
Wednesday, June 13, 2001

Evaluating and Optimizing Thread
Pool Implementations for RT-CORBA

Irfan Pyarali, Marina
Spivak, and Ron Cytron

{irfan,marina,cytron}@cs.wustl.edu
Computer Science Dept.
Washington University,

St. Louis, MO

http://www.cs.wustl.edu/~doc/

Douglas C. Schmidt

schmidt@uci.edu
Electrical & Computer Engineering Dept.

University of Irvine,
Irvine, CA

Washington University, St. Louis
2

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Presentation Outline
• Real-Time CORBA specification
• Thread Pools in Real-Time CORBA
• Requirements and features of Thread Pools
• Two strategies for implementing Thread

Pools
• Evaluation of the strategies
• Conclusions and future work

Washington University, St. Louis
3

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Real-Time CORBA Overview
• RT CORBA adds QoS control to
regular CORBA improve the
application predictability, e.g.,

• Bounding priority inversions &
• Managing resources end-to-end

• Policies & mechanisms for
resource configuration/control in
RT-CORBA include:
1.Processor Resources

• Thread pools
• Priority models
• Portable priorities

2.Communication Resources
• Protocol policies
• Explicit binding

3.Memory Resources
• Request buffering

• These capabilities address some
important real-time application
development challenges

Client OBJ
REF

Object
(Servant)

in args
operation()

out args + return

IDL
STUBS

IDL
SKEL

Object Adapter

ORB CORE GIOP

Protocol Properties

End-to-End Priority
Propagation

Thread
Pools

Standard
SynchronizersExplicit

Binding
Portable Priorities

Scheduling
Service

Washington University, St. Louis
4

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Thread Pools in RT-CORBA
Leverage hardware
• Multi-processors machines
Increase performance
• Overlap computation and I/O
Improve response-time
• Support long durations upcalls
Different levels of service
• High vs low-priority tasks
Support preemption
• Prevent unbounded priority
inversion

Scheduling
• Strict control over processor
resources essential for many
RT applications

Washington University, St. Louis
5

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Creating & Destroying Thread Pools
interface RTCORBA::RTORB {

typedef unsigned long ThreadpoolId;

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool (in ThreadpoolId threadpool)
raises (InvalidThreadpool);

};

PRIORITY
20

Thread Pool

Washington University, St. Louis
6

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Creating Thread Pools with Lanes

interface RTCORBA::RTORB {
struct ThreadpoolLane {

Priority lane_priority;
unsigned long static_threads;
unsigned long dynamic_threads;

};
ThreadpoolId create_threadpool_with_lanes (

in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

};

Thread Pool with Lanes

PRIORITY
35

PRIORITY
50

PRIORITY
10

Washington University, St. Louis
7

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Thread Borrowing
Borrowing
•Lane borrows thread
from a lower priority lane
when it exhausts its
maximum number of
static and dynamic
threads

Restoring
•Priority is raised when
thread is borrowed

•When there are no more
requests, borrowed
thread is returned and
priority is restored

Washington University, St. Louis
8

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Buffering Client Requests

SERVER ORB COREI/O
THREADS

Thead Pool A

PRIORITY 10 PRIORITY 35 PRIORITY 20

Thead Pool B

Handle “bursty” client traffic
• Some applications need more

buffering than is provided by
the OS I/O subsystem

Flexible configuration
• Buffer capacities can be

configured according to:
1. Maximum number of

bytes and/or
2. Maximum number of

requests

Washington University, St. Louis
9

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Evaluating Thread Pools Implementations
• RT-CORBA spec under-specifies many quality of implementation issues

• e.g.: Thread pools, memory, & connection management
• Maximizes freedom of RT-CORBA developers
• Requires application developers to understand ORB implementation
• Effects schedulability, scalability, & predictability of their application

• Examine patterns underlying common thread pool implementation strategies
• Evaluate each thread pool strategy in terms of the following capabilities

DescriptionCapability

Bounded & unbounded priority inversion incurred in each
implementation

Priority inversion
Stack & thread specific storage memory allocationsOptimizations

Data movement, context switches, memory allocations, &
synchronizations required

Efficiency
Endpoints and event demultiplexers requiredScalability
Request buffering and thread borrowingFeature support

Washington University, St. Louis
10

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Thread Pools Implementation Strategies
•There are two general strategies to implement RT CORBA thread
pools:
1.Use the Half-Sync/Half-Async pattern to have I/O thread(s)

buffer client requests in a queue & then have worker threads in
the pool process the requests

2.Use the Leader/Followers pattern to demultiplex I/O events into
threads in the pool without requiring additional I/O threads

•Each strategy is appropriate for certain application domains
•e.g., certain hard-real time applications cannot incur the non-
determinism & priority inversