocnf | x=0, assign[x=0])
|| DPLL(Ocnf | x=1, assign[x=1]);

.
)

* Propagate (Boolean Constant Propagation):
* Propagate inferences due to unit clauses
* Most time in solving goes into this

* Detect Conflict:
* Conflict: partial assignment is not satisfying

* Decide (Branch):
* Choose a variable & assign some value

* Backtracking:
* Implicitly done by the recursion

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture

Key Steps and Data-structures

Input SAT |

Return

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

| Return |

Key steps

* Decide()
* Propagate()
(BCP: Boolean constraint propagation)
e Conflict analysis and learning()
e Backjump()
* Forget()
e Restart()

CDCL: Conflict-Driven Clause-Learning

e Conflict analysis is a key step
* Results in learning a conflict clause
* Prunes the search space

Key data-structures (State):

e Stack or trail of partial assignments (AT)
* Input clause database

e Conflict clause database

e Conflict graph

* Decision level (DL) of a variable

|0

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT -—1

Conflict

Return .

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

o

* Propagate (Boolean Constant Propagation):
* Propagate inferences due to unit clauses
* Most time in solving goes into this

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT -—1

Propagate

4

Q Conflict

W

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

§

Return

* Propagate (Boolean Constant Propagation):
* Propagate inferences due to unit clauses
* Most time in solving goes into this

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT |

Conflict

Return .

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

o

* Propagate (Boolean Constant Propagation):

* Propagate inferences due to unit clauses
* Most time in solving goes into this

e Detect Conflict?

* Conflict: partial assighment is not satisfying

12

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT |

=g

Propagate

4

Q Conflict

W

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

3

Return

* Propagate (Boolean Constant Propagation):

* Propagate inferences due to unit clauses
* Most time in solving goes into this

e Detect Conflict?

* Conflict: partial assighment is not satisfying

12

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT |

=

W

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Conflict

| Return |

* Propagate (Boolean Constant Propagation):
* Propagate inferences due to unit clauses
* Most time in solving goes into this

* Detect Conflict?
* Conflict: partial assighment is not satisfying

* Decide (Branch):
* Choose a variable & assign some value (decision)
* Basic mechanism to do search
* Imposes dynamic variable order
* Decision Level (DL): variable = natural number

13

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT |

=

W

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Conflict

| Return |

* Propagate (Boolean Constant Propagation):
* Propagate inferences due to unit clauses
* Most time in solving goes into this

* Detect Conflict?
* Conflict: partial assighment is not satisfying

* Decide (Branch):
* Choose a variable & assign some value (decision)
* Basic mechanism to do search
* Imposes dynamic variable order
* Decision Level (DL): variable = natural number

13

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT I-_l

Propagate()

| Return |

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Conflict

| Return |

* Propagate:
* Propagate inferences due to unit clauses
* Most time in solving goes into this

* Detect Conflict?
* Conflict: partial assignment is not satisfying

* Decide (Branch):
* Choose a variable & assign some value (decision)
* Each decision is a decision level
* Imposes dynamic variable order
* Decision Level (DL): variable = natural number

* Conflict analysis and clause learning:
* Compute assignments that lead to conflict (analysis)
* Construct conflict clause blocks the non-satisfying &
a large set of other ‘no-good’ assignments (learning)

* Marques-Silva & Sakallah (1996)

| 4

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT I-_l

Propagate()

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

e

Return

* Propagate:
* Propagate inferences due to unit clauses
* Most time in solving goes into this

* Detect Conflict?
* Conflict: partial assignment is not satisfying

* Decide (Branch):
* Choose a variable & assign some value (decision)
* Each decision is a decision level
* Imposes dynamic variable order
* Decision Level (DL): variable = natural number

* Conflict analysis and clause learning:
* Compute assignments that lead to conflict (analysis)
* Construct conflict clause blocks the non-satisfying &
a large set of other ‘no-good’ assignments (learning)

