AutoBayes
Program Synthesis System
System Internals

—Draft—

Johann Schumann, SGT, Inc.

NASA Ames Research Center
Draft — Internal Version: August 11, 2011

Preface

This document is a draft describing many important concepts and details of Au-
TOBAYES, which should be helpful in understanding the internals of AUTOBAYES
and for extending the AUTOBAYES system. Details on installing AUTOBAYES, us-
ing AUTOBAYES, and many example specifications can be found in the AUTOBAYES
manualll

This version of the document contains the supplemental information for the lecture
on schema-based synthesis and AUTOBAYES, presented at the 2011 Summerschool on
Program Synthesis (Dagstuhl, 2011).

This lecture combines the theoretical background of schema based program synthesis
with the hands-on study of a powerful, open-source program synthesis system (Auto-
Bayes).

Schema-based program synthesis is a popular approach toward program synthesis.
The lecture will provide an introduction into this topic and discuss how this technology
can be used to generate customized algorithms.

The synthesis of advanced numerical algorithms requires the availability of a power-
ful symbolic (algebra) system. Its task is to symbolically solve equations, simplify
expressions, or to symbolically calculate derivatives (among others) such that the
synthesized algorithms become as efficient as possible. We will discuss the use and
importance of the symbolic system for synthesis.

Any synthesis system is a large and complex piece of code. In this lecture, we will
study Autobayes in detail. AutoBayes has been developed at NASA Ames and has
been made open source. It takes a compact statistical specification and generates
a customized data analysis algorithm (in C/C++) from it. AutoBayes is written
in SWI Prolog and many concepts from rewriting, logic, functional, and symbolic
programming. We will discuss the system architecture, the schema libary and the
extensive support infra-structure.

Practical hands-on experiments and exercises will enable the student to get insight
into a realistic program synthesis system and provides knowledge to use, modify, and
extend Autobayes.

"http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080042409_2008042209.pdf

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080042409_2008042209.pdf

Contents

[Prefacel

(1

Starting AutoBayes|

AutoBayes Architecture|

[2.1 Top-level Architecture| o000

[2.2 Directory Structure] o000

[2.3 Synthesis and Code Generation|

[2.3.1 Synthesis|

B

The Schema System|

[3.1 The synth_schema Predicate|

[3.2 The synth_formula Predicate

[3.3 AuTOBAYES Schema Hierarchyl

[3.3.1 AUTOBAYES probabilistic Schema Hierarchy|

[3.3.2 AuTOBAYES functional Schema Hierarchy|

[3.3.3 AUTOBAYES Support Schema Hierarchy|
[3.4 Adding a New Schema]

13
13
13
14

15
15
15
15
16
17
18

CONTENTS

[3.4.1 Example 1|o 23
[3.4.2 Example 2. 25
3.0 Notesl. o 25
(3.6 Schema Controll o 25
Probability Density Functions| 27
41 The AUTOBAYES Modell 28
4.1.1 The Model Data Structurel 28
4.1.2 The Model Stackl00 29
[4.1.3 Modifying the Model| 29
4.2 Statistical (Bayesian) Decomposition| L. 30
Low-level Components of AutoBayes| 31
[>.1 Command Line Options and Pragmas|. 31
[>.1.1 Pragmas| 31
b.2 Backtrackable Global Datal 32
[>.2.1 Backtrackable Flags[. 32
0.2.2 Backtrackable Countersl 32
b.2.3 DBacktrackable Bitsetsl 33
[5.2.4 Backtrackable Asserts/Retracts| 33
.3 Data Structures and Their Predicates) 34
(5.4 The Rewriting Enginel 34
[>.4.1 Rewriting Rules| 34
[>.4.2 Compilation of Rewriting Rules| 36
The Symbolic System| 37
[6.1 Top-Level Predicates| 37

[6.2 Program Variables| 38

CONTENTS

[7 Pretty Printing and Text Generation| 40
(.1 Pretty Printer| o 40
[7.2 Pretty Printer for B'IEX and HTML|. 40
[7.3 Support tor Text Generation| 41

[A AutoBayes Intermediate Language) 43
BT Codd 43
(A2 Declarations oo 43
[A.3 Indices and dimensions for vectors, arrays, and matrices{. 45
(A4 Attributes| 46
(A5 Statements STMTo oo 47

[A.5.1 failand skipl. 48
[A.5.2 Sequential Composition| 48
[Ab.3 Annotationso 48
[A.5.4 For-Loops| 48
(A5 If-then-elsel 48
[A.5.6 While-Converging| 48
[A.5.7 While and Repeat Loop| 49
[AD.8 Assertionl 49
[A.5.9 Assignment Statement| 49
(A5.10 Misc. Statements|o o oo 50
[A.6 Expression EXPR}.o oo 50
[A.6.1 Boolean Expressions|, 51
[A.6.2 Numeric expressions and functions| 52
[A.6.3 Summation expression| 52
[A.6.4 Indexed Expressions| 52

[A.6.5

Getting the Norm of an iteration| 52

CONTENTS

[A.6.6 Maxarg 53

[A.6.7 conditional expressions|o 53

(B Usetul AutoBayes Pragmas| 54
[(C Examples| 57
[C.1 Simple AUTOBAYES Problem| 57
(C.1.1 Specification|. 57

[C.1.2 Autogenerated Derivation| 58
ID_Exercises| 60
[D.1 Running AutoBayes|. 60
D1 Exercise 1] o oo 60

D12 Exercise 2 60

(D13 FExercise 3lo 60

(D14 Exercisedo 61

[D.1.5 Exercise 5lo 61

D16 Exercise 6 61

[EE Research Challenges and Programming Tasks| 63
ETPDES. 63
[£.1.1 Integrate x* PDF into AUTOBAYES|. 63

[E.1.2 Integrate folded Gaussian PDF into AuTOBAYES| 63

[E£.1.3 Integrate Tabular PDF into AuTOBAYES|. 63

(.2 Gaussian with full covariancelo o000 63
[£.3 Preprocessing| 64
[E.3.1 Normalization of Datal 64

CONTENTS

[£.4 Clusteringl 64
(£4.1 KD-tree Schemal. oo 64
[E.4.2 EM schema with empty classes] 64
[E.4.3 Clustering with unknown number of classes| 64
[E£.4.4 Quality-of-clustering metrics| 65
[£.4.5 Regression Models| 65

(.5 Specification Languagel 65
[£.5.1 Improved Error Handlingf{. 65

[[£.6 Code Generationl Lo 65
6.1 R Backend 00000 65
[£.6.2 Arraysin Matlab| 000 65
[[£.6.3 Java Backendlo oo 65
[£.6.4 Cstand-alonel oo 65
[£.6.5 Code Generator Extensions for functions/procedures| 66

[E£.7 Numerical Optimization| 66
[£.7.1 GPL Library| oo 66
[E.7.2 Multivariate Optimization| 66
[E.7.3 Optimizations under Constraints| 66

[E£.8 Symbolic/. 66
[£.8.1 Handling of Constraints| 66

[£.9 Internal Clean-ups| 66
[£.9.1 Code generation|. 66

[£.10 Major Debugging| 66
[£.10.1 Fix all Kalman-oriented examples| 66

[£.11 Schema Control Languagel 66

[E£.12 Schema Surface Languagel 66

[E£.12.1 Domain-specific surface language tfor schemas| 66

CONTENTS

[E£.12.2 Visualization of Schema-hierarchy| 66
[E.12.3 Schema debugging and Development Environment|. 66
(.13 AutoBayes QA| 66

[E.14 AutoBayes/AutoFilter] oo oo oL 66

List of Figures

10

LIST OF FIGURES

List of Tables

[2.1 Code generator options|

12

LIST OF TABLES

Listings

(1.1 Starting AUTOBAYES into interactive mode| 13
(1.2 Loading AUTOBAYES into Prologl 14
[3.1 AUTOBAYES specification for a probabilistic optimization problem|. . . 20
[3.2 AUTOBAYES specification for a functional optimization problem| 20
[3.3 AUTOBAYES Schema hierarchy — inclusion mechanism| 21
[3.4 AUTOBAYES Schema hierarchy — probabilistic schemas] 22
[3.5 AUTOBAYES schema hierarchy — functional schemas| 22
[3.6 Example Schemal oo oo 23
{4.1 Definition of PDF symbol in interface/symbols.pl| 27
[4.2 Definition of PDF synth/distribution.pl|{ 27
[4.3 Displaying the AUTOBAYES model| 28
[0.1 AUTOBAYES pragmas| 31
[5.2 Interface predicates for backtrackable counters 32
[b.3 Backtrackable assertionsl 000000 33
[b.4 Examples for Rewriting Rules| 35
[>.5 Compilation of Rewriting Rules and top-level calls|. 36
[6.1 Examples for symbolic subsystem| 37
[6.2 Predicates for program variables 39
[7.1 Printing statements and terms| L. 40
[7.2 Pretty printing to IfIgX and HTML| 40
[7.3 Generation of Explanation in a schema synth/synth.pl] 41

(C.1 Simple AUTOBAYES specification| o7

14

LISTINGS

D.1 norm.abl 60
[D.2 calling the synthesized code in Octave|. 61
[D.3 Specification for Pareto distribution| 61

1. Starting AutoBayes
1.1 Command-line
Usually AUTOBAYES is called using the command line, e.g.,
autobayes -target matlab mix-gaussians.ab
where mix-gaussians.ab is the AUTOBAYES specification. Command line options
and pragmas (see [?] and Appendix [B]) start with a“".
1.2 Interactive Mode

Starting AUTOBAYES into the Prolog interactive mode can be done by

1 bash—3.2% ../autobayes —interactive mog.ab

| AutoBayes V0.9.9 Sat Jul 2 09:42:26 2011 |
| Copyright (c¢) 1999-2011 United States Government |
| as represented by the Administrator of the National |
| Aeronautics and Space Administration. |
| |

All Rights Reserved. Distributed under NOSA 1.3

© 0 N D s W N

=
o

x% Interactive shell started sx*x

-
—

-
[V

?7— load (’mog.ab’) .

