2011 Dagstuhl summer school summary

Friday, August 12, 2011
2:00 AM

Correct for all inputs vs. working on a large class of programs/problems?
narrow domain ==> correct by construction or provable
broader domain or larger programs ==> probably unprovable but still beneficial as a tool

How strong does the proof need to be to give you a reasonably correct program?
depends on the domain: banking web page vs. angry birds

Approximate computing, eg image decompression, web search
answer can be incorrect, to a degree
can we synthesize these programs?
the problem: tradeoff between resources and accuracy
needs a theory for reasoning about approximately correct programs

What artifact would be interesting to synthesize, and what's the motivation?
¢ inference of abstractions or invariants
e code and documentation
e generating use cases of APIs, as a documentation
e retargeting a program to a new version of an API (eg a bug was fixed under an API)
e retargeting a program to a new hardware, eg adjust matrix block sizes to adopt to new
caches; especially for domains not handled by FFTW/Spiral
e synthesize a faster synthesizer: synthesize (the math for) schemas for a new domain
e automatically decompose a problem so that that outsource the computation
o synthesize a spec, a design, an architecture
e synthesize a DSL compiler
e boilerplate code ==> patterns or libraries
¢ synthesis of coordination of two half-coSSect programs
e synthesize of communication, to enable modularity

Schemas = syntactic constraints on artifacts (programs, invariants, abstractions)
e how to put all this on a common formal footing (semantics of schemas?)
e hierarchy of schemas
e how to combine schemas
® a common calculus of schemas
e a common informal language for researchers to communicate
e acommon "SMTLIB" format for completing schemas?
¢ aformal language for combining logics

Modular synthesis?

e decompose a big problem into smaller problem
e customization/parametrization of an existing solution

Summer School Paage 1



Interactive synthesis
e especially consider interfaces for end users (PBD)
e talk to HCI folks

Where do specifications come from? What are they?
e even more than in verification (cf. Harel quote) is a linguistic problem (language design,
programming abstractions design)

What we should not synthesize because there are simpler/better solutions?
e don't synthesize sophisticated algorithms (don't replace Knuths)
¢ synthesize boring or hard repetitive tasks like corner cases, initializations

Who are the users?
e domain experts: scientists, statisticians
¢ end users: excel, web browser,
® programmers
e managers and professors
e education: teaching tools

Summer School Paage 2



