
narrow domain ==> correct by construction or provable
broader domain or larger programs ==> probably unprovable but still beneficial as a tool

depends on the domain: banking web page vs. angry birds
How strong does the proof need to be to give you a reasonably correct program?

Correct for all inputs vs. working on a large class of programs/problems?

answer can be incorrect, to a degree

the problem: tradeoff between resources and accuracy
can we synthesize these programs?

needs a theory for reasoning about approximately correct programs

Approximate computing, eg image decompression, web search

inference of abstractions or invariants•
code and documentation•
generating use cases of APIs, as a documentation•
retargeting a program to a new version of an API (eg a bug was fixed under an API)•
retargeting a program to a new hardware, eg adjust matrix block sizes to adopt to new
caches; especially for domains not handled by FFTW/Spiral

•

synthesize a faster synthesizer: synthesize (the math for) schemas for a new domain •

synthesize a spec, a design, an architecture○

automatically decompose a problem so that that outsource the computation•

synthesize a DSL compiler•
boilerplate code ==> patterns or libraries •
synthesis of coordination of two half-co$$ect programs•
synthesize of communication, to enable modularity•

What artifact would be interesting to synthesize, and what's the motivation?

how to put all this on a common formal footing (semantics of schemas?)•
hierarchy of schemas•
how to combine schemas•
a common calculus of schemas•
a common informal language for researchers to communicate•
a common "SMTLIB" format for completing schemas?•
a formal language for combining logics•

Schemas = syntactic constraints on artifacts (programs, invariants, abstractions)

decompose a big problem into smaller problem•
customization/parametrization of an existing solution•

Modular synthesis?

2011 Dagstuhl summer school summary
Friday, August 12, 2011
2:00 AM

 Summer School Page 1

especially consider interfaces for end users (PBD)•
talk to HCI folks•

Interactive synthesis

even more than in verification (cf. Harel quote) is a linguistic problem (language design,
programming abstractions design)

•
Where do specifications come from? What are they?

don't synthesize sophisticated algorithms (don't replace Knuths)•
synthesize boring or hard repetitive tasks like corner cases, initializations•

What we should not synthesize because there are simpler/better solutions?

domain experts: scientists, statisticians•
end users: excel, web browser,•
programmers•
managers and professors•
education: teaching tools•

Who are the users?

 Summer School Page 2

