
1. Exercises

1.1 Running AutoBayes

1.1.1 Exercise 1

Run the norm.ab example and inspect generated code and derivation. If possible,
generate the latex version of the derivation.

1 model normal s imple as ’Normal model without priors ’ .
2

3 double mu.
4 double s igma sq as ’ sigma squared ’ .
5 where 0 < s igma sq .
6

7 const nat n as ’# data points ’ .
8 where 0 < n .
9

10 data double x (0 . . n−1) as ’known data points ’ .
11 x () ∼ gauss (mu, sq r t (s igma sq)) .
12

13 max pr (x | {mu, s igma sq }) for {mu, s igma sq } .

Listing 1.1: norm.ab

1.1.2 Exercise 2

Generate multiple versions for this problem. Note: use the appropriate flags to allow
AutoBayes to generate numerical optimization algorithms:
(schema control arbitrary init values)

1.1.3 Exercise 3

Modify the “norm” example to use a different probability density function. Note that
some of them do have a different number of parameters. Inspect the generated code
and derivation. Can the problem be solved symbolically for all PDFs?

Hint: use vonmises1, poisson, weibull, cauchy

2 Exercises

1.1.4 Exercise 4

Generate multiple versions for the mixture-of-gaussians example. What are the major
differences between the different synthesized programs.

Note: the specification is mog.ab in the models manual directory.

Generate a sampling data generator (autobayes -sample) for this specification.

In AutoBayes generate 1000 data points that go into 3 different classes. Then run the
different programs and see how good they estimate the parameters.

Note: the generated functions require column-vectors, so, e.g., give the means as
[1,2,3]’

1 octave −3.4.0:1 > sample mog
2 usage : [vec to r c , vec to r x] = sample mog (vec to r mu, i n t n po ints , vec to r

phi , vec to r sigma)
3

4 octave −3.4.0:2 > [c , x] = sample mog
([1 , 2 , 4] ’ , 1 0 0 0 , [0 . 3 , 0 . 1 , 0 . 6] ’ , [0 . 1 , 0 . 1 , 0 . 2] ’) ;

Listing 1.2: calling the synthesized code in Octave

1.1.5 Exercise 5

Run a change-point detection model (e.g., climb transition.ab and look at gener-
ated code and derivation. How does AutoBayes find the maximum?

1.1.6 Exercise 6

Add the Pareto distribution to the built-in transitions. Get the formulas from wikipedia.

Try the following simple model:

1 model pareto as ’Normal model without priors ’ .
2

3 double alpha .
4 where 3 < alpha .
5 const double xm.
6 where 0 < xm.
7

8 const nat n as ’# data points ’ .
9 where 0 < n .

10

11 data double x (0 . . n−1) as ’known data points ’ .
12 where 0 < x () .

1.1 Running AutoBayes 3

13 where xm < x () .
14

15 x () ∼ pareto (xm, alpha) .
16

17 max pr (x | { alpha }) for { alpha } .

Listing 1.3: Specification for Pareto distribution

1 octave −3.4.0:2 > xm=5;
2 octave −3.4.0:3 > alpha =15;
3 octave −3.4.0:4 > x=xm∗(1./(1−rand (10000 ,1)) . ˆ (1/ alpha)) ;
4 octave −3.4.0:5 > a l pha e s t = pareto (x , 5)
5 a l pha e s t = 15.081

Listing 1.4: Generate Pareto-distributed random numbers

	1 Exercises
	1.1 Running AutoBayes
	1.1.1 Exercise 1
	1.1.2 Exercise 2
	1.1.3 Exercise 3
	1.1.4 Exercise 4
	1.1.5 Exercise 5
	1.1.6 Exercise 6