14 Success [mog.ab]: no errors found
15 true.

16

17 7— solve.

18 ... << all logging messages >>

-
w

Listing 1.1: Starting AUTOBAYES into interactive mode

There is a number of commands available in the interactive mode of AUTOBAYES.
These are defined in interface/commands.pl.

load(+File) loads specification file and constructs the AUTOBAYES model.

16

Starting AutoBayes

1.3

clear deletes the current AUTOBAYES model
show lists the current model.

save (+File) saves the current model in the AUTOBAYES specification syntax into a
named file (unsupported).

solve attempts to solve the model and generate intermediate code, and list it on the
screen.

This command also should place the generated code into the Prolog data base.

7777 command for generating code.

Loading AutoBayes into Prolog

1 $pl

2% library (swi_hooks) compiled into pce_swi_hooks 0.00 sec, 2,284 bytes
3 Welcome to SWI-Prolog (Multi—threaded, 32 bits, Version 5.10.2)

4 Copyright (c) 1990—2010 University of Amsterdam, VU Amsterdam

5 SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

6 and you are welcome to redistribute it under certain conditions.

7 Please visit http://www.swi—prolog.org for details.

8

9

For help, use ?— help(Topic). or ?— apropos(Word).
10

1 ?7— [main_autobayes].
12 <<lots of messages>>
13 7—

Listing 1.2: Loading AUTOBAYES into Prolog

Note that here only the AUTOBAYES program code will be loaded but not any spec-
ification or command line flags/pragmas.

2. AutoBayes Architecture

2.1 Top-level Architecture

The top-level system architecture is shown in Figure

£
S Synthesis i 4 5
R Slal 8% b 1
S =BG Kernel - E - 2T ey
By Schema Library < 5] +
s | | 3
~ Equation Solver
System
Symbolic Simplfier Utilities
Rewriting Engine
SWI Prolog

Figure 2.1: AUTOBAYES architecture

2.2 Directory Structure

The AUTOBAYES directory structure is shown in Figure Note that a global shell
variable, AUTOBAYESHOME must point to the top-level directory.

2.3 Synthesis and Code Generation

The synthesis and code generation parts are strictly separated. The synthesis kernel
generates one or more customized algorithms and places them (using assert) into the
PROLOG data base under the predicate name synth_code(Stage, Code). After the

18

AutoBayes Architecture

2.3.1

synthesis phase, the generated algorithms are retrieved one-by-one and code is gener-
ated for them. This is done by the predicate main_cg loop (file: toplevel/main.pl).

Note that the synthesis component does not use any information about the code
generation target.

Each subcomponent of AUTOBAYES can run individually. AUTOBAYES can dump
the generated algorithm (-dump synt) into a file, which then can be read in by the
AUTOBAYES codegenerator main _codegen (DumpFile). This is accomplished with the
command-line switch -codegen.

Synthesis

After opening and preprocessing the AUTOBAYES specification file (using the CPP
preprocessor), the specification is read in using the prolog parser. Predicates for
handling the specification are in interface/syntax.pl. All information is stored in
the Prolog data base as the AUTOBAYES model. The goal statement

max pr(...) for VAR_SET

actually triggers the program synthesis. It puts the information into the model as
optimize_target(...).

After reading the specification and processing the command line, the predicate
main_synth(+Specfile)

triggers the synthesis:

e the specification files is preprocessed
e all log-files are opened

e depending on the number of requested programs, the predicate main_synth_loop
is calles, which calls the schema-based process synth_arch/3. If more than one
program is requested, this predicate is visited again using backtracking. The
program, which is generated during each call of that predicate is stored in the
Prolog data base (non-backtrackable).

o After all requested programs have been generated, the synthesis part is finished.
The actual generation of code is done using the predicate main_cg loop (see
below).

2.3 Synthesis and Code Generation 19

2.3.2 Code Generation

The code generator is parameterized by the target flag -target, which selects the
code generation target as well as a number of pragmas.

The code generation is performed in several stages; stages, which are language-specific
(e.g., C, C++, Ada) are marked with “L”, those, which are target-specific with “T”.

1. top-level: main cg loop

2. for each generated program in synth_code(_,_) perform the proper code gen-
eration

3. main_cg_prog performs:
get name of generated program
get and simplify complexity bound (if applicable)
add declarations for the variables in the for-loops loopvars
optimize the pseudo-code (pseudo_optimize)
check for syntactic correctness of the intermediate code pseudo_check
list the code after optimization main list_code(’iopt’,...
generate the actual code cg_codegen(Code)

The predicates for the actual code generation is in the directory codegen and sub-
directories thereof. It’s top-level predicate cg_codegen(Code) performs the following
steps

1. open the symbol table
2. add (external) declarations
3. preprocess the code cg_preprocess_code
get target language and target system
preprocess the pseudo code cg_preprocess_ps (L,T)

transform the code into language /target specific constructs cg_transform code
(L,T)

4. produce the code cg_produce_code

open all files

20 AutoBayes Architecture

generate headers cg_generate header
generate include statements cg_generate_includes
generate declarations of global variables cg_generate _globals

produce code for each component (or for the main procedure). This is done
using cg_produce_component, which then executes cg_preamble, cg_generate_code,
and cg_postamble

produce end of HTML headers (why?)
close the files

5. list the code in various formats

6. produce the design document if desired

The cg_preamble is just a switchboard, which causes the generation of the interface
code for the given procedure, the usage statement, and the input/output declarations.
Similarly, the cg_postamble produces code at the end of the given procedure (e.g.,
handling of return values).

The switchboard for the code generation cg_generate_code is in the file codegen/cg_code.pl
and finally calls cg_generate_lowlevel_code, which is specific for each target system
and prints each statement one after the other.

2.3.3 Target Specific Code Generation

’ Lang \ Target \ cmdline-flags ‘
C [cc++] Matlab -target matlab
C [cc++] stand-alone | -target standalone
C++ [cc++] | Octave -target octave
ADA stand-alone | -target ada

Table 2.1: Code generator options

Note that the ADA version is not fully supported.

2.3 Synthesis and Code Generation

target_ada_standalone

target_simulink

target_modula2

clustering

decomp

autobayes

@
a
< %
218] g
B & z 3

sequ

(oo T () (i)

‘matlab

i

NOSA_Examples

010

Ifoofo 5@

Figure 2.2: The directory structure of AUTOBAYES

3. The Schema System

The schema-based synthesis process is triggered by the goal expression in the AUTO-
BAYES specification. There are two different kinds of goal expressions

1 double mu.
2 data double x(1..10).
3 max pr{x|mu} for {mu}.

Listing 3.1: AUTOBAYES specification for a probabilistic optimization problem

1 double x.
2> max —x*x2 + 5xx —7 for {x}.

Listing 3.2: AUTOBAYES specification for a functional optimization problem

Whereas the first form performs a probabilistic maximization (and triggers calls to
synth_schema, the second form is a functional optimization and triggers synth _formula try.

Note that all sorts of probability expressions in the goal are automatically converted
into a log_prob(...) expression.

3.1 The synth_schema Predicate

The top-level schema predicate is

synth_schema(+Goal, +Given, +Problem, -Program)

In most cases, a 5-ary predicate is used to solve log_prob(U,V) problems:
synth_schema(+Theta, +Expected, +U, +V, -Program)

Note that the AUTOBAYES model has to be considered as an additional “invisible”
argument. For efficiency reasons, AUTOBAYES implements the model using global
(backtrackable) data structures. Otherwise, the model would need to be carried as
additional arguments, like

synth_schemal (+Theta, +Expected, +U, +V, +Modelln, -ModelOut, -Program)

That modification would not only be required for the top-level schemas, but also for
all support predicates, making this approach cumbersome.

3.2

3.3

3.2 The synth_formula Predicate

23

The synth_formula Predicate

This predicate is used to solve functional optimization problems. These schemas
can be either called from the top-level or by other schemas in case some functional
subproblem must be solved. The top-level predicate is:

synth_formula(+Vars, +Formula, +Constraints, -Program)

This predicate tries generate a program (or solve symbolically) that finds the optimum
(maximum) values of the variables Vars in the formula Formula under the given
constraints.

Note: synth_formula try is a guarded front-end to synth_formula that handles stack
and tracing. In particular, in case of failure, the dependencies must be restored using
depends_restore.

Figure shows the entire (static) schema hierarchy. Note, that during synthesis,
one schema can trigger arbitrary other schemas in order to solve a given problem.

AUTOBAYES Schema Hierarchy

AUTOBAYES has a separate schema hierarchy for probabilistic and functional prob-
lems.

All schemas are in Prolog files, which are included in the file synth/synth.pl. Note
that the order is important, as the schema-search uses Prolog’s backtracking search.

:— discontiguous synth_schema /5.
:— multifile synth_schema/5.
:— discontiguous synth_schema /4.
:— multifile synth_schema /4.

:— discontiguous synth_formula /4.
:— multifile synth_formula /4.
:— dynamic synth_formula /4.

© W N s W N =

synth_schema ([], -, -, skip) :—
I

e e =
w N = O

:— [’schemas/preprocessing/scaling.pl’].

-
S

synth_schema (Goal, Given, log_prob(U,V), Program) :—

= o= e
~N O »

:— [’schemas/decomp/d_prob.pl’].

=
oo

24 The Schema System

Listing 3.3: AUTOBAYES Schema hierarchy — inclusion mechanism

3.3.1 AuTOBAYES probabilistic Schema Hierarchy

synth_schema ([], -, -, skip) :— !.

:— [’schemas/preprocessing/scaling.pl’].

synth_schema (Goal, Given, log_prob(U,V), Program) :—
"schemas/decomp/d_prob.pl’].

schemas/sequential /kalman.pl’].

[

[)

:— [’schemas/sequential /sequent.pl’].
[
[

1
2
3
4
5
6
7
8
9 "schemas/clustering /rndproject.pl’].

10 :— [’schemas/clustering/em.pl’].

1 :— [’schemas/clustering /kmeans.pl’].

12 synth_schema (Theta, Expected, U, V, Program) :—

13 % CONVERT PROBLEM TO PROBLEM OVER FORMULA FOR SYNTH_FORMULA /4

3

Listing 3.4: AUTOBAYES Schema hierarchy — probabilistic schemas

3.3.2 AuTOBAYES functional Schema Hierarchy

’schemas /decomp/d_formula.pl’].

[
[’schemas/symbolic/lagrange.pl’].

[’schemas/symbolic/solve.pl’].

[’schemas/gsl/gsl—maximization.pl’].
[

[

[

9

9

’schemas/numeric/section.pl’].
schemas/numeric/simplex.pl’].
schemas/numeric/generic.pl’].

)

9

~N 3 (e - w [-
I

Listing 3.5: AUTOBAYES schema hierarchy — functional schemas

3.3.3 AuTOBAYES Support Schema Hierarchy

Several schemas call special-purpose sub-schemas, e.g., to produce code for initializa-
tion. These predicates have non-standarized arguments and form individual hierar-
chies. An example are the schemas for producing initialization code for the clustering
algorithms in synth/schemas/clustering/clusterinit.pl with the main schema
predicate

ci_center_select(+CenterName, +Dataln, +IPointsIn, +IClassesIn, +CDim, -Program)

3.4 Adding a New Schema

3.4 Adding a New Schema
3.4.1 Example 1

This example is an existing schema in AUTOBAYES, which, given a log_prob problem,
tries to solve it symbolically or as a numerical optimization problem. This schema can
be found in synth/synth.pl and has been abbreviated. In particular, all generation
of explanations have been removed for clarity.

1 synth_schema (Theta, Expected, U, V, Program) :—
2 % DECOMPOSE AS FAR AS POSSIBLE

3 cpt_theorem (U, V, Prob, rels(Theta)),

4

5

% CHECK WHETHER PROB IS ATOMIC AND IF SO, REPLACE IT BY THE
DENSITY
prob_replace (Prob, Prob_formula),

% EXTRACT MODEL CONSTRAINTS
model_constraint (Pre_constraint) ,
10 simplify (Pre_constraint , Constraint),
11
12 copy-term (Expected, Expected_copy),
13 synth_sum_expected (Expected_copy, log(Prob_formula), Pre_formula),

© 0 N O

14 pv_lift_existential (Pre_formula),

15 simplify (Constraint , Pre_formula, Formula),

16 assert_trace (trace_schema_inout, ’synth/synth.pl’,

17 ['Log—Likelihood -function:\n’, Formula]) ,

18

19 % BUILD THE DEPENDENCY GRAPH FROM THE SIMPLIFIED FORMULA,
20 % RECURSE ON THE FORMULA AND CLEAN UP.

21 depends_save ,

22 depends_clear ,

23 depends_build_from_term (Formula) ,

24

25 % FIND CLOSED—FORM SOLUTION

26 synth_formula_try (Theta, Formula, Constraint, Step),
27

28 % CLEAR STACK

29 depends_restore ,

30

31 % COMPOSE THE PROGRAM
32 Program = series ([Step],
33 [comment (’lots._of_text...’),f_loglikelihood (Formula)]) .

Listing 3.6: Example Schema

26

The Schema System

The schema in Listing is called with the statistical variables Theta and the ex-
pected variables Expected, as well as U, V, which are the arguments of the log_prob
problem.

The first two subgoals decompose the problem statistically (using the AUTOBAYES
model) and, if successful return the probability Prob to be solved. Then it is checked if
this probability is atomic, i.e., it is not conditional. The resulting formula Prob_formula
must be considered. This predicate also replaces all PDFs (e.g., gauss) by the cor-
responding symbolic formulas (see Chapter [4])). These two predicates comprise the
guards for this schema. In order to obtain the (numerical) formula that is to be
optimized, the following steps must be carried out.

In parenthesis are the values for the normal-example.

The predicate is called with synth_schema([mu, sigmal, [], [x()], [mu,sigma],
Program).

The probability formula is

—14+n

H P(.CEZ’,U, 02)
1=0

With the PDF replaced, the problem to solve (Pre_formula) becomes

1
—1+4+n - — P 2

log H exp
i=0

where the constraints, coming from the model are

and([and([not (0=n_points), 0=<n_points]),
and([not (0O=sigma_sq) ,0=<sigma_sql),
type (mu,double) ,type(n_points,nat) ,type(sigma_sq,double) ,type(x,double)])

e because the log-likelihood is maximized, a logarithm of the probabilistic formula
must be taken.

e This formula is the transformed into a sum with respect to the Expected values.
e This sum is simplified under the given constraints

e the schema-driven solution of the problem is tried synth formula try and a
code segment is returned in Step.

3.5 Notes 27

e The final program segment is a code block containing that code segment

e After processing, dependencies must be restored.

3.4.2 Example 2

3.5 Notes

e scaling: must extract sigma
e loop around EM: flag controlled or statistics controlled
e numerical optimization: regula falsi

e multivariate optimization full synthesis, based upon gsl utilities

3.6 Schema Control

Prolog backtracking search

multiple programs (-maxprog)

multiple programs with complexity (unsupported)
control via pragmas

schema-control language

28

The Schema System

Scaling (normal data)

Decomp All
(V known)

Decomp ITI

Decomp Model Selection

Seq. Conversion
Kalman

Seq. Conversion
Unscented Kalman

Seq. Conversion
Unscented Part. Filter

o) (o)
=
&=

Probabilistic

Random Projection

Gromis)
ot > Gt i
=,

Figure 3.1: The static schema-hierarchy for AUTOBAYES

Probability Density Functions

Probability Density Functions (PDFs) and their properties can be defined easily. In
order to add a new PDF, e.g., mypdf, two places must be modified: (1) the symbol
must be made a special symbol for the input parser (file interface/symbols.pl) and
(2) define the properties in the file synth/distribution.pl.

As an example, the PDF mypdf should have the same properties as the regular
Gaussian, i.e., be defined for one variable and should have 2 parameters, e.g., X ~
mypdf (a,b).

1 symbol_distribution (mypdf, 1, 2).

Listing 4.1: Definition of PDF symbol in interface/symbols.pl

1 dist_density (X, mypdf, [A, B],

2 (1/(sqrt(2«pi) * B)) * exp((—1/2) x ((X — A)=*x2) / Bxx2)
3 =

4 I,

6 dist_mean (mypdf, [A, _], A) :—

7 I,

8

o dist_mode (mypdf, [A, _], A) :—

10 I

11

12 dist_variance (mypdf, [_, B], Bxx2) :—
13 '

14

15 dist_constraint (mypdf, [_, B],

16 not (0 = B)

17) i—
18 I,

Listing 4.2: Definition of PDF synth/distribution.pl

For each PDF| its density with respect to the parameters must be given, the mean,
the mode, and the variance. Specific constraints for each PDF can be given. However,
the current version of AUTOBAYES does not use these constraints.

30 Probability Density Functions

4.1 The AuTOBAYES Model
The statistical model, as given by the specification is stored in a global data structure,
the model. The predicates concerning handling of the model are mainly in the file
synth/model . pl.

4.1.1 The Model Data Structure

The current contents of the entire model can be printed or written into a stream using
the predicate model display. The predicate names (e.g., model name) are those that
are stored in the prolog data base in a backtrackable manner using bassert and
bretract.

?7— model_display.

Model: mog

07.

NAMES:

model_name (x)
model_name (c¢)

10 ...
07.

1
2
3
4
5 Vers.: 0
6
7
8
9

11 % TYPES:
12 model_type (x, double)
13 model_type(c,nat)

14 model_type (sigma ,double)

15 ...

16 % CONSTANTS :
17 model_constant (n_classes)

13 model_constant (n_points)

19 % OUTPUTS :
20 model_output (c)
21 % VARIABLES :

22 model_var (x)
23 model_var(c)
22 model_var (sigma)

25 model_var (mu)

26 model_var (phi)

27 6 RANDOM:
2s model_random (x)

29 model_random (c¢)

31 % INDEXED :

s2 model_indexed (x,[dim(0,+[—1,n_points])])
33 model_indexed (¢, [dim(0,+[—1,n_points])])

34 ...

4.1.2

4.1.3

4.1 The AuToBAYES Model 31

35 6 DISTRIBUTIONS:
36 var_distributed (x(A),gauss ,[mu(c(A)) ,sigma(c(A))])
37 var_distributed (c¢(A),discrete ,[vector ((B:=0.. +[—1,n_classes]) ,phi(B))

Iy

38 % KNOWNS :
39 var_known (x(A))
10 % CONSTRAINTS :

41 var_constraint (sigma(A) ,and ([not(0=sigma (A)),0=<sigma(A)]))

42 var_constraint (phi(A),0= +[—1,sum ([idx (B,0,+[—1,n_classes])],phi(B))])

43 var_constraint (n_points ,n_classes <<n_points)

44 ...

15 T OPTIMIZE :

46 optimize_target ([mu(A),phi(B),sigma(C)],[],log_-prob ([x(D)],[mu(E),phi(
F),sigma(G)]))

Listing 4.3: Displaying the AUTOBAYES model

The Model Stack

During the synthesis process, schemas can modify the model. Since the schema-based
synthesis process is done using a search with backtracking, changes to the model must
be un-done in case a schema fails.

Therefore, AUTOBAYES uses a backtrackable data structure for the model and a model
stack. Before a schema or subschema modifies a model, it usually generates a copy of
the model (model _save) on the stack. That copy then can be modified, destroyed, or
the old model restored with a pop on the stack model restore).

The individual predicates are:

model_clear/0 remove any modifiable model parts
model destroy/0 completely remove a model from the database
model _save/0 save modifiable model parts at next level

model _restore/0 restore modifiable model parts to previous level

TODO: FIGURE on SCHEMA hierarchy and model stack

Modifying the Model

The model can be modified using predicates in synth/model.pl. E.g., model makeknown (X)
makes the statistical variable X known in the model.

32 Probability Density Functions

4.2 Statistical (Bayesian) Decomposition

TODO

5. Low-level Components of AutoBayes

5.1 Command Line Options and Pragmas

AutoBayes is called from the command line with command line options and pragmas.
Command-line options (starting with a “~”) control the major operations of AUTO-
BAYES. Pragmas are a flexible mechanism for various purposes, like setting specific
output options, controlling individual schemas, or for debugging and experimentation.

5.1.1 Pragmas

In AuTOBAYES all pragmas are implemented as Prolog flags. The command-line
interpreter analyzes all tokens starting with -pragma and sets the flag accordingly.

Pragmas can be set inside an AUTOBAYES specification using the flag directive, e.g.,
:— flag (schema_control_init_values , _ , automatic).

There, no check of validity of the flag’s name or its value is performed.

Adding a new Pragma

All pragmas are defined in the file startup/flags.pl. Pragmas are declared by a
pragma/6 multifile predicate:

pragma(SYSTEM, NAME, TYPE, INIT, VL, DESC).

where
SYSTEM = _— "AutoBayes’ — "AutoFilter’
NAME = name of pragma = name of flag
TYPE = boolean — integer — atomic — callable ...
INIT = initial value
VL = [[V,E], ...] possible values and explanations
DESC = atom containing description
1 pragma(’AutoBayes’, schema_control_init_values , atomic, automatic,
2 [
3 [automatic , ’calculate_best_values’],

4 [arbitrary , ’use_arbitrary._values’],

34 Low-level Components of AutoBayes
5 [user , ’user.provides_values.(additional_input.parameters’
]
6 |,
7 “initialization._of_goal_variables’).
8
o pragma(’ AutoBayes’, schema_control_solve_partial , boolean, true, [],
10 "enable_partial _symbolic_solutions’).
11
12 pragma(’AutoBayes’, example_pragma, integer, 99, [],
13 "Example.for._an_.integer _pragma’) .
Listing 5.1: AUTOBAYES pragmas
5.2 Backtrackable Global Data
The schema-based synthesis process of AUTOBAYES uses PROLOG’s backtracking
mechanism. In particular, the statistical model is modified during the search process
by schemas. These changes must be undone during backtracking.
Since the AUTOBAYES model is kept as a global data structure in the Prolog data
base, mechanisms for backtrackable global data structures, namely flags and counters
had to be developed.
These predicates have been implemented in C as external predicates.
NOTE: More receent versions of SWI Prolog might have similar mechanisms already
incorporated.
5.2.1 Backtrackable Flags
Backtrackable flags are indexed by an natural number between 0 and N, where N is
fized during compile time (system/SWI/bflag.c).
The predicate pl_bflag(+N, -V1, +V2) gets the current value of backtrackable flag
number N in V1 and sets a new value in V2. Getting and setting values are done in
the same way as for the standard Prolog flag/3.
5.2.2 Backtrackable Counters

Similar to AUTOBAYES counters util/counter.pl, backtrackable counters are de-
fined by the following predicates

1 bentr_new (C) :— % NEW COUNTER
2 bentr_set (C,M) :— % SET THE COUNTER
3 % THE PREDICATES BELOW ARE BACKTRACKABLE

5.2.3

5.2.4

5.2 Backtrackable Global Data

35

4 bentr_get (C,N) :— % GET THE CURRENT COUNTER VALUE
5 bentr_inc (C) :— % INCREMENT THE COUNTER

6 bentr_ince (C,Incr) :— % INCREMENT COUNTER BY INCR
7 bentr_dec (C) :— % DECREMENT THE COUNTER

Listing 5.2: Interface predicates for backtrackable counters

Backtrackable Bitsets

Backtrackable bitsets have been implemented as external predicates in C to enable
backtrackable asserts and retracts. The extension defines one global backtrackable bit
set for integers 1..BSET _DEFAULT LENGTH and two interface predicates: inbset (X)
succeeds if number X is in the bit set, setbset(X,1) adds number X to the bit set,
and setbset (X,0) removes number X from the bit set. The latter two predicates are
backtrackable. Note that bitsets are used only for the implementation of backtrackable
asserts /retracts (see Section [5.2.4)).

Backtrackable Asserts/Retracts

This module contains the Prolog-support for backtrackable asserts and retracts, i.e.,
an assert /retract-mechanism which is integrated with the normal backtracking mech-
anism of Prolog. An N-ary predicate F is declared as a backtrable predicate via

:— backtrackble p/1.

in a similar way to a dynamic-declaration. Backtrable asserts and retracts are done
via bassert and beretract. Here, ”backtrackable” means that the assertions are undone
on backtracking by the Prolog-engine the same way variable bindings are undone, e.g.:

1 q(X) :—

2 RN

3 bassert (p(a)), %% WILL BE UNDONE/RETRACTED ON BACKTRACKING
4 RN

5 fail |

6 K

7 q(X) =

8 e,

9 p(a), %% FAILS

=
o

Listing 5.3: Backtrackable assertions

36

Low-level Components of AutoBayes

5.3

5.4

5.4.1

Data Structures and Their Predicates

see files and their documentation in util
bag.pl Predicates for a Prolog representation of bags

diffset.pl Predicates for a compact representation of differences between arbitary
term sets (see termset.pl)

equiv.pl calculates the equivalence class of a binary relation that is given as a list of
lists

listutils.pl Predicates for handling of lists

meta.pl Meta-operations on uninterpreted Prolog terms (e.g., unification, etc.)
stack.pl Prolog representation of a stack

subsumes.pl subsumption check

term.pl Prolog representation for AC terms

termset.pl Prolog representation for sets of terminstances.

topsort.pl topological sort

trans.pl calculates the transitive closure of a relation

The Rewriting Engine
A rewriting engine has been implemented on top of Prolog. Rewriting rules are given

a Prolog clauses, which are being compiled for efficieny reasons.

Rewriting Rules

The rules for rewriting must be given as a predicate of the form
rule(+Name, +Strategy, +Prover, +Assumptions, +TermIn, ?TermOut)

where the parameters have the following meaning:

Name string or atom used to identify the rewrite rule (e.g., in tracing); should be
unique.

Strategy a strategy vector of the form

[eval=Evaluation, flatten=Bool, order=Bool, cont=Continuation]

5.4 The Rewriting Engine

37

associated with each rule. Evaluation must be either eager or lazy; Continua-
tion is either a Bool or a rule name. Rules with strategy [eval=eager|_] are
applied a first time in a top-down fashion (i.e., before the subtrees are normal-
ized). Rules with strategy [eval=lazy|_] are applied in a bottom-up fashion.
If the continuation-argument of rwr_cond is fail, pure bottom-up rewriting is
implemented, otherwise dovetailing is implemented (i.e., exhaustive rewriting).
Use the strategy vector [eval=lazy|_] as default for all rules

Use the strategy vector [eval=1lazy|_] as default for all rules to get the complete
innermost /outermost strategy. Use a rule

rule(’block-f’, [eval=eager, , ,cont=faill], _, _, £(X), £(X)). topre-
vent rewriting from all subtrees with root symbol f.

Prover currently not used
Assumptions Use the assumption true’ for unconditional rewriting
TermlIn Term to be normalized.

TermQOut Result of rule application.

Simple rewriting rules are just unit clauses or complex rules with bodies (Listing .

1 expr-optimize (-, ’expr—reintroduce—reciprocal’,

2 [eval=lazy|_],

3 - =

4 Term *x (—1),

5 1 / Term

6) i—

7 I,

8

9 expr_optimize(Level, ’expr—reintroduce—subtraction’,

10 [eval=lazy|_],

11 - =

12 +(Summands) ,

13 Subtraction

14) i—

15 Level > 0,

16 list_split_with (factors_negate , Summands, Neg, Pos),
17 Neg \== [],

18 ',

19 (Pos cases |

20 [] —> expr_mk_subtraction (Neg, Subtraction),

21 [P] — expr_mk_subtraction (P, Neg, Subtraction),
22 - —> expr-mk_subtraction(4+(Pos), Neg, Subtraction)
23]

24)

38 Low-level Components of AutoBayes

Listing 5.4: Examples for Rewriting Rules

5.4.2 Compilation of Rewriting Rules

A (customized) set of rewriting rules is compiled into a ruleset using the directive
rwr_compile. Note that the individual groups of rewriting rules can be placed in
separate files.

1 ruleA(’'ruleA:17, [eval=eager|_], _, _,
2 Source, Target) :— !I.

3 ruleA ('ruleA:2’, [eval=eager|_], -, _,
4 Source, Target2) :— I.

5

6 ruleB(’ruleB:1’, [eval=lazy|_], _, _,
7 Source, Target) :— !I.

8

9

10

11 :— rwr_compile(myruleset ,

12 [

13 rulesA |

14 rulesB ,

15 ..

16 1) -

17

18 do_rewrite (S, T) :—

19 rwr_cond (myruleset , true, S, T).

20

21 do_rewrite_timelimit (S, T, Max) :—

22 call_with_time_limit (Max, rwr_cond(myruleset, true, S, T)).
23 do_rewrite_timelimit (S, S, _).

Listing 5.5: Compilation of Rewriting Rules and top-level calls

The Symbolic System

6.1

AUTOBAYES uses its symbolic subsystem extensively. The system is in part imple-
mented as rewriting rules and in part as Prolog predicates.

