A few synthesizers and their algorithms

Ras Bodik
University of California, Berkeley

Dagstuhl 2011

aLisp

[Andre, Bhaskara, Russell, ... 2002]

aLisp: learning with partial programs

Problem:
— implementing Al game opponents (state explosion)
— ML can’t efficiently learn how agent should behave
— programmers take months to implement a decent player

Solution:
— programmer supplies a skeleton of the intelligent agent
— ML fills in the details based on a reward function

Synthesizer:
— hierarchical reinforcement learning

What'’s in the partial program?

Strategic decisions, for example:
— first train a few peasant
— then, send them to collect resources (wood, gold)
— when enough wood, reassign peasants to build barracks
— when barracks done, train footmen

— better to attack with groups of footmen rather than send
a footman to attack as soon as he is trained

[from Bhaskara et al [JCAI 2005]

Fragment from the aLisp program

(defun single-peasant-top ()

(action ’get-wood)
(call nav *home-base-loc*)
(action ’dropoff))

(defun nav (1)
(loop until (at-pos 1) do

(action {choosei’(N S E W Rest)))))

_____ T““ this.x > 1l.x then go West
check for conflicts

It’s synthesis from partial programs

correctness criterion
synthesizer —> completion

partial program ——

Fesmsssossosssossoossoeo> M@rgE <-oo-omoeioosoosooeoe ’

1
\%

complete program

SKETCH

ref implementation

sketch —

SAT-based
inductive
synthesizer

—> hole values

aLisp

reward function — hierarchical
reinforcement

aLisp partial program — learning

learnt choice
—> .
functions

First problem with partial programming

Where does specification of correctness come from?
Can it be developed faster than the program itself?

Unit tests (input,output pairs) sometimes suffice.

Next two projects go in the direction of saying even less.

SMARTedit*

[Lau, Wolfman, Domingos, Weld 2000]

SMARTedit*

Problem:
— creation of editor macros by non-programmers

Solution:
— user demonstrates the steps of the desired macro
— she repeats until the learnt macro is unambiguous

— unambiguous = all plausible macros transform the
provided input file in the same way

Solver:
— version space algebra

11

An editing task: EndNote to BibTex

%0 Journal Article @article{4575,

#14575 author = {Waters, Richard C.},
%A ARichard C. Waters

%T The Programmer's Apprentice: A Session with KBEmacs
%) |IEEE Trans. Softw. Eng.

title = {The Programmer's Apprentice: A Session with KBEmacs},
journal = {IEEE Trans. Softw. Eng.},
volume = {11}, number = {11}, year = {1985},

%@ 0098-5589 > issn ={0098-5589},

v pages = {1296--1320},

N1 doi = {http://dx.doi.org/10.1109/TSE.1985.231880},

;E 1129986-1320 publisher = {IEEE Press}, address = {Piscataway, NJ, USA},
o 5

%R http://dx.doi.org/10.1109/TSE.1985.231880
%! IEEE Press

Demonstration = sequence of program states:

1) cursor in (0,0) buffer = “%0 ..” clipboard = “”
2) cursor in . buffer = “%0 ..” clipboard = “”
3) ..

Desired macro:
move(to after string “%A)

12

Version space = space of candidate macros

Version space expressed in SKETCH (almost):

#define location {| wordOffset(??) | rowCol(??,??)

repeat ?? times {
switch(??) {

9:

1:
2:
3

¥

| prefix(“??”) | .. |}
move(location)
insert({| “??” | indent(2?,”2?”) |}))
cut()
copy ()

13

Version Space for SMARTedit

Program

=]
Action Action ces Action

Action
Move DeleteSel Location
J Paste
‘ Insert Copy Select CharDisjunct
Location RowCol

U Delete 1 WordOffset

/R : CharOftset
ConstStr StrNumStr IndentStr Namn 1 A
[=]
ConstStr Location Search

Linearint Row Column

Number [><] Location i

} Left -
SN\NE ConstStr] o k= R
&/ 1UN\= ConstStr Right [& \z U

&
2 Indent
Linearint Linearint

U

RelRow _ RelCol
l AbsCol l

l Linearint Linearint
Constint Constint

14

SMARTedit*

demonstration(s)

macro template —

version spadce
algebra

set of macro
—

parameters

e > completed macro(s) I

I
\'4

input file —

run the macro

—> processed file

15

Denali

[Joshi, Nelson, Randall PLDI 2002]

synthesis with automated theorem proving

Denali

Problem:
— scalable super-optimizer (previous ones: gen-and-test)

