Evaluating and Optimizing Thread Pool Implementations for RT-CORBA

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

Presentation Outline

RT-CORBA Thread Pool Strategies

Evaluating Thread Pools Implementations

• RT-CORBA spec under-specifies many quality of implementation issues

- e.g.: Thread pools, memory, & connection management
- Maximizes freedom of RT-CORBA developers
- Requires application developers to understand ORB implementation
- Effects schedulability, scalability, & predictability of their application
- Examine patterns underlying common thread pool implementation strategies
- Evaluate each thread pool strategy in terms of the following capabilities

Capability	Description					
Feature support	Request buffering and thread borrowing					
Scalability	Endpoints and event demultiplexers required					
Efficiency	Data movement, context switches, memory allocations, & synchronizations required					
Optimizations	Stack & thread specific storage memory allocations					
Priority inversion	Bounded & unbounded priority inversion incurred in each implementation					

Washington University, St. Louis

```
DOC
```

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

Thread Pools Implementation Strategies

- •There are two general strategies to implement RT CORBA thread pools:
 - 1. Use the Half-Sync/Half-Async pattern to have I/O thread(s) buffer client requests in a queue & then have worker threads in the pool process the requests
- 2. Use the Leader/Followers pattern to demultiplex I/O events into threads in the pool without requiring additional I/O threads

Each strategy is appropriate for certain application domains

- e.g., certain hard-real time applications cannot incur the nondeterminism & priority inversion of additional request queues
- •To evaluate each approach we must understand their consequences
- Their pattern descriptions capture this information
- •Good metrics to compare RT-CORBA implementations

Washington University, St. Louis

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

RT-CORBA Thread Pool Strategies

9

The Half-Sync/Half-Async Pattern

Intent

The Half-Sync/Half-Async architectural pattern decouples async & sync service processing in concurrent systems, to simplify programming without unduly reducing performance

- This pattern defines two service processing layers-one async and one sync-along with a queueing layer that allows services to exchange messages between the two layers
- The pattern allows sync services, such as servant processing, to run concurrently, relative both to each other and to async services, such as I/O handling & event demultiplexing

enqueue()

ead(

message

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

RT-CORBA Thread Pool Strategies

10

Queue-per-Lane Thread Pool Design

De										
	OAC	P	В			POA A				
	, in the second s	A THREAD POOL	PO,	ŀ		POA THREAD POOL				
	LANE 3 20	LANE 2 15		LANE 1 10	NE 3 15		LANE 2 10	LANE 1 5		
Pr	કકક	કક		કકક	55	<	ξĘ	ક્કક		
						<u> </u>				
	Ħ	目		Ħ			Ħ	Ħ		
C	SSS20 REACTOR	5215 CTOR F	_			~	SS REAC	SMAX ACCEPTO		
	NETWORK									
								_		
C	Washington University, St. Louis									

Design Overview • Single acceptor endpoint

- •One reactor for each priority level
- Each lane has a queue
- I/O & application-level request processing are in different threads ros
- Better feature support. e.g.,
- Request buffering
- Thread borrowing
- Better scalability, e.g., • Single acceptor = Smaller IORs
- Fewer reactors
- · Easier piece-by-piece integration into the ORB
- ons • User has no control over I/O threads
- Queuing adds to overhead
- Predictability reduced without bind_priority_band() implicit operation

Evaluation of Half-Sync/Half-Async Thread Pools

Criteria	Evaluation				
Feature Support	Good: supports request buffering and				
	thread borrowing				
Scalibility	Good: I/O layer resources shared				
Efficiency	Poor: high overhead for data movement,				
	context switches, memory allocations, &				
	synchronizations				
Optimizations	Poor: stack and TSS memory not				
Optimizations	supported				
Priority Inversion	Poor: some unbounded, many bounded				
Washington University, St. Louis DIOC 13					

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

RT-CORBA Thread Pool Strategies

The Leader/Followers Pattern

Intent

Handles

Handle

Concurrent

Handle Sets

Iterative

Handle Sets

Sets

The Leader/Followers architectural pattern provides an efficient concurrency model where multiple threads take turns sharing event sources to detect, demux, dispatch, & process service requests that occur on the event sources

Concurrent Handles

UDP Sockets +

Objects()

UDP Sockets +

select()/poll()

Washington University, St. Louis

WaitForMultiple

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

RT-CORBA Thread Pool Strategies

Reactor-per-Lane Thread Pool Design

Design Overview

- Each lane has its own set of resources
- •*i.e.*, reactor, acceptor, etc. •I/O & application-level request processing are done in the same thread

- No priority inversions during connection establishment •Control over all threads with standard thread pool API Cons
- Harder ORB implementation Many endpoints = longer IORs

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

RT-CORBA Thread Pool Strategies

Evaluation of Leader/Followers Thread Pools

Criteria	Evaluation		
Feature Support	Poor: not easy to support request buffering		
	or thread borrowing		
Scalibility Poor: I/O layer resources not shared			
Efficiency	Good: little or no overhead for data		
	movement, memory allocations, or		
	synchronizations		
Optimizations	Good: stack and TSS memory supported		
Priority Inversion	Good: little or no priority inversion		

Washington University, St. Louis

Concluding Remarks & Future Work

- RT CORBA 1.0 specifies thread pool creation & management
 - Only thread pools are specified
 - Thread-per-connection & thread-perrequest not specified
 - Multi-threading previously done in CORBA through proprietary mechanisms
- RT Thread pools can be used to:
 - Leverage multi-processors hardware
 - Increase performance by overlapping I/O
 & computation
 - Supports different levels of service: differentiate between high & low-priority tasks
 - Supports preemption & prevent unbounded priority inversion
 - Supports scheduling by controlling processor resources

Washington University, St. Louis

• Spec compliance of different thread pool implementations

- Multiple endpoints used as hints
- Connections for ORBs that don't use endpoint hint can be moved to correct priority during the binding or first request
- Portions of spec are under-specified
- Developers must be familiar with the implementation decisions made by their RT ORB because it effects schedulability, scalability, & predictability of their application
 Future work
 - Complete Leader/Followers Thread Pool implementation
 - Carefully instrument code to make sure there are no cases of unbounded priority inversion

17