* Marques-Silva & Sakallah (1996)

| 4

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT I-_l

Propagate()

Conflict

Return |i | “|

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

* Propagate:
* Propagate inferences due to unit clauses
* Most time in solving goes into this

* Detect Conflict?
* Conflict: partial assignment is not satisfying

* Decide:
* Choose a variable & assign some value (decision)
* Each decision is a decision level
* Imposes dynamic variable order
* Decision Level (DL): variable = natural number

* Conflict analysis and clause learning:
* Compute assignments that lead to conflict (analysis)
* Construct conflict clause blocks the non-satisfying &
a large set of other ‘no-good’ assignments (learning)

* Marques-Silva & Sakallah (1996)

* Conflict-driven Backjump:
* Undo the decision(s) that caused no-good assighment
* Assign ‘decision variables’ different values
* Go back several decision levels
* Backjump: Marques-Silva, Sakallah (1999)
* Backtrack: Davis, Putnam, Loveland, Logemann (1962)

| Return |

|5

Modern CDCL SAT Solver Architecture

Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT I-_l

Propagate()

Conflict

Return |i | “|

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

* Propagate:
* Propagate inferences due to unit clauses
* Most time in solving goes into this

* Detect Conflict?
* Conflict: partial assignment is not satisfying

* Decide:
* Choose a variable & assign some value (decision)
* Each decision is a decision level
* Imposes dynamic variable order
* Decision Level (DL): variable = natural number

* Conflict analysis and clause learning:
* Compute assignments that lead to conflict (analysis)
* Construct conflict clause blocks the non-satisfying &
a large set of other ‘no-good’ assignments (learning)

* Marques-Silva & Sakallah (1996)

* Conflict-driven Backjump:
* Undo the decision(s) that caused no-good assighment
* Assign ‘decision variables’ different values
* Go back several decision levels
* Backjump: Marques-Silva, Sakallah (1999)
* Backtrack: Davis, Putnam, Loveland, Logemann (1962)

w4

|5

Modern CDCL SAT Solver Architecture

Propagate(), Decide(),

Input SAT -_l

Return

W

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Decide
/ Unit clause
{3,6,-7,8) {3,6,-7,8) {3,6,-7,8} (BCP)
{I.,4,7} {1,4,7} (1,4,7}
{-8,4) {-8,4) {-8,4)
-1,-3,8) :> {-1,-3,8) :> {-1,-3,8)
{-3,-4,-8} {-3,-4,-8) {-3,-4,-8)
{-1,-2,3,4,-6} {-1,-2,3,4,-6} {-1,-2,3,4,-6}
{3,6,-7,8) A“°tlhe" unit {3,6,7,8) CONFLICT!
clause Tri
{h47} (more BCP) {47} analy(zensggbearc::(‘j)ump)
{-8 4} {-8 4}
l:>{.|,.3,a}/ > -1-38 /
{=3,-4, -8} {-3,-4,-8)
{=1,-2,3,4,-6} {-1,-2,3,4,-6}

16

Modern CDCL SAT Solver Architecture

Decide() Details: VSIDS Heuristic

Input SAT I-_l

Propagate()

Return

Return

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

* Decide() or Branching():
* Choose a variable & assign some value (decision)
* Imposes dynamic variable order (Malik et al. 2001)
* How to choose a variable:
* VSIDS heuristics

* Each variable has an activity

* Activity is bumped additively, if variable occurs in conflict clause

* Activity of all variables is decayed by multiplying by const < |
* Next decision variable is the variable with highest activity
* Over time, truly important variables get high activity