Top-Level Predicates

Some of the common top-level predicates are
simplify (S, T) simplifies expression S and returns T

simplify(Assumptions, S, T) simplifies expression S and returns T under the given
assumptions.

range_abstraction(+S, -Range) provides a range abstraction for S.

range abstraction(+Assumptions, +S, -Range) provides a range abstraction for
S under the given assumptions.

defined (S, Condition) provides a definedness constraints for S.

defined (Assumptions, S, Condition) provides a definedness definition for S un-
der given constraints.

solve(Assumptions, Var, Equation, Solution) callsthe symbolic equation solver
to solve the equation Equation for the variable Var under the given assumptions.

legs_solve(Assumptions, Vars, Equations, Solution) attempts to solve sym-
bolically a system of linear equations and returns a solution, using a Gaussian
elimination. This predicate can use local program variables for sub expression,
so a let(...) expression is returned.

Note that for this predicate, the terms must be in list-notation.

1 ?7— simplify ((a+b)*(a—b) ,T),print_expr (user_output ,0,T,_).
2 —1 % b %xx 2 + a *x 2

3T = +[x([—1, bxx2]), axx2]

4

5 7— simplify (sin(x)**2 4+ cos(x)*x2,T).

6 T =1

7

s 7— defined (1/x,D).

40 The Symbolic System

9 D = not(0=x)

10

11 7— defined (tan(x) ,D).

12 D = not(0=cos(x))

13

14 7— solve(true, x, 5*xx*xx2 — 3 = 0, S), print_expr (user_output ,0, S, _)

151/ 10 « 60 xx (1 / 2)

16 S = %([1/10, 60x* (1/2)]).

17

18 7— solve(true, x, 17xx — 3 = 0, S), print_expr(user_output ,0, S, _).

193 / 17

20 S = 3/17.

21

22 7— leqgs_solve ([],[x,y],[x,x([5,¥])],Y).

23 Y = let (local ([]), series ([skip, skip, skip, skip, skip, skip, skip],
(1), [y=0, x=0])

24

25 7— leqs_solve ([],[x,y],[x,+([5,¥])],Y).

26 Y = let (local ([]), series ([skip, skip, skip, skip, skip, skip, skip],
H)a [y: -5, XZO])

27

28 7— leqs_solve ([],[x,y],[x,+([5,y,x])],Y).

20 Y = let (local ([]), series ([skip, skip, skip, skip, skip, skip, skip],
H)’ [y: -9, X:O])

30

s1 7— leqgs_solve ([],[x,y].[+([x,1]),+([5,y,x])],Y).

32 Y = let (local ([]), series ([skip, skip, skip, skip, skip, skip, skip],
(1), [y= -4, x== —1])

Listing 6.1: Examples for symbolic subsystem
6.2 Program Variables

The AUTOBAYES system distinguishes between different kinds of variables. This is
necessary, because there are Prolog variables, which have to be distinct from code
variables, which show up in the generated code fragments. The latter type of variable
is called program variable.

Program variables are not represented by Prolog variables (because no unification can
be allowed there), but by a reserved term pv(n), where n is a number. Such program
variables can be universally quantified or existentially quantified. The latter is used,
e.g., to convert Prolog variables in a term into actual variable names.

During pretty-printing or in the final code, existential variables are printed as pv###,

6.2 Program Variables

41

e.g., pvob.

1 % GET A NEW FRESH (EXTENSIAL VARIABLE). THE ”"Pv1” 1S THE
2 % EXTERNAL FORMAT

3 7— pv_fresh_existential (X), print_expr (user_output,0,X,_).

4 pvl

5 X = pvar(1).

6

7 % CONVERT INDEX VARIABLE FOR A SUM INTO PROGRAM VARIABLES
s 7— C=sum(idx(X,0,10) ,d(X)),

9 pv_lift_existential (C),

10 print_expr (user_output ,0,C, _).

1 sum(pv3 := 0 .. 10, d(pv3))

12 C = sum(idx (pvar(3), 0, 10), d(pvar(3))),

13 X = pvar(3).

Listing 6.2: Predicates for program variables

Pretty Printing and Text Generation

7.1

7.2

Pretty Printer

A piece of pseudo-code can be pretty-printed using pp_pseudo(+Stmt). It pretty-
prints the statement onto the screen (or into a file if a stream is given as the first
argument).

An expression can be printed into a stream using print_expr (+Stream, +Indent,
+Expr, ?NewPos).

The syntax definition of the intermediate language is given in Appendix [A]

1 7— pp_pseudo(assign (x,5*x**3 —5 [comment(’initial_value’)])).
2 // initial wvalue

3X = 5 %x X %xx 3 — 9;

4 true .

5

6 7— print_expr (user_output, 0, x*+24cos(x), _).

7 X %k 2 + cos(x)

g true.

Listing 7.1: Printing statements and terms

Pretty Printer for ETEX and HTML

Generating an HTML or IXTEX representation of an expression or a piece of code,
the same pretty-printer interface is used. The actual output format is controlled by
various flags.

pp-latex_output if set to 1, XTEX output will be generated
pp-html _output if set to 1, HTML output will be generated

Additional predicates in pp_x.pl provide support to writing headers, etc.

1 7— pp-pseudo (assign (x,x+1,[comment(’update_x’)])).
2 // update x

3 x 1= x + 1;

4 true

5

7.3 Support for Text Generation

6 7— flag(pp-latex_output,_,1),

7 pp-pseudo (assign (x,x+1,[comment('update_x’)])).
8

9

/*@Q\SETLENGTH{\MYWIDTH } { OPT } \ ADDTOLENGTH { \MYWIDTH }
10 {78\MYSPACE}\BEGIN{MINIPAGE }{\MYWIDTH} \ SMALL\ VSPACE*{0.5EX}
11 \RM\EM\NOINDENT{ } UPDATE X\END{MINIPAGE }@sx /
12 X = x + 1;
13 true

15 7— flag (pp-latex_output,_,0),

16 flag (pp_-html_output,_,1),

17 pp-pseudo (assign (x,x+1,[comment('update.x’)])).
18

19 // ; update ;x

20 x := ;x + 1;
</tt>

21 </body>

22 </html>

23 true

Listing 7.2: Pretty printing to IXTEX and HTML

Support for Text Generation

Generation of explanations and comments in the synthesized code is of great im-
portance. Only a well-documented autogenerated algorithm can be used and under-
stood. AUTOBAYES contains a number of predicates to facilitate the generation of
text fragements to explain schemas and code. These texts are handled as comments
in the intermediate language and stored as comment(...) in the attribute list, e.g.,
assign(x,0, [comment (’Initial assignment’)]).

The full powered schema-based synthesis approach requires that the explanation text
can be customized accordingly for scalars, vectors, matrices; single elements and enu-
meration lists, etc. Predicates in synth/lexicon.pl provide functionality for this
purpose.

1 lex_probability _atom (Prob, XP_prob),

2 (XP_prob = *(Prob_args)

3 —> true

4 ; Prob_args = []

5),

6 lex_numerus_align (’The.’, Prob_args, XP_prob_article),
7 lex_numerus_align (’probability >, Prob_args, XP_prob_numerus),
s lex_numerus_align(’is’, Prob_args, XP_prob_verb),

o lex_-numerus_align (’function’, Prob.args, XP_prob_density),

10 lex_enumerate_vars (Theta, XP_theta),

44

Pretty Printing and Text Generation

11 lex_probability _atom (Prob, XP_prob_atom) ,
12 (Expected = []
13 —> XP_likelihood = |

14 "_This_yields_the_log—likelihood _function’, expr(Pre_formula),
15 "which.can.be_simplified .to’, expr(Formula)

16]

17 ; (maplist (arg(1l), Expected, EVars_list),

18 flatten (EVars_list , EVars),

19 lex_enumerate_vars (EVars, XP_EVars),

20 XP_likelihood = |

21 " _Summing.out.the_expected.’, XP_EVars,

22 "_yields._the_.log—likelihood _function’, expr(Pre_formula),

23 "which_can_be_simplified _to’, expr(Formula)

24]

25)

),

27 XP = |

28 "The.’, XP_p_type, XP_p, ’'_is.under_the_dependencies_given_in_the.’,
29 'model_equivalent_to.’, expr(XP_prob_atom),

30 XP_prob_article , XP_prob_numerus, ’_occuring_here.’, XP_prob_verb,

31 "_atomic.and.can.thus.be_replaced _by.the.respective_probability.’,
32 "density.’, XP_prob_density, ’_given.in.the_.model.’, XP_likelihood,
33 "This_function_is_then_optimized_w.r.t._the_goal.’, XP_theta, ’.’

Listing 7.3: Generation of Explanation in a schema synth/synth.pl

Appendix A. AutoBayes Intermediate Language

Al

A.2

NOTE: The BNF description of the AUTOBAYES intermediate language is
not up-to-date

AUTOBAYES uses a simple procedural intermediate language when it synthesizes code.
This language is kept through all stages (synt, iopt, lang), until at the final stage, code
in the target language’s syntax is produced.

The intermediate code for AUTOBAYES is a relatively generic (procedural) pseudo
code which contains specific means for handling numeric data and data structures

like vectors and arrays. Syntactically, a program in that pseudo-code is a term as
defined below.

For extended purposes, ATTR is introduced for most language constructions. They will
contain attributes (e.g., state of initialization of the variable) or annotations which

could contain explanations. ATTR is a list of well-formed (opaque) terms or the empty
list [J.

Code

This top-level functor splits the program into a declarations and statements parts

PSEUDO_PROGRAM : :=
prog (IDENT, DECLS , STMT, ATTR)

Changes: code now contains a full list of declarations. IDENT will be the name of the
function/program.

