
From SAT To SMT: Part 1

Vijay Ganesh
MIT

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Software Engineering & SMT Solvers
An Indispensable Tactic for Any Strategy

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

SE Goal:
Reliable/Secure

Software

2

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Software Engineering & SMT Solvers
An Indispensable Tactic for Any Strategy

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

SE Goal:
Reliable/Secure

Software

SAT/SMT
Solvers

2

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Foundation of Sofware Engineering
Logic Abstractions of Computation

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

Program
Reasoning

3

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Foundation of Sofware Engineering
Logic Abstractions of Computation

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

Program
Reasoning

Logics
(Boolean,...)

3

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Software Engineering using Solvers
Engineering, Usability, Novelty

4

Program Reasoning
Tool

Program Specification

Program is Correct?
or Generate Counterexamples (Test cases)

SAT/SMT
Solver

Logic Formulas

SAT/UNSAT

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

1,000 Constraints

10,000 Constraints

100,000 Constraints

1,000,000 Constraints

1998 2001 2004 2007 2010

• Solver-based programming languages
• Compiler optimizations using solvers
• Solver-based debuggers
• Solver-based type systems
• Solver-based concurrency bugfinding
• Solver-based synthesis
• Bio & Optimization

• Bounded MC
• Program Analysis
• AI

• Concolic Testing
• Program Analysis
• Equivalence Checking
• Auto Configuration

SAT/SMT Solver Research Story
A 1000x Improvement

5

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

The SAT/SMT Problem

• Rich logics (Modular arithmetic, Arrays, Strings,...)

• NP-complete, PSPACE-complete,...

• Practical, scalable, usable, automatic

• Enable novel software reliability approaches

Logic
Formula

SAT

UNSAT
Solver

(q ∨ p ∨ ¬r)
(q ∨ ¬p ∨ r)

...

6

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Lecture Outline

7

Topics Covered

Motivation for SAT/SMT solvers in software engineering

High-level description of the SAT/SMT problem & logics

Rest of the lecture

• Modern SAT solver architecture & techniques

• Modern SMT solver architecture & techniques

• My own contributions: STP & HAMPI

• SAT/SMT-based applications

• Future of SAT/SMT solvers

• Some history (who, when,...) and references sprinkled throughout the talk

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

The Boolean SAT Problem
Basic Definitions and Format

 A literal p is a Boolean variable x or its negation ¬x.

 A clause C is a disjunction of literals: x2 ∨ ¬x41 ∨ x15

 A CNF is a conjunction of clauses: (x2 ∨ ¬x1 ∨ x5) ∧ (x6 ∨ ¬x2) ∧ (x3 ∨ ¬x4 ∨ ¬x6)

 All Boolean formulas assumed to be in CNF

 Assignment is a mapping (binding) from variables to Boolean values (True, False).

 A unit clause C is a clause with a single unbound literal

 The SAT-problem is:

 Find an assignment s.t. each input clause has a true literal (aka input formula has a solution or is SAT)

 OR establish input formula has no solution (aka input formula is UNSAT)

 The Input formula is represented in DIMACS Format:

c DIMACS

p cnf 6 3

2 -1 5 0

6 -2 0

3 -4 -6 0

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

DPLL SAT Solver Architecture
The Basic Solver

9

DPLL(Θcnf, assign) {

Propagate unit clauses;

if ”conflict”: return FALSE;

if ”complete assign”: return TRUE;

”pick decision variable x”;

return

DPLL(Θcnf⎮x=0, assign[x=0])
 || DPLL(Θcnf⎮x=1, assign[x=1]);

}

• Propagate (Boolean Constant Propagation):
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict:
• Conflict: partial assignment is not satisfying

• Decide (Branch):
• Choose a variable & assign some value

• Backtracking:
• Implicitly done by the recursion

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Key Steps and Data-structures

10

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

Key steps

• Decide()
• Propagate()
 (BCP: Boolean constraint propagation)
• Conflict analysis and learning()
• Backjump()
• Forget()
• Restart()

CDCL: Conflict-Driven Clause-Learning

• Conflict analysis is a key step
• Results in learning a conflict clause
• Prunes the search space

Key data-structures (State):

• Stack or trail of partial assignments (AT)
• Input clause database
• Conflict clause database
• Conflict graph
• Decision level (DL) of a variable