* This is pure magic, and seems to work for many problems

|7

Modern CDCL SAT Solver Architecture

Propagate() Details: Two-watched Literal Scheme

Input SAT |

Return

| Return |

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Decide
/ Unit clause
{3,6,-7,8} {3,6,-7,8) {3.6,-7.8} (BCP)
{1,4,7) {1,4,7) {1,4,7}
{-8,4} {-8,4} {-8, 4}
-1,-3,8) :> -1,-3,8) :> {-1,-3,8)
{-3,-4,-8} {-3,-4,-8) {-3,-4,-8)
{-1,-2,3,4,-6) {-1,-2,3,4,-6) {-1,-2,3,4,-6}
Watched | Watcher Woatched | Woatcher
Literal List Literal List
- {-1,-3,8},... |—'> | {-1,-3,8}... :>
-3 {-1,-3,8},... -3
8 {-1,-3,8},...
Watched | Watcher
Literal List
-1 |:> The constraint propagates 8
-3
8 {-1,-3,8},..

18

Modern CDCL SAT Solver Architecture

Analyze/Learn(), Backjump()

Input SAT -_l
Decide

¥

Propagate

{3,6,-7,8) Another unit
clause
{47 (more BCP)

{-8 4}

> -1-3.8) / —>
{-3,-4,-8)
{=1,-2,3 4, -6}

Conflict

Unit clause

(3.6,7,8) (3.6,-7.8) (3,6,-7,8) (BCP)
{1.47} {1,4,7} (1,47

(8,4) (8,4) (8,4)

1,-3,8) > (138 o> (1-39

(3,-4,-8) (-3,-4,-8) (-3,-4,-8)

(1,-2,3,4,-6) (1,-2,3,4,-6) (1,-2,3,4,-6)

(3,6,-7,8) CONFLICT!

(Trigger to
{47} analyze & backjump)
{-8 4}

{-1,-3,8)
{-3,-4, -8}
{-1,-2,3,4,-6)

i s,

W

Basic Backtracking Search

* Flip the last decision |

* Try setting | to False

* Highly inefficient

* No learning from mistakes

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

19

Modern CDCL SAT Solver Architecture

Conflict Analysis/Learn() Details

Input SAT I-_l

Propagate()

Some Definitions

Conflict

Return

Return

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

* Decision Level (DL)
* Map from Boolean variables in input to natural numbers

e All unit clauses in input & resultant propagations get DL = 0
* Every decision var gets a DL in increasing order >= |
* All propagations due to decision var at DL=x get the DL=x

e Conflict Graph (CG) or Implication Graph
* Directed Graph that records decisions & propagations

* Vertices: literals, Edge: unit clauses

¢ Conflict Clause (CC)
* Clause returned by Conflict Analysis(), added to conflict DB

* Implied by the input formula
e A cut in the CG
® Prunes the search

* Assignment Trail (AT)
* A stack of partial assignment to literals, with DL info

20

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W, = (=X + Xy) O

W3 = (=X + X3 + Xo)

W3 = (ﬂXZ + _IX3 + X4)
W4 = (2 X4+ X5 + Xio)

Ws = (7 X4+ Xe + X))

W = (7 Xs + =1 Xe) Xo=0@| Xi1=0@3
W7 = (X + X7 + X)) O O
W3 = (X + Xp)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W, = (=X + Xy) O

W3 = (=X + X3 + Xo)

Wi = (aXa + X3 + Xa) Xi=1@s

W4 = (7 X4+ Xs + X)) O

Ws = (7 X4+ Xe + X))

W = (7 Xs + =1 Xe) Xo=0@| Xi1=0@3
W7 = (X + X7 + X)) O O
W3 = (X + Xp)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W, = (=X + Xy) O

W3 = (=X + X3 + Xo)

Wi = (0Xao+ X5 + Xe)) _OI@V
W4 = (2 X4+ X5 + Xio)

Ws = (7 X4+ Xe + X))

W = (7 Xs + =1 Xe) Xo=0@| Xi1=0@3
W7 = (X + X7 + X)) O O
W3 = (X + Xp)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W, = (=X + Xy) O

W3 = (=X + X3 + Xo)