Declarations

All identifiers used within the code must have appropriate declarations; the only
exceptions are index variables occurring within sums, loops, etc., as such constructs
can easily be transformed into individual blocks containing the local declarations at
the beginning of the construct. [

I'Note that this requires different names for loop variables which occurr in nested loops.

46 AutoBayes Intermediate Language

Constants and variables are declared in a declaration block at the beginning of the
program. The declaration block distinguishes between constant values, input, which
are the parameters given to the synthesized routine, output which are the results
returned by the synthesized routine, and local variables.

Symbolic model constants as for example the dimensions of vectors are represented
either as constants if their value is given by the model or can be derived from other
given constants or input variables or as input variables if their value must be supplied
at runtime.

DECLS ::=
decls(
constant([DECL_LIST]),
input([DECL_LIST]),
output([DECL_LIST]),
local([DECL_LIST])
)

DECL_LIST ::=
DECL
| DECL , DECL_LIST

DECL ::=
SCALAR_DECL
| VECTOR_DECL
| MATRIX_DECL
| ARRAY_DECL

SCALAR_DECL ::=
scalar(IDENT, TYPE_IDENT, ATTR)

VECTOR_DECL ::=
vector (IDENT, TYPE_IDENT, [DIM_LIST], ATIR)

MATRIX_DECL ::=
matrix(IDENT, TYPE_IDENT, [DIM_LIST], ATTR)

ARRAY_DECL ::=
array(IDENT, TYPE_IDENT, [DIM_LIST], ATTR)

A.3

A.3 Indices and dimensions for vectors, arrays, and matrices

47

TYPE_IDENT ::=
double

| float

| int

| bool

Changes: declarations for vectors are similar to the old format, but now also contain
the lower bounds. Note: giving the name with a set of FVARS only introduces
IDENT/n not IDENT/0 and IDENT /n

variables marked const never occur on the left hand side of an assignment.

Indices and dimensions for vectors, arrays, and matrices

All indices into vectors or arrays (e.g., for declaration, iterative constructs) are given
as lists of triples with the functor idx. For specification of vector/matrix/array di-
mensionality, the construct dim(E1,E2) is used, where the constant expressions E1
and E2 define the lower and upper bound of one dimension of the data object.

IDX_LIST ::=
IDX
| IDX , IDX_LIST

IDX ::=
idx(IDENT , EXPR , EXPR)

DIM_LIST ::=
DIM
| DIM , DIM_LIST

DIM ::=
dim(EXPR , EXPR)

The IDENT is the loop variable, the EXPRs are the lower bound and upper bound
respectively.

48 AutoBayes Intermediate Language

A.4 Attributes

Attributes are opaque lists of terms used for various purposes, like attachments of
comments or explanations or parameters (like target system, optimization level).

ATTR ::=
(]
| [LIST_QOF_ATTR 1]

LIST_OF_ATTIR ::=
AT
| AT , LIST_OF_ATTR

Example attributes which are currently being used are:

AT ::=
file (IDENT)
| target_language (LANGUAGE)
| indent (NUMBER)
| verbosity(NU)
| linewidth(NU)
| pedantic
| target (TARGET)
| comment (COMMENT)
| initialize (EXPR)
|

LANGUAGE ::=

¢ | cplusplus
TARGET ::=

matlab | octave

file The code-generation module will output the resulting code into the file file.
This attribute is only evaluated on the top-level attribute-list of the prog.

target_language Select a target language for the code to be generated (overridden by
selection of the target system). This attribute is only evaluated on the top-level
attribute-list of the prog.

indent indentation level for formatting (default: 2). This attribute is only evaluated
on the top-level attribute-list of the prog.

A.5

A.5 Statements STMT

49

linewidth maximal length of a line in produced output code (default: 80). This
attribute is only evaluated on the top-level attribute-list of the prog.

verbosity This is the verbosity level of the code-generation subsystem.

initialize This attribute is used for the declaration part only. A skalar variable
is being initialized to the value given by EXPR. EXPR must be a simple expres-
sion (i.e., must not contain any pseudo-code instructions which evaluate into
statements (like sum,norm,...).

comment Comments can be an atom or a list of atoms. Long lines are broken up into
several shorter lines. Comments can have the following control atoms (must be
present as single atoms):

\ n forces an immediate line-break

labelref (label) prints a reference to the label 1abel defined elsewhere.

label(label) defines a label for later reference. In the current version, a label is
printed as an additional comment.

In the current version, only the following attributes are evaluated for each statement:
comment, label.

Statements STMT

STMT ::=
SERIES

| BLOCK

| FOR_LOOP

| IFSTAT

| ASSIGN

| WHILE

| ASSERT

| CALL_STAT

| CONVERGING

| ANNOTATION

| FAIL

| SKIP

STMT_LIST ::=
STMT
| STMT , STMT_LIST

50 AutoBayes Intermediate Language

A.5.1 fail and skip

fail generates a run-time error and/or exception and aborts processing of that func-
tion. skip just does nothing.

FAIL ::=
fail (ATTR)

SKIP ::=
skip (ATTR)
| skip

A.5.2 Sequential Composition

SERIES ::=
series ([STMT_LIST] , ATIR)

BLOCK ::=
block (local([DECL_LIST]) , STMT , ATTIR)

A.5.3 Annotations

ANNOTATION ::=
annotation(TERM)

Annotations are placed “as is” into the code.

A.5.4 For-Loops

FOR_LOQOP ::=
for([IDX_LIST], STAT, ATTR)

A.5.5 If-then-else

IFSTAT ::=
if (EXPR , STAT , STAT , ATTR)

A.5.6 While-Converging

CONVERGING ::=
while_converging ([VECTORLIST] , EXPR, STAT , ATTR)

A.5 Statements STMT

Change: The EXPR evaluates to the tolerance down to which the iteration is to be
performed.

VECTORLIST ::=
VECTORDECL
| VECTORDECL , VECTORLIST

A.5.7 While and Repeat Loop

WHILE ::=
while (EXPR , STAT, ATTIR)

REPEAT ::=
repeat (EXPR , STAT, ATTR)

A.5.8 Assertion

ASSERT ::=
assert(EXPR, TERM , ATTR)

Changes: This assert is to be used instead of the construct if (expr,stat, fail)
The TERM is opaque and will be used in conjunction with explanation techniques.

A.5.9 Assignment Statement

ASSIGN ::=
SIMPLE_ASSIGN
| MULTIPLE_ASSIGN
| SIMUL_ASSIGN
| COMPOUND_ASSIGN

SIMPLE_ASSIGN ::=
assign(LVALUE , EXPR , ATTR)

MULTIPLE_ASSIGN ::=
assign_multiple(LVALUE_LIST, EXPR, ATTR)

SIMUL_ASSIGN ::=
assign_simul (LVALUE_LIST, EXPR, ATTR)

COMPOUND_ASSIGN ::=

52 AutoBayes Intermediate Language

assign_compound ([IDX_LIST], LVALUE, EXPR, ATTR)

Note: the compound assignment will not be available in the current version.

LVALUE ::=
VAR
| VAR (EXPR_LIST)

A value gets assigned to a skalar variable or an array access.

A.5.10 Misc. Statements

SOLVER_STAT ::=
unsolved (LABEL , STAT)
| poly_solver (...)

A.6 Expression EXPR

EXP_LIST ::=
EXPR
| EXPR , EXPR_LIST

EXPR ::=
NUMERIC_CONSTANT

CONSTANT

VAR

VAR (EXPR_LIST)

- EXPR

PRE_OP

EXPR OP EXPR

SUM_EXPR

NORM_EXPR

MAXARG_EXPR

(EXPR)

NUMFUNC

BOOLFUNC

CONDEXPR

|
|
|
|
|
|
|
|
I
|
|
|
|
| attr(EXPR , ATTR)

A.6 Expression EXPR 53

The attr can be used to give attributes to atomic expressions and/or expressions
without a leading function symbol.

NUMERIC_CONSTANT ::

o1l 1]
| FLOAT
| pi
CONSTANT ::=
identifier
VAR ::=
identifier
0P ::=
+ = x| kx| /
PRE_QP ::=
sdiv (EXPR, EXPR)
| ssqrt(EXPR)
| slog(EXPR)

The operators sdiv, ssqrt, slog are safe extensions of the usual operators. The
code-generator will generate a check for validity and the desired operation, using a
newly introduced variable to avoid multiple copies of the expressions.

Note: the usual infix-operators with the usual operator precedence as well as prefix
notation (e.g., '+’(X,Y)) can be used.

A.6.1 Boolean Expressions

BOOLFUNC ::=
nonzero (EXPR)
| true
| false
| EXPR RELOP EXPR

RELOP ::=

Note: the < is =< to conform to PROLOG standard.

54 AutoBayes Intermediate Language

Note: The operation nonzero has been introduced for handling numerical instability.
Whereas EXPR != 0 really checks for being equal to 0, nonzero (EXPR) just checks if
the absolute value of EXPR is larger than some given e.

A.6.2 Numeric expressions and functions

NUMFUNC ::=
sqrt (EXPR)
| exp (EXPR)
sin (EXPR)
abs (EXPR)
random

|
|
|
| random_int (EXPR, EXPR)

The function random returns a pseudo-random number between 0 and 1; random_int
returns a pseudo-random integer in the given range.

A.6.3 Summation expression

SUM_EXPR ::=
sum([IDX_LIST], STAT ,ATTR)

A.6.4 Indexed Expressions

IDX_EXPR ::=
select(IDENT, [IDX_LIST])

A.6.5 Getting the Norm of an iteration

NORM_EXPR ::=
norm(EXPR, [IDX_LIST], EXPR ,ATTR)

The intended meaning of this construct is to get the value of EXPR1 normed to
EXPR2. For example,

norm(v (i), [1dx(j,1,M],v(j), [1) calculates: v(i)/ Zjvzl v(7).
The expression norm(EXPR, [IDX_LIST] ,EXPR2) unfolds into
EXPR1 / sum([IDX_LIST] ,EXPR2)

A.6.6

A.6.7

A.6 Expression EXPR 55

Since usually (or actually the only thing which makes sense) the sum-expression is
constant wrt. the EXPR1 (in our case the 7), this sum could be moved out of the
for-loop.