Solution:
— spec: the program, given as an instruction sequence

— process: write down instruction-equivalence axioms;
rewrite the spec in all possible ways, using E-graphs;
pick fastest one

Solver:

— no solver; new programs obtained by rewriting,
as in the Simplify theorem prover (Nelson-Oppen)

— (given a candidate P, SAT solver computes P’s exec time)

17

Input

\proc byteswap4 : [a : int] -> int =
\var r : int \in

r := 0 ;

r<0> := a<k3> ;

r<l> := a<k2> ;

r<2> := a<l> ;

r<3> := a<0> ;

\res =1 ;
\end

Figure 3: Envisioned program for 4-byte swap. w<i>
denotes byte i of word w, that is, selectb(w,7). Our
current prototype requires a parenthesized input
syntax in the style of figure 6.

18

// Register Map: {a=%$16, r=%$1, \res=3%0, 0=331}

Output byteswap4: # assume a = wWXyz
extbl $16, 1, $2 # 0, UL ; $2 = 000y

insbl $16, 3, $3 # 0, U0 ; $3 = z000
nop # 0
nop # 0
insbl $2, 2, $2 #1, U1 ; $2 = 0y00
extbl $16, 3, $4 # 1, U0 ; $4 = 000w
nop # 1
nop # 1
or $4, $3, $3 # 2, LO ; $3 = z00w
extbl $16, 1, %4 # 2, Ul (unused)
extbl $16, 2, $4 # 2, U0 ; $4 = 000x
nop # 2
insbl $4, 1, %4 # 3, U0 ; $4 = 00x0
or $2, $3, $2 # 3, LO ; $2 = zyOw
nop # 3
nop # 3
or $4, $2, $0 # 4, U0 ; 80 = zyxw
ret ($26) # 4, LO
nop # 4
nop # 4

.end byteswap4

Figure 4: Generated EV6 assembly program for four
byte swap. The unused instruction is necessary: if
it were a nop, the following extbl instruction would
be scheduled on the wrong cluster.

Axioms: equiv of instruction sequences

(Vx,y:: add64(z,y) = add64(y,x))
(Vz,y, 2z :: add64(x, add64(y, 2)) = add64(add64(x,y), 2))
(Vz :: add64(z,0) = x)
Va,i,j.x i1=7

V select(store(a,i,x),j) = select(a,j))

(Vw, i :: insbl(w,i) = selectb(w,0) << 8 x 1)

20

E-graph matching: find equiv programs

N\

(a) (b)

I\
AN

I\
N\
N\

s4 ddl r

o %\\

regé

21

Prospector

[Mandelin, Bodik, Kimelman 2005]

Software reuse: the reality

Using Eclipse 2.1, parse a Java file into an AST

IFile file = ...
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

Productivity < 1 LOC/hour Why so low?
1. follow expected design? two levels of file handlers
2. class member browsers? two unknown classes used

3. grep for ASTNode? parser returns subclass of ASTNode

23

Prospector

Problem:
APIls have 100K methods. How to code with the API?

Solution:
Observation 1: many reuse problems can be described with
a have-one-want-one query g=(h,w), where h,w are static
types, eg ASTNode.
Observation 2: most queries can be answered with a

jungloid, a chain of single-parameter “calls”. Multi-
parameter calls can be decomposed into jungloids.

Synthesizer:
Jungloid is a path in a directed graph of types+methods.

Observation 3: shortest path more likely the desired one N

Integrating synthesis with IDEs

e How do we present jungloid synthesis to programmers?
e Integrate with IDE “code completion”

IEditorPart leditors / have types

poblic vold parse ([IFile| file) {
A5TNode|ast =

want type

Queries: (IFile, ASTNode)
(IEditorPart, ASTNode)

Are these two also about partial programs?

correctness criterion
synthesizer —> completion

partial program ——

Fesmsssossosssossoossoeo> M@rgE <-oo-omoeioosoosooeoe ’

1
\%

complete program

26

SMARTedit*

demonstration(s)

macro template —

version spadce
algebra

set of macro
—

parameters

e > completed macro(s) I

I
\'4

input file —

run the macro

—> processed file

27

Prospector

have,want query —

jungloid template + APl —

shortest path
search

ranked
jungloids

user selection

desired
jungloid

28

Turn partial synthesis around?

correctness criterion —

partial program ——

synthesizer

— completion

correctness check ——

angelic partial program ——

synthesizer

angelic
demonstration

—

\4

demonstrations

partial program «~——

synthesizer

— completion

29