W3 = (X2 + X3 + Xy) Xi=1@6
W4 = (2 X4+ X5 + Xio)
W)
Ws = (7 X4+ Xe + X))
W = (7 Xs + =1 Xe) Xo=0@| Xi1=0@3
W7 = (X + X7 + X)) O O

Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3
O

Wi= e X,= 1@6

W2 = (=X + X3 + Xo)

Wi = (2% + X3 + X4) Xi=l@sé

Wy = (7 X4+ Xs + X))

Ws = (7Xs+ Xe + X1)

We = (7 X5 + =1 Xg) X9= 0@l Xin=0@3

W7 = (Xi + X7 + 2X)2) O O

Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W, = (=X + Xy) O

X2= 1@6

W3 = (=X + X3 + Xo)
Wi

Wi = (aXa + X3 + Xa) Xi=1@s

W4 = (2 X4+ X5 + Xio)

W,
Ws = (7 X4+ Xe + X))

W
We = (=Xs + ~Xe) Xo= 0@| - X1 = 0@3
W7 = (X + X7 + X)) O

Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W, = (=X + Xy) O

X2= 1@6

W2 = (=X + X3 + Xo)

Wi = (<X + X3 + Xa)
W4 = (X4 + Xs + Xio)
Ws = (7Xs+ Xe + X1)
We = (X5 + 1 Xe) Xi=0@3

W7 = (X + X7 + 2X))

Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)
We = (0 Xs + 1 X¢)

W7 = (X + X7 + 2X))

Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W, = (=X + Xy) O

X2= 1@6

W3 = (=X + X3 + Xo)
W3 = (X2 + X3 + Xy) Xi=1@6

W4 = (2 X4+ X5 + Xio)

X;= 1@6 Y3
Ws = (7 X4+ Xe + X))

W = (7 Xs + =1 Xe) Xo=0@| Xi1=0@3
W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W, = (=X + Xy) O

X2= 1@6

W2 = (=X + X3 + Xo)

Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W, = (=X + Xy) O

X2= 1@6

W2 = (=X + X3 + Xo)

Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

W) = (=X + Xy) W4
X = | @6
W3 = (=X + X3 + Xo)

W3 = (ﬂXZ + _IX3 + X4)

W4 = (2 X4+ X5 + Xio)
Ws = (7 X4+ Xe + X))

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB Xio=0@3

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: {X9= 0@, Xi0= 0@3, Xi1 = 0@3, X12= |@2, Xi3= | @2, ...}

Current decision: {X| = | @6}

Clause DB CONFLICT GRAPH Xi0=0@3

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wy = (7 X4+ Xs + X))
Ws = (7Xs+ Xe + X1)

W6 = (ﬂXS + _|X6)

W7 = (X + X7 + 2X))
Ws = (X + Xs)

Wy = (ﬂX7 + —IX8 + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Modern CDCL SAT Solver Architecture

Conflict Analysis/Learn() Details: Conflict Clause

Current Decision: {X| = | @6}

Current Assignment Trail: { X9 = 0@, Xi0= 0@3, X1 = 0@3, X12= | @2, Xi13= | @2, ...}

Simplest strategy is to traverse the conflict graph backwards until decision variables:
conflict clause includes only decision variables (=X + Xy + X0 + X))

Clause DB

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (aXa + X3 + Xa)
Wy = (7 X4+ Xs + X)o)
Ws = (7Xs+ Xe + X))
We = (0 Xs + 1 X¢)

W7 = (Xi+ X7 + 7X)2)
Ws = (X + Xs)

Wy = (ﬂX7+ ﬂXg + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

CONFLICT GRAPH

Reason Side

""""

Conflict Side

Conflict

22

Modern CDCL SAT Solver Architecture

Conflict Analysis/Learn() Details: Conflict Clause

Current Assignment Trail: {X9= 0@, Xi0 = 0@3, X11 = 0@3, Xi2= | @2, Xi13= | @2, ...}