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

11

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate (Boolean Constant Propagation):
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide:
• Choose a variable & assign some value (decision)
• Each decision is a decision level
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
• Analyze the reason (learn conflict clause)
• Conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments

• Marques-Silva & Sakallah (1999)

• BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

11

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate (Boolean Constant Propagation):
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide:
• Choose a variable & assign some value (decision)
• Each decision is a decision level
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
• Analyze the reason (learn conflict clause)
• Conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments

• Marques-Silva & Sakallah (1999)

• BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

12

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate (Boolean Constant Propagation):
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide (Branch):
• Choose a variable & assign some value (decision)
• Basic mechanism to do search
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
 Analyze the reason (learn conflict clause)

• Conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments

• Marques-Silva & Sakallah (1999)

• BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

12

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate (Boolean Constant Propagation):
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide (Branch):
• Choose a variable & assign some value (decision)
• Basic mechanism to do search
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
 Analyze the reason (learn conflict clause)

• Conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments

• Marques-Silva & Sakallah (1999)

• BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

13

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate (Boolean Constant Propagation):
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide (Branch):
• Choose a variable & assign some value (decision)
• Basic mechanism to do search
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
• Analyze the reason (learn conflict clause)
• Conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments

• Marques-Silva & Sakallah (1999)

• BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

13

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate (Boolean Constant Propagation):
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide (Branch):
• Choose a variable & assign some value (decision)
• Basic mechanism to do search
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
• Analyze the reason (learn conflict clause)
• Conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments

• Marques-Silva & Sakallah (1999)

• BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

14

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate:
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide (Branch):
• Choose a variable & assign some value (decision)
• Each decision is a decision level
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
• Compute assignments that lead to conflict (analysis)
• Construct conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments (learning)

• Marques-Silva & Sakallah (1996)

• BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

14

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate:
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide (Branch):
• Choose a variable & assign some value (decision)
• Each decision is a decision level
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
• Compute assignments that lead to conflict (analysis)
• Construct conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments (learning)

• Marques-Silva & Sakallah (1996)

• BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

15

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate:
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide:
• Choose a variable & assign some value (decision)
• Each decision is a decision level
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
• Compute assignments that lead to conflict (analysis)
• Construct conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments (learning)

• Marques-Silva & Sakallah (1996)

• Conflict-driven BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Backjump: Marques-Silva, Sakallah (1999)
• Backtrack: Davis, Putnam, Loveland, Logemann (1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

15

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Propagate:
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide:
• Choose a variable & assign some value (decision)
• Each decision is a decision level
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
• Compute assignments that lead to conflict (analysis)
• Construct conflict clause blocks the non-satisfying &
 a large set of other ‘no-good’ assignments (learning)

• Marques-Silva & Sakallah (1996)

• Conflict-driven BackJump:
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Backjump: Marques-Silva, Sakallah (1999)
• Backtrack: Davis, Putnam, Loveland, Logemann (1962)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

16

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

. . .

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

Unit clause
(BCP) {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

Decide

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

Another unit
clause

(more BCP)

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

CONFLICT!
(Trigger to

analyze & backjump)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Decide() Details: VSIDS Heuristic

17

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Decide() or Branching():

• Choose a variable & assign some value (decision)

• Imposes dynamic variable order (Malik et al. 2001)

• How to choose a variable:

• VSIDS heuristics

• Each variable has an activity

• Activity is bumped additively, if variable occurs in conflict clause

• Activity of all variables is decayed by multiplying by const < 1

• Next decision variable is the variable with highest activity

• Over time, truly important variables get high activity

• This is pure magic, and seems to work for many problems

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate() Details: Two-watched Literal Scheme

18

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

. . .

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

Unit clause
(BCP) {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

Decide

Watched
Literal

Watcher
List

-1 {-1, -3, 8},...

-3 {-1, -3, 8},...

... ...

Watched
Literal

Watcher
List

-1 {-1, -3, 8},...

-3 ...

8 {-1, -3, 8},...

... ...

The constraint propagates 8

Watched
Literal

Watcher
List

-1 ...

-3 ...

8 {-1, -3, 8},...

... ...

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

19

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

. . .

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

Unit clause
(BCP) {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

Decide

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

Another unit
clause

(more BCP)

 {3, 6, -7, 8}

 {1, 4, 7}

 {-8, 4}

 {-1, -3, 8}

 {-3, -4, -8}

 {-1, -2, 3, 4, -6}

CONFLICT!
(Trigger to

analyze & backjump)

Basic Backtracking Search

• Flip the last decision 1
• Try setting 1 to False
• Highly inefficient
• No learning from mistakes

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details

20

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

Some Definitions

• Decision Level (DL)
• Map from Boolean variables in input to natural numbers

• All unit clauses in input & resultant propagations get DL = 0

• Every decision var gets a DL in increasing order >= 1

• All propagations due to decision var at DL=x get the DL=x

• Conflict Graph (CG) or Implication Graph
• Directed Graph that records decisions & propagations

• Vertices: literals, Edge: unit clauses

• Conflict Clause (CC)
• Clause returned by Conflict Analysis(), added to conflict DB

• Implied by the input formula

• A cut in the CG

• Prunes the search

• Assignment Trail (AT)
• A stack of partial assignment to literals, with DL info

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X10 = 0@3

X11 = 0@3X9 = 0@1

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X10 = 0@3

X11 = 0@3X9 = 0@1

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X10 = 0@3

X11 = 0@3X9 = 0@1

W1

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X10 = 0@3

X11 = 0@3X9 = 0@1

W1

W2

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X11 = 0@3X9 = 0@1

W1

W2

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X11 = 0@3X9 = 0@1

W1

W2

W2

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3

W4

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3

W4

W4W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X5 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3

W4

W4W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X5 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3

W5

W4

W4W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X5 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4

W4W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4

W4W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4

W4

W6

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4

W4

W6

W6

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3

Conflict

X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4

W4

W6

W6

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Implication Graph

21

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3

Conflict

X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4

W4

W6

W6

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB CONFLICT GRAPH

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Conflict Clause

22

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current Decision: {X1 = 1@6}

Simplest strategy is to traverse the conflict graph backwards until decision variables:
conflict clause includes only decision variables (¬X1 + X9 + X10 + X11)

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Reason Side
W4

X10 = 0@3

X1 = 1@6

X2 = 1@6

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3

Conflict

X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4 W6

W6

Conflict Side

CONFLICT GRAPH

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: Conflict Clause

23

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current Decision: {X1 = 1@6}

Another strategy is to use First Unique Implicant Point (UIP):
Traverse graph backwards in breadth-first, expand literals of conflict, stop at first UIP

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB CONFLICT GRAPH

W4

X10 = 0@3

X1 = 1@6

X2 = 1@6

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3

Conflict

X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4 W6

W6

Reason Side Conflict Side

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: BackTrack

24

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

Strategy: Closest decision level (DL) ≤ current DL for which conflict clause is unit. Undo {X1 = 1@6}

W1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Reason Side
W4

X10 = 0@3

X1 = 1@6

X2 = 1@6

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3

Conflict

X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4 W6

W6

Conflict Side

CONFLICT GRAPH

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Conflict Analysis/Learn() Details: BackJump

25

Conflict clause: (X9 + X10 + X11 + ¬X12 + ¬X13)

BackJump strategy: Closest decision level (DL) ≤ current DL for which conflict clause is unit. Undo {X10 = 0@3}

X1 = 0@6

X8 = 1@6

X7 = 1@6

Conflict

X12 = 1@2

W8

W7

W7

W9

W9

X9 = 0@1

X10 = 0@3

X11 = 0@3

X13 = 1@2
W9

Reason Side

Conflict Side

CONFLICT GRAPH

3

1 0

TRAIL

4

5

6

BackJump

X1

DLW1 = (¬X1 + X2)

W2 = (¬X1 + X3 + X9)

W3 = (¬X2 + ¬X3 + X4)

W4 = (¬X4 + X5 + X10)

W5 = (¬X4 + X6 + X11)

W6 = (¬X5 + ¬X6)

W7 = (X1 + X7 + ¬X12)

W8 = (X1 + X8)

W9 = (¬X7 + ¬X8 + ¬X13)

CLAUSE DB

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Restarts and Forget

26

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Restarts

• Clear the Trail and start again

• Start searching with a different variable order

• Only Conflict Clause (CC) database is retained

• Forget: throw away less active learnt conflict clauses routinely

• Routinely throw away very large CC

• Logically CC are implied

• Hence no loss in soundness/completeness

• Time Savings: smaller DB means less work in propagation

• Space savings

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Why is SAT efficient?