However, beware of the situation where you have:

for ([idx(i,0,N)],
v(i) = norm(v(i), [idx(j,0,N)]1,v(j)])

This would NOT correctly normalize that vector (because you modify the v(i) and
with that the sum. So care must be taken to take the correct thing.

Maxarg

MAXARG_EXPR ::=
maxarg([IDX_LIST], EXPR ,ATTR)

determine index where EXPR gets its maximal value.

conditional expressions

CONDEXPR ::=
| cond (EXPR , EXPR , EXPR)

Appendix B. Useful AutoBayes Pragmas

A list of all pragmas formatted in IXTEXcan be generated by autobayes -tex -help
pragmas. This is a subset.

cg_comment_style (atomic) select comment style for C/C++ code generator
Default: -pragma cg_comment_style=cpp
Possible values :
kr use traditional (KR) style comments
cpp use C++ style comments //

cluster_pref (atomic) select algorithm schemas for hidden-variable (clustering) prob-
lems

Default: -pragma cluster_pref=em
Possible values :

em prefer EM algorithm

no_pref no preference

k means use k-means algorithm

codegen_ignore_inconsistent_term (boolean) [DEBUG] ignore inconsistent-term
conditional expressions in codegen

Default: -pragma codegen_ignore inconsistent term=false
em (atomic) preference for initialization algorithm for EM

Default: -pragma em=no_pref

Possible values :

no_pref no preference

center center initialization

sharp_class class-based initialization (sharp)

Useful AutoBayes Pragmas 57

fuzzy class class-based initialization (fuzzy)

em_log likelihood convergence (boolean) converge on log-likelihood-function
Default: -pragma em log likelihood convergence=false

em_q output (boolean) Output the Q matrix of the EM algorithm
Default: -pragma em_q output=false

em_q update_simple (boolean) force the q-update to just contain the density func-
tion

Default: -pragma em q update _simple=false

ignore_division by zero (boolean) DEBUG: Do not check for X=0 in X**(-1)
expressions

Default: -pragma ignore_division by _zero=false

ignore zero base (boolean) DEBUG: Do not check for zero-base in X**Y expres-
sions

Default: -pragma ignore_zero base=false

infile cpp_prefix (atomic) Prefix for intermediate input file after cpp(1) process-
ing

Default: -pragma infile cpp_prefix=cpp-

instrument_convergence save_ub (integer) default size of instrumentation vector
for convergence loops

Default: -pragma instrument_convergence _save ub=999
lopt (boolean) Turn on/off optimization of the lang code
Default: -pragma lopt=false
optimize cse (boolean) enable common subexpression elimination
Default: -pragma optimize cse=true

optimize expression_inlining (boolean) enable inlining (instead function calls)
of goal expressions by schemas

Default: -pragma optimize expression_inlining=true

optimize max_unrolling depth (Int) maximal de of for-loops w/ constant boun
p g depth (int) imal depth of for-loops w/ bound
to be unrolled

58 Useful AutoBayes Pragmas

Default: -pragma optimize max unrolling depth=3
optimize memoization (boolean) enable subexpression-memoization
Default: -pragma optimize memoization=true

optimize substitute constants (boolean) allow values of constants to be substi-
tuted into loop bounds

Default: -pragma optimize _substitute_constants=true
rur_cache max (integer) size of rewrite cache
Default: -pragma rwr_cache max=2048

schema_control_arbitrary_init_values (boolean) enable initialization of goal vari-
ables w/ arbitrary start/step values

Default: -pragma schema_control_arbitrary_init values=false
schema control init values (atomic) initialization of goal variables
Default: -pragma schema_control_init_values=automatic
Possible values :
automatic calculate best values
arbitrary use arbitrary values
user user provides values (additional input parameters
schema _control solve partial (boolean) enable partial symbolic solutions
Default: -pragma schema control solve partial=true

schema_control use generic optimize (boolean) enable intermediate code gener-
ation w/ generic optimize(...)-statements

Default: -pragma schema_control use_generic_optimize=false

synth_serialize maxvars (integer) maximal number of solved variables eliminated
by serialize

Default: -pragma synth_serialize maxvars=0

Appendix C. Examples

C.1 Simple AuUTOBAYES Problem
C.1.1 Specification

Throughout the text, the following simple AUTOBAYES specification is used (List-
ing [C.1]). Section shows the autogenerated derivation for this problem. The
entire IXTEXdocument has been generated except for the red lines.

Notes:

e the original specification uses mu, sigma, etc. The KIEX output automatically
converts most greek names into greek symbols; variable names ending in _sq are
converted into squares.

e Upper case symbols can be used in specifications, when the flag prolog_style
is set to false.

o IXTEX output is produced using the -tex synt command-line option.

e The current version type-sets the entire program (code and comments); for the
derivation below, only the comments were extracted (manually).

model normal_simple as ’NORMAL MODEL WITHOUT PRIORS’.

double mu.
double sigma_sq as ’'SIGMA SQUARED’.
where 0 < sigma_sq.

const nat n as ’'# DATA POINTS .
where 0 < n.

© 0 N 3 ok W N

=
o

data double x(0..n—1) as ’KNOWN DATA POINTS .
x(-) ~ gauss(mu, sqrt(sigma_sq)).

= e
Vo=

-
w

max pr(x | {mu, sigma_sq}) for {mu, sigma_sq}.

Listing C.1: Simple AUTOBAYES specification

60 Examples

C.1.2 Autogenerated Derivation

begin autogenerated max pr(x|mu,s) for mu,s
The conditional probability P(z | i, ?) is under the dependencies given in the model
equivalent to

—1+n

H P("EZ|M’ JQ)
1=0

schema: prob-2-formula
The probability occurring here is atomic and can thus be replaced by the respective
probability density function given in the model. This yields the log-likelihood function
PDF(gauss) = 1/..% exp(...)

1
—1+4+n - — P 2

log H exp
i=0

which can be simplified to

1 log 2 + 1 log ™ + 1 logo? +
2n og 2n ogm 2n ogo

1 —1+n
2\ 1 2
—5(0) ;(—1M+$i)
This function is then optimized w.r.t. the goal variables 1 and o2 optimization

solves the maximation task

The summands
1
ok log 2
—5 n logm

are constant with respect to the goal variables u and o2 and can thus be ignored for
maximization.

The factor

DN | —

C.1 Simple AUTOBAYES Problem

61

is non-negative and constant with respect to the goal variables p and o2 and can thus
be ignored for maximization.

The function

—14n

—1nlogo? +—1 (02)_1 Z (=14 x)?
i=0

is then symbolically maximized w.r.t. the goal variables y and . The partial differ-

entials text-book like: set first derivative = 0 and solve
a B B —14n
of _ —2pun(c?) 1—1—2(02) ! in
ou —
af 2y—1 2\—2 ' 2
— = —1ln(o + (o —1lu+x;
-, @7 @ Y)

are set to zero; these equations yield the solutions
solver can symbolically solve
—1+n
-1
no=n E Ty
i=0

—14n

o? = _12 —1p+ 3)?

end autogenerated document

Appendix D. Exercises

D.1 Running AutoBayes
D.1.1 Exercise 1

Run the norm.ab example and inspect generated code and derivation. If possible,
generate the latex version of the derivation.

model normal_simple as ’NORMAL MODEL WITHOUT PRIORS .

1
2
3 double mu.

4 double sigma_sq as ’SIGMA SQUARED’.
5 where 0 < sigma_sq.
6
7
8
9

const nat n as '# DATA POINTS .
where 0 < n.

10 data double x(0..n—1) as ’'KNOWN DATA POINTS .
1 x(-) ~ gauss(mu, sqrt(sigma_sq)).

12

13 max pr(x | {mu, sigma._sq}) for {mu, sigma.sq}.

Listing D.1: norm.ab

D.1.2 Exercise 2

Generate multiple versions for this problem. Note: use the appropriate flags to allow
AUTOBAYES to generate numerical optimization algorithms:
(schema_control arbitrary init values)

D.1.3 Exercise 3

Modify the “norm” example to use a different probability density function. Note that
some of them do have a different number of parameters. Inspect the generated code
and derivation. Can the problem be solved symbolically for all PDFs?

Hint: use vonmisesl, poisson, weibull, cauchy

D.1 Running AutoBayes 63

D.1.4 Exercise 4

Generate multiple versions for the mixture-of-gaussians example. What are the major
differences between the different synthesized programs.

Note: the specification is mog.ab in the models_manual directory.
Generate a sampling data generator (autobayes -sample) for this specification.

In AutoBayes generate 1000 data points that go into 3 different classes. Then run the
different programs and see how good they estimate the parameters.

Note: the generated functions require column-vectors, so, e.g., give the means as
[1,2,3]"

1 octave —3.4.0:1> sample_mog

2 usage: [vector c,vector x] = sample_mog(vector mu,int n_points, vector
phi, vector sigma)

3

4 octave —3.4.0:2> [c,x] = sample_mog
([1,2,4]7,1000,[0.3,0.1,0.6]",[0.1,0.1,0.2]");

Listing D.2: calling the synthesized code in Octave

D.1.5 Exercise 5

Run a change-point detection model (e.g., climb_transition.ab and look at gener-
ated code and derivation. How does AUTOBAYES find the maximum?

D.1.6 Exercise 6

Add the Pareto distribution to the built-in transitions. Get the formulas from wikipedia.

Try the following simple model:

model pareto as ’'NORMAL MODEL WITHOUT PRIORS’.

1

2

3 double alpha.

4 where 3 < alpha.
5 const double xm.

6 where 0 < xm.