Current Decision: {X| = | @6}

Another strategy is to use First Unique Implicant Point (UIP):

Traverse graph backwards in breadth-first, expand literals of conflict, stop at first UIP

Clause DB

Wi = (=X + Xy)

W2 = (=X + X3 + Xo)
Wi = (=X + X + Xa)
Wy = (X4 + Xs + X))
Ws = (X4 + Xe + X))
Ws = (X5 + 1 X¢)

W7 = (X + X7 + 7 X))
Ws = (X + Xs)

Wy = (—|X7 + 1 Xg + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

CONFLICT GRAPH

Reason Side

Xi0= 0@3

X2= @6

Xs= @6

Conflict Side

Conflict

23

Modern CDCL SAT Solver Architecture

Conflict Analysis/Learn() Details: BackTrack

Current Assignment Trail: {X9= 0@, Xi0= 0@3, X11 = 0@3, X12= @2, Xi13= | @2, ...}

Current decision: {X| = | @6}

Strategy: Closest decision level (DL) < current DL for which conflict clause is unit. Undo {X; = | @6}

Clause DB

Wi = (<X + Xa)
W2 = (=X + X3 + Xo)
Wi = (<X + X3 + Xa)
Wiy = (A X4+ Xs + Xio)
Ws = (aX4 + Xe + Xi1)
Wi = (X5 + 1 X¢)

W7 = (Xi+ X7 + °X)2)
Wa = (X) + Xa)

Wy = (—|X7 + 1 Xg + —|X|3)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

CONFLICT GRAPH

Reason Side

""""

Conflict Side

Xs= @6

Conflict

24

Modern CDCL SAT Solver Architecture

Conflict Analysis/Learn() Details: Backjump

Conflict clause: (X9 + X0 + X + 72Xz + 7X)3)

Backjump strategy: Closest decision level (DL) < current DL for which conflict clause is unit. Undo {X 0= 0@3}

CLAUSE DB

CONFLICT GRAPH

Wi = (=X + X2)
W2 = (=X + X3 + Xo)
Wi = (aXa + =X3 + X4)
Wiy = (A X4+ Xs + Xo)
Ws = (7 X4+ Xe + Xi1)
Wi = (= Xs + ~Xe)

W7 = (X + X7 + X))
Ws = (X + Xs)

Wy = (—|X7 + 1 Xg + —|X|3)

Xo=0@|

Reason Side

Xi3= @2

Conflict Side

TRAIL

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

25

Modern CDCL SAT Solver Architecture

Restarts and Forget

Input SAT ﬁ

Conflict

—

* Restarts
® Clear the Trail and start again
o Start searching with a different variable order
* Only Conflict Clause (CC) database is retained
* Forget: throw away less active learnt conflict clauses routinely
* Routinely throw away very large CC
* Logically CC are implied
* Hence no loss in soundness/completeness
* Time Savings: smaller DB means less work in propagation

* Space savings

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

=,

26

Modern CDCL SAT Solver Architecture
Why is SAT efficient?

* VSIDS branching heuristic and propagate (BCP)
* Conflict-Driven Clause-Learning (CDCL)
* Forget conflict clauses if DB goes too big

* BackJump

e Restarts

Conflict
* All the above elements are needed for efficiency

* Deeper understanding lacking

* No predictive theory
| Return | .
| Return |

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

27

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), Backjump()

Input SAT I-_l

* Conflict-Driven Clause-Learning (CDCL)
(Marques-Silva & Sakallah 1996)

* Decide/branch and propagate (BCP)
(Malik et al. 2001, Zabih & McAllester 1988)

* BackJump
(McAllester 1980, Marques-Silva & Sakallah 1999)

Conflict e Restarts

(Selman & Gomes 2001)

* Follows MiniSAT
(Een & Sorensson 2003)

Return .

o

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

28

Modern CDCL SAT Solver Architecture

Soundness, Completeness & Termination

Input SAT |

Soundness: A solver is said fo be sound, if, for any input formula F,
the solver terminates and produces a solution, then F is indeed SAT

Proof: (Easy) SAT is returned only when all vars have been
assigned a value (True, False) by Decide or BCP, and solver checks
the solution.