27

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• VSIDS branching heuristic and propagate (BCP)

• Conflict-Driven Clause-Learning (CDCL)

• Forget conflict clauses if DB goes too big

• BackJump

• Restarts

• All the above elements are needed for efficiency

• Deeper understanding lacking

• No predictive theory

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Propagate(), Decide(), Analyze/Learn(), BackJump()

28

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

• Conflict-Driven Clause-Learning (CDCL)
 (Marques-Silva & Sakallah 1996)

• Decide/branch and propagate (BCP)
 (Malik et al. 2001, Zabih & McAllester 1988)

• BackJump
 (McAllester 1980, Marques-Silva & Sakallah 1999)

• Restarts
 (Selman & Gomes 2001)

• Follows MiniSAT
 (Een & Sorensson 2003)

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Soundness, Completeness & Termination

29

 Soundness: A solver is said to be sound, if, for any input formula F,
the solver terminates and produces a solution, then F is indeed SAT

 Proof: (Easy) SAT is returned only when all vars have been
assigned a value (True, False) by Decide or BCP, and solver checks
the solution.

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Soundness, Completeness & Termination

30

 Completeness: A solver is said to be complete, if, for any input
formula F that is SAT, the solver terminates and produces a
solution (i.e., solver does not miss solutions)

 Proof: (Harder)
• Backtracking + BCP + decide is complete (easy)

• Conflict clause is implied by input formula (easy)

• Only need to see backjumping does not skip assignments

• Observe backjumping occurs only when conflict clause (CC)
vars < decision level (DL) of conflicting var

• Backjumping to max(DL of vars in CC)

• Decision tree rooted at max(DL of vars in CC)+1 is
guaranteed to not satisfy CC

• Hence, backjumping will not skip assignments

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Soundness, Completeness & Termination

31

Termination: Some measure decreases every iteration

Proof Sketch:

• Loop guarantees either conflict clause (CC) added
 OR assign extended

• CC added. What stops CC addition looping forever?

• Recall that CC is remembered

• No CC duplication possible

• CC blocks UNSAT assign exploration in decision tree. No
duplicate UNSAT assign exploration possible

• Size of decision tree explored decreases for each CC add

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT

Decide() TopLevel
Conflict?

Return
UNSAT

BackJump()

Input SAT Instance

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
References & Important SAT Solvers

32

1. Marques-Silva, J.P. and K.A. Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Transactions on Computers 48(5),
1999, 506-521.

2. Marques-Silva, J.P. and K.A. Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. Proceedings of ICCAD, 1996.

3. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. CHAFF: Engineering an efficient SAT solver. Proceedings of the Design
Automation Conference (DAC), 2001, 530-535.

4. L. Zhang, C. F. Madigan, M. H. Moskewicz and S. Malik. Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. Proceedings of
ICCAD, 2001, 279-285.

5. Armin Bierre, Marijn Heule, Hans van Maaren, and Toby Walsh (Editors). Handbook of Satisfiability. 2009. IOS Press. http://
www.st.ewi.tudelft.nl/sat/handbook/

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM.1962.

7. zChaff SAT Solver by Lintao Zhang 2002.

8. GRASP SAT Solver by Joao Marques-Silva and Karem Sakallah 1999.

9. MiniSAT Solver by Niklas Een and Niklas Sorenson 2005 - present

10. SAT Live: http://www.satlive.org/

11. SAT Competition: http://www.satcompetition.org/

12. SAT/SMT summer school: http://people.csail.mit.edu/vganesh/summerschool/

http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.satlive.org
http://www.satlive.org
http://www.satcompetition.org
http://www.satcompetition.org
http://people.csail.mit.edu/vganesh/summerschool/
http://people.csail.mit.edu/vganesh/summerschool/

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Modern CDCL SAT Solver Architecture
Important Ideas and Conclusions

33

1. SAT solvers are crucial for software engineering

2. Huge impact in formal methods, program analysis and testing

3. Key ideas that make SAT efficient

1. Conflict-driven clause learning
2. VSIDS (or similar) variable selection heuristics
3. Backjumping
4. Restarts

4. Techniques I didn’t discuss

1. Survey propagation (belief propagation) by Selman & Gomes
2. Works well for randomized SAT, not yet for industrial instances
3. Physics-inspired
4. Combining CDCL with survey propagation (?)

