
A few synthesizers and their algorithms

Ras Bodik
University of California, Berkeley

Dagstuhl 2011

aLisp

[Andre, Bhaskara, Russell, … 2002]

aLisp: learning with partial programs

Problem:

– implementing AI game opponents (state explosion)

– ML can’t efficiently learn how agent should behave

– programmers take months to implement a decent player

Solution:

– programmer supplies a skeleton of the intelligent agent

– ML fills in the details based on a reward function

Synthesizer:

– hierarchical reinforcement learning

3

What’s in the partial program?

Strategic decisions, for example:

– first train a few peasant

– then, send them to collect resources (wood, gold)

– when enough wood, reassign peasants to build barracks

– when barracks done, train footmen

– better to attack with groups of footmen rather than send
a footman to attack as soon as he is trained

 [from Bhaskara et al IJCAI 2005]

4

Fragment from the aLisp program

(defun single-peasant-top ()

 (loop do

 (choose ’((call get-gold) (call get-wood)))))

(defun get-wood ()

 (call nav (choose *forests*))

 (action ’get-wood)

 (call nav *home-base-loc*)

 (action ’dropoff))

(defun nav (l)

 (loop until (at-pos l) do

 (action (choose ’(N S E W Rest)))))

5

this.x > l.x then go West
check for conflicts
…

It’s synthesis from partial programs

6

synthesizer

partial program

correctness criterion
completion

complete program

merge

SKETCH

7

SAT-based
inductive

synthesizer sketch

ref implementation
hole values

aLisp

8

hierarchical
reinforcement

learning aLisp partial program

reward function
learnt choice
functions

First problem with partial programming

Where does specification of correctness come from?

Can it be developed faster than the program itself?

Unit tests (input,output pairs) sometimes suffice.

Next two projects go in the direction of saying even less.

9

SMARTedit*

[Lau, Wolfman, Domingos, Weld 2000]

SMARTedit*

Problem:

– creation of editor macros by non-programmers

Solution:

– user demonstrates the steps of the desired macro

– she repeats until the learnt macro is unambiguous

– unambiguous = all plausible macros transform the
provided input file in the same way

Solver:

– version space algebra

11

An editing task: EndNote to BibTex
%0 Journal Article

%1 4575

%A ^Richard C. Waters

%T The Programmer's Apprentice: A Session with KBEmacs

%J IEEE Trans. Softw. Eng.

%@ 0098-5589 

%V 11

%N 11

%P 1296-1320

%D 1985

%R http://dx.doi.org/10.1109/TSE.1985.231880

%I IEEE Press

12

@article{4575,

 author = {Waters, Richard C.},

 title = {The Programmer's Apprentice: A Session with KBEmacs},

 journal = {IEEE Trans. Softw. Eng.},

 volume = {11}, number = {11}, year = {1985},

 issn = {0098-5589},

 pages = {1296--1320},

 doi = {http://dx.doi.org/10.1109/TSE.1985.231880},

 publisher = {IEEE Press}, address = {Piscataway, NJ, USA},

}

Demonstration = sequence of program states:
1) cursor in (0,0) buffer = “%0 …” clipboard = “”
2) cursor in ^ buffer = “%0 …” clipboard = “”
3) …

Desired macro:
 move(to after string “%A “)
 …

Version space = space of candidate macros

Version space expressed in SKETCH (almost):

#define location {| wordOffset(??) | rowCol(??,??)

 | prefix(“??”) | … |}

repeat ?? times {

 switch(??) {

 0: move(location)

 1: insert({| “??” | indent(??,”??”) |}))

 2: cut()

 3: copy()

 …

 }

} 13

Version Space for SMARTedit

14

SMARTedit*

15

version space
algebra

macro template

demonstration(s)
set of macro
parameters

input file run the macro

completed macro(s)

processed file

Denali

[Joshi, Nelson, Randall PLDI 2002]

synthesis with automated theorem proving

Denali

Problem:

– scalable super-optimizer (previous ones: gen-and-test)

Solution:

– spec: the program, given as an instruction sequence

– process: write down instruction-equivalence axioms;
rewrite the spec in all possible ways, using E-graphs;
pick fastest one

Solver:

– no solver; new programs obtained by rewriting,
as in the Simplify theorem prover (Nelson-Oppen)

– (given a candidate P, SAT solver computes P’s exec time)

17

Input

18

Output

19

Axioms: equiv of instruction sequences

20

E-graph matching: find equiv programs

21

Prospector

[Mandelin, Bodik, Kimelman 2005]

23

IFile file = …

ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);

ASTNode node = AST.parseCompilationUnit(cu, false);

Software reuse: the reality

Using Eclipse 2.1, parse a Java file into an AST

IFile file = …

ASTNode node = ?

Productivity < 1 LOC/hour Why so low?

1. follow expected design? two levels of file handlers

2. class member browsers? two unknown classes used

3. grep for ASTNode? parser returns subclass of ASTNode

IFile file = …

ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);

ASTNode node = AST.parseCompilationUnit(cu, false);

IFile file = …

ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);

ASTNode node = AST.parseCompilationUnit(cu, false);

IFile file = …

ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);

ASTNode node = AST.parseCompilationUnit(cu, false);

Prospector

Problem:

APIs have 100K methods. How to code with the API?

Solution:

Observation 1: many reuse problems can be described with
a have-one-want-one query q=(h,w), where h,w are static
types, eg ASTNode.

Observation 2: most queries can be answered with a
jungloid, a chain of single-parameter “calls”. Multi-
parameter calls can be decomposed into jungloids.

Synthesizer:

Jungloid is a path in a directed graph of types+methods.

Observation 3: shortest path more likely the desired one
24

25

Integrating synthesis with IDEs

• How do we present jungloid synthesis to programmers?

• Integrate with IDE “code completion”

want type

have types

Queries: (IFile, ASTNode)
 (IEditorPart, ASTNode)

Are these two also about partial programs?

26

synthesizer

partial program

correctness criterion
completion

complete program

merge

SMARTedit*

27

version space
algebra

macro template

demonstration(s)
set of macro
parameters

input file run the macro

completed macro(s)

processed file

Prospector

28

shortest path
search

jungloid template + API

have,want query
ranked

jungloids

user selection
desired
jungloid

Turn partial synthesis around?

29

synthesizer

partial program

correctness criterion
completion

synthesizer

angelic partial program

correctness check
angelic
demonstration

synthesizer

partial program

demonstrations
completion