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

29

Modern CDCL SAT Solver Architecture
Soundness, Completeness & Termination

Input SAT I-_l

Propagate()

Completeness: A solver is said fo be complete, if, for any input
formula F that is SAT, the solver terminates and produces a
solution (i.e., solver does not miss solutions)

Proof: (Harder)
® Backtracking + BCP + decide is complete (easy)

® Conflict clause is implied by input formula (easy)
® Only need to see backjumping does not skip assignments

® Observe backjumping occurs only when conflict clause (CC)
vars < decision level (DL) of conflicting var

® Back jumping to max(DL of vars in CC)

® Decision tree rooted at max(DL of vars in CC)+l1 is
guaranteed to not satisfy CC

® Hence, back jumping will not skip assignments

e

Return

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

30

Modern CDCL SAT Solver Architecture
Soundness, Completeness & Termination

Input SAT I-_l

Propagate()

Termination: Some measure decreases every iteration
Proof Sketch:

® Loop guarantees either conflict clause (CC) added
OR assign extended

® CC added. What stops CC addition looping forever?
® Recall that CC is remembered
Conflict

3 ® No CC duplication possible

® CC blocks UNSAT assign exploration in decision tree. No
duplicate UNSAT assign exploration possible

® Size of decision tree explored decreases for each CC add

=2

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

31

Modern CDCL SAT Solver Architecture
References & Important SAT Solvers

|. Marques-Silva, J.P. and K.A. Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Transactions on Computers 48(5),
1999, 506-521.

2. Marques-Silva, J.P. and K.A. Sakallah. GRASP:A Search Algorithm for Propositional Satisfiability. Proceedings of ICCAD, 1996.

3. M.Moskewicz, C. Madigan,Y. Zhao, L. Zhang, and S. Malik. CHAFF: Engineering an efficient SAT solver. Proceedings of the Design
Automation Conference (DAC), 2001, 530-535.

4. L.Zhang, C.F. Madigan, M. H. Moskewicz and S. Malik. Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. Proceedings of
ICCAD, 2001, 279-285.

5. Armin Bierre, Marijn Heule, Hans van Maaren, and Toby Walsh (Editors). Handbook of Satisfiability. 2009.10S Press. http://
www.st.ewi.tudelft.nl/sat/handbook/

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM.[962.
7. zChaff SAT Solver by Lintao Zhang 2002.
8. GRASP SAT Solver by Joao Marques-Silva and Karem Sakallah 1999.

9. MiniSAT Solver by Niklas Een and Niklas Sorenson 2005 - present

10. SAT Live: http://www.satlive.org/

| 1. SAT Competition: http://www.satcompetition.org/

12. SAT/SMT summer school: http://people.csail.mit.edu/vganesh/summerschool/

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

32

http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.satlive.org
http://www.satlive.org
http://www.satcompetition.org
http://www.satcompetition.org
http://people.csail.mit.edu/vganesh/summerschool/
http://people.csail.mit.edu/vganesh/summerschool/

Modern CDCL SAT Solver Architecture

Important Ideas and Conclusions

|. SAT solvers are crucial for software engineering

2. Huge impact in formal methods, program analysis and testing

3. Key ideas that make SAT efficient

Conflict-driven clause learning
VSIDS (or similar) variable selection heuristics
Backjumping

A w N -

Restarts

4. Techniques | didn’t discuss

Survey propagation (belief propagation) by Selman & Gomes
Works well for randomized SAT, not yet for industrial instances
Physics-inspired

A~ W N -

Combining CDCL with survey propagation (?)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

33

