
Wednesday, 13 June 2001
Research Sponsored by ATD, Cisco,
DARPA, Raytheon, SAIC, & Siemens

Designing an Efficient &
Scalable Server-side

Asynchrony Model for CORBA

Darrell Brunsch, Carlos O‘Ryan, & Douglas C. Schmidt
{brunsch,coryan,schmidt}@uci.edu

Department of Electrical & Computer Engineering
University of California, Irvine

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Motivation: Middle-Tier Servers

Source Client Sink Server

Middle-Tier Server

Source Client Sink Server

•In a multi-tier system, one or more
“middle-tier” servers are placed between
a source client & a sink server
• A source client’s two-way request may visit
multiple middle-tier servers before it
reaches its sink server

• The result then flows in reverse through
these intermediary servers before arriving
back at the source client

Middle-tier
servers are

common in both
business & real-
time/ embedded

systems

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Challenges for Middle-Tier Servers

S o u rc e C lie n t M id d le T ie r S e rv e r S ink S e rv e r

m e tho d ()

re a l_ m e th o d ()

re a l_ m e th o d ()

m e tho d ()

1

2

3

4

5

M id d le -T ie r S e r v e r
Typical middle-tier server steps
1.Client sends request
2.Middle-tier processes the request

& sends a new request to a sink
server

3.Sink server processes and
returns data

4.Middle-tier returns data to the
client

5.The client then processes the
response data

•Middle-tier servers must be highly
scalable to avoid becoming a
bottleneck when communicating
with multiple source clients & sink
servers

•It‘s not scalable to dedicate a separate
thread for each outstanding client
request due to thread creation, context
switching, synchronization, & data
movement overhead

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

CORBA Limitations for
Middle-Tier Servers

: ORB : Servant

method(rh, in)

out

•It’s hard to implement scalable & convenient
middle-tier servers using standard CORBA
•CORBA one-ways & DII/DSI are clearly
inadequate

•Problems stem from the tight coupling between a
server’s receiving a request & returning a
response in the same activation record

•This tight coupling limits a middle-tier server’s
ability to handle incoming requests & responses
efficiently
• i.e., each request needs its own activation
record

•This effectively restricts a request/ response
pair to a single thread in standard CORBA

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Design Characteristics of an Ideal
Middle-tier Server Solution

•Request throughput
•Provide high throughput for a
client, i.e., it should be able to
handle a large number of
requests per unit time, e.g., per
second or per “busy hour”

•Latency/Jitter
•Minimize the request/ response
processing delay (latency), as
well as the variation of the
delay (jitter)

•Scalability
•Take advantage of multiple sink
servers and handle many
aggregate requests/responses

•Portability
•Ideally, little or no changes & non-
portable features should be required
to implement a scalable solution

•Clients should be completely
unaware of middle-tier server
existence

•Simplicity
•Compared with existing designs, the
solution should minimize the amount
of work needed to implement scalable
middle-tier server applications

•Any ORB features required by the
solution should be relatively easy to
implement

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling
Evaluating CORBA Server Concurrency Models

•There are a number of existing models
for developing multi-tier servers:
1.Single-threaded
2.Nested upcalls & event loops
3.Thread-per-request
4.Static thread pools
5.Dynamic thread pools
6.Static thread pools with nested upcalls

•The single-threaded models (1 & 2)
have the following characteristics
• Low request throughput due to
serialization

• High latency/jitter due to serialization
• Low scalability due to serialization
• Good portability for #1
• Good simplicity for simple use-cases

•The multi-threaded models (3–6) have
the following characteristics
• Good request throughput
• Moderate-poor latency/jitter due to
synchronization

• Moderate scalability due to threading limits
• Poor portability (except for ORBs
compliant with RT-CORBA thread pools)

• Good simplicity (if there‘s thread expertise)

Client

OB J
REF

Object
(Servant)

o ut args + return

IDL
SKEL

Object Adapter

ORB CORE

IDL
ST UBS

in args
operation()

orb->run() orb->run() orb->run()

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Solution: Asynchronous Method Handling (AMH)

: ORB

: Servant

rh : ResponseHandler

create()

method(rh, in)

method(out)

: ReplyHandler

•AMH decouples the existing CORBA
1-to-1 association between
1. An incoming request to the run-

time stack and
2. The activation record that

received the request
•This design allows a server to return
responses asynchronously, without
incurring the overhead of multi-
threading

•AMH is inspired by
1. The CORBA asynchronous

method invocation (AMI) model
2. Continuations

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Overview of SMI & AMI Models
ServerClient

1

2

ORB

SMI model
•The client invokes the
operation & the ORB blocks

•After the response is
returned, the ORB returns
control to the client
application thread that
invoked the operation