7

8

9

const nat n as ’# DATA POINTS’.
where 0 < n.
10
11 data double x(0..n—1) as ’'KNOWN DATA POINTS .
12 where 0 < x(_).

64

Exercises

13
14
15
16
17

where xm < x(.).
x(.) ~ pareto(xm, alpha).

max pr(x | {alpha}) for {alpha}.

Listing D.3: Specification for Pareto distribution

(S I N

octave —3.4.0:2> xm=5;

octave —3.4.0:3> alpha=15;

octave —3.4.0:4> x=xmx(1./(1—rand(10000,1))."(1/alpha));
octave —3.4.0:5> alpha_est = pareto(x,5)

alpha_est = 15.081

Listing D.4: Generate Pareto-distributed random numbers

Appendix E. Research Challenges and Programming
Tasks

E.1 PDFs
E.1.1 Integrate y? PDF into AUTOBAYES

The x? PDF is important to handle square errors of Gaussian distributed data. E.g.,
for X, Y ~ N(u,0?) we get X2+ Y2~ x%(1).

E.1.2 Integrate folded Gaussian PDF into AUTOBAYES
Folded Gaussian PDF is important to handle problems with abs functions. For X ~
N(0,1), we get | X| ~ N¢(0).

E.1.3 Integrate Tabular PDF into AUTOBAYES

Handling of non-functional PDFs, e.g., for ground-cover clustering. The PDF is given
as a vector over the data X, e.g., as X ~ tab(p) where constdoublep(0..n — 1). and
where) = sum(l :=0.n —1,p(I)) — 1

Normalization is important

E.2 Gaussian with full covariance

Currently, AUTOBAYES can only handle Gaussian distribution with a diagonal co-
variance matrix, i.e., 3; ; = 0 for 7 # j.

This could be implemented as a separate PDF, or the dimensionality could be inferred
from the declaration of the sigmas.

Requires 3-dim arrays for multivariate clustering.

66 Research Challenges and Programming Tasks

E.3 Preprocessing
E.3.1 Normalization of Data

Develop a schema for the normalization of data toward 0..1 or N(0,1). For Gaussian
PDF, aX + b ~ N(ap + b, a*0?)

E.3.2 PCA for multivariate data

This preprocessing cuts down the number of dimensions given by a given goal (thresh-
old on the eigen values or reduction of dimensions). The rnd-projection schema could
be used for this.

Note that after clustering, the resulting parameters must be mapped back to the
original space.

E.4 Clustering
E.4.1 KD-tree Schema

must be dug up and integrated (Alex Grey(?))

E.4.2 EM schema with empty classes

The current EM algorithm fails if one or more classes become empty. The EM schema
must be extended to enable handling this case. Since we cannot dynamically resize the
data structures, an index vector (e.g., valid_classes) must be carried along. Refactoring
of the EM schema might be a good idea

E.4.3 Clustering with unknown number of classes

With a very simple approach, a schema is developed, which executes a for loop over
the number of classes and returns the parameters for the run with the maximum
likelihood.

The spec gives the range of class numbers.

Extensions: run the algorithm multiple times (with different random initializations)
for each n_classes.

Should be combined with different quality-of-clustering metrics

E.5 Specification Language

67

E.4.4 Quality-of-clustering metrics

Currently, AUTOBAYES stops clustering, when a given tolerance is reached. Then it
returns the log-likelihood as the only quality metric.

The literature describes a large number of different quality metrics for clustering.
Develop schemas for calculating one or more of these metrics after each run of a
clustering algorithm

E.4.5 Regression Models

E.5 Specification Language

E.5.1 Improved Error Handling

E.6 Code Generation
E.6.1 R Backend

R is a popular language for statistics purposes. Thus an interface of AUTOBAYES to
R is important to increase the usability of AUTOBAYES.

E.6.2 Arrays in Matlab

Currently all matrices and arrays are linearized and the access is done using a macro.
Le., z;; is implemented as *(x+i*N +j).

The access with using a vectorized linearization is to be implemented.

E.6.3 Java Backend

Develop a backend for stand-alone Java. This requires definition of a suitable data
structure for arrays (and their allocation), handling of multiple arguments and return
values).

E.6.4 C stand-alone

The C stand-alone code generator must be debugged and improved

68 Research Challenges and Programming Tasks

E.6.5 Code Generator Extensions for functions/procedures

E.7 Numerical Optimization
E.7.1 GPL library
E.7.2 Multivariate Optimization

Add schema-library for multivariate optimization

E.7.3 Optimizations under Constraints

trust region algorithms

E.8 Symbolic

E.8.1 Handling of Constraints

E.9 Internal Clean-ups
E.9.1 Code generation

cg_compoundexpr.pl

E.10 Major Debugging

E.10.1 Fix all Kalman-oriented examples
E.11 Schema Control Language
E.12 Schema Surface Language

E.12.1 Domain-specific surface language for schemas
E.12.2 Visualization of Schema-hierarchy

E.12.3 Schema debugging and Development Environment

E.13 AutoBayes QA
E.14 AutoBayes/AutoFilter

Implementation of Particle Filters for Health Management

	Preface
	1 Starting AutoBayes
	1.1 Command-line
	1.2 Interactive Mode
	1.3 Loading AutoBayes into Prolog

	2 AutoBayes Architecture
	2.1 Top-level Architecture
	2.2 Directory Structure
	2.3 Synthesis and Code Generation
	2.3.1 Synthesis
	2.3.2 Code Generation
	2.3.3 Target Specific Code Generation

	3 The Schema System
	3.1 The synth_schema Predicate
	3.2 The synth_formula Predicate
	3.3 AutoBayes Schema Hierarchy
	3.3.1 AutoBayes probabilistic Schema Hierarchy
	3.3.2 AutoBayes functional Schema Hierarchy
	3.3.3 AutoBayes Support Schema Hierarchy

	3.4 Adding a New Schema
	3.4.1 Example 1
	3.4.2 Example 2

	3.5 Notes
	3.6 Schema Control

	4 Probability Density Functions
	4.1 The AutoBayes Model
	4.1.1 The Model Data Structure
	4.1.2 The Model Stack
	4.1.3 Modifying the Model

	4.2 Statistical (Bayesian) Decomposition

	5 Low-level Components of AutoBayes
	5.1 Command Line Options and Pragmas
	5.1.1 Pragmas

	5.2 Backtrackable Global Data
	5.2.1 Backtrackable Flags
	5.2.2 Backtrackable Counters
	5.2.3 Backtrackable Bitsets
	5.2.4 Backtrackable Asserts/Retracts

	5.3 Data Structures and Their Predicates
	5.4 The Rewriting Engine
	5.4.1 Rewriting Rules
	5.4.2 Compilation of Rewriting Rules

	6 The Symbolic System
	6.1 Top-Level Predicates
	6.2 Program Variables

	7 Pretty Printing and Text Generation
	7.1 Pretty Printer
	7.2 Pretty Printer for LaTeX and HTML
	7.3 Support for Text Generation

	A AutoBayes Intermediate Language
	A.1 Code
	A.2 Declarations
	A.3 Indices and dimensions for vectors, arrays, and matrices
	A.4 Attributes
	A.5 Statements STMT
	A.5.1 fail and skip
	A.5.2 Sequential Composition
	A.5.3 Annotations
	A.5.4 For-Loops
	A.5.5 If-then-else
	A.5.6 While-Converging
	A.5.7 While and Repeat Loop
	A.5.8 Assertion
	A.5.9 Assignment Statement
	A.5.10 Misc. Statements

	A.6 Expression EXPR
	A.6.1 Boolean Expressions
	A.6.2 Numeric expressions and functions
	A.6.3 Summation expression
	A.6.4 Indexed Expressions
	A.6.5 Getting the Norm of an iteration
	A.6.6 Maxarg
	A.6.7 conditional expressions

	B Useful AutoBayes Pragmas
	C Examples
	C.1 Simple AutoBayes Problem
	C.1.1 Specification
	C.1.2 Autogenerated Derivation

	D Exercises
	D.1 Running AutoBayes
	D.1.1 Exercise 1
	D.1.2 Exercise 2
	D.1.3 Exercise 3
	D.1.4 Exercise 4
	D.1.5 Exercise 5
	D.1.6 Exercise 6

	E Research Challenges and Programming Tasks
	E.1 PDFs
	E.1.1 Integrate 2 PDF into AutoBayes
	E.1.2 Integrate folded Gaussian PDF into AutoBayes
	E.1.3 Integrate Tabular PDF into AutoBayes

	E.2 Gaussian with full covariance
	E.3 Preprocessing
	E.3.1 Normalization of Data
	E.3.2 PCA for multivariate data

	E.4 Clustering
	E.4.1 KD-tree Schema
	E.4.2 EM schema with empty classes
	E.4.3 Clustering with unknown number of classes
	E.4.4 Quality-of-clustering metrics
	E.4.5 Regression Models

	E.5 Specification Language
	E.5.1 Improved Error Handling

	E.6 Code Generation
	E.6.1 R Backend
	E.6.2 Arrays in Matlab
	E.6.3 Java Backend
	E.6.4 C stand-alone
	E.6.5 Code Generator Extensions for functions/procedures

	E.7 Numerical Optimization
	E.7.1 GPL library
	E.7.2 Multivariate Optimization
	E.7.3 Optimizations under Constraints

	E.8 Symbolic
	E.8.1 Handling of Constraints

	E.9 Internal Clean-ups
	E.9.1 Code generation

	E.10 Major Debugging
	E.10.1 Fix all Kalman-oriented examples

	E.11 Schema Control Language
	E.12 Schema Surface Language
	E.12.1 Domain-specific surface language for schemas
	E.12.2 Visualization of Schema-hierarchy
	E.12.3 Schema debugging and Development Environment

	E.13 AutoBayes QA
	E.14 AutoBayes/AutoFilter