P
o
l
l
e
r

ServerClient

1

2

ORB

ServerClient

1

2

ORB

reply
handler

AMI Polling Model
•The client invokes the
operation & the call
returns immediately

• It later checks with the
collocated Poller object
to retrieve the response

AMI Callback Model
•The client invokes the
operation & the call
returns immediately

•The ORB later invokes
the callback when the
response arrives

•Forms the basis for AMH

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Proposed AMH Mapping
IDL:
interface Quoter {
// A standard synchronous operation,
// note that OMG IDL is not extended
long get_quote (in string stock_name);

};
C++:
// Class implemented by apps
class My_AMH_Quoter

: public POA_AMH_Quoter {
public:
// ORB invokes this method, apps
// implement Object behavior here
virtual void get_quote (

// ... the <rh> argument is
// used to send response. It
// can be stored for later use
AMH_QuoterResponseHandler_ptr rh,
const char *stock_name);

};

C++:
// This class is implemented
// by the ORB
class AMH_QuoterResponseHandler
{
public:
// Servers use this
// method to send their
// responses back to clients
void get_quote

(CORBA::Long return_value);
};

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Programming C++ Servers with AMH & AMI
// Implement the get_quote()
// operation:
void My_AMH_Quoter::get_quote (

AMH_QuoterResponseHandler_ptr rh,
const char *stock_name)

{
// We want to send AMI request
// 1. Create the callback:
My_Callback *cb =

new My_Callback (rh);
// 2. Activate the callback with
// the default POA
AMI_Quoter_var callback =

cb->_this ();

// 3. Make the AMI request
target_quoter_->sendc_get_quote

(callback, stock_name);
}

// Implement the AMI ReplyHandler
class My_Callback : public

POA_AMI_QuoterReplyHandler
{
public:
// Save AMH response handler to
// send the response later
My_Callback
(AMH_QuoterResponseHandler_ptr rh)
: rh_ (AMH_QuoterResponseHandler

::_duplicate (rh)) {}

// Callback operation, invoked by
// ORB to send response to client
// when sink server reply returns
void get_quote (CORBA::Long retval)
{

rh_->get_quote (retval);
}

private:
AMH_QuoterResponseHandler_var rh_;

};

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Add a new AMHCurrent to represent all
information normally contained in the thread
activation

How to handle multi-threading with AMH

Support fully reactive & proactive I/OHow to minimize or remove all blocking
I/O operations from the ORB

Use the Visitor pattern to represent
operations that are performed & members of
an object structure

How to leverage IDL compiler AMI stub
generation for AMH skeleton generation

Use the Component Configurator pattern to
allow middleware or application developers to
delay con-figuration decisions until run-time

How to ensure that only servants using
AMH pay any penalties, such as
additional dynamic memory allocators or
footprint enlargement

Use the Strategy pattern to encapsulate
different algorithms & interchange them
easily

AMH violates most of the SMI
assumptions regarding synchronization
& concurrency optimizations

SolutionProblem
AMH Design Problems & Solutions

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Evaluating AMH
•Request throughput

• A middle-tier server can provide
very high throughput by handling
multiple incoming requests from a
client asynchronously

•Latency/Jitter
• When a request arrives, it‘s
handled quickly & when the
response returns from the sink
server, a reply can be sent back
immediately

• Latency should be relatively low
since no additional threads need
be created to handle requests
and wait for responses

• However, more state is required
than in the simple single-threaded
case, resulting in more context
stored on the heap

•Scalability
• Scalability can be very high since the upcall
for requests and callbacks on
ReplyHandler objects need not block

• Moreover, performance can be enhanced to
take advantage of multiple CPUs by
combining the AMI/AMH model with a thread
pool

•Portability
• AMH is not yet defined in a CORBA
specification, nor is it widely implemented

•Simplicity
• Server applications become more
complicated if their code uses AMH & AMI

• The ORB and IDL compiler also become
more complicated because request lifetimes
are decoupled from the lifetime of a servant
upcall

University of California, Irvine

Brunsch, O’Ryan, & Schmidt Asynchronous Method Handling

Concluding Remarks
•Middle-tier servers need a scalable asynchronous programming model

•The current AMI models don’t suffice for middle-tier servers
•Our proposed asynchronous method handling (AMH) model supports
efficient server-side asynchrony with relatively few changes to CORBA
•AMH is similar to AMI, focusing on the server rather than the client

•Programming AMH applications requires more design decisions for server
developers
•However, performance gains should make the effort worthwhile

•An AMH implementation & performance results are forthcoming in TAO
•www.cs.wustl.edu/~schmidt/TAO.html

•A paper on AMH is also available
•www.cs.wustl.edu/~schmidt/PDF/AMH.pdf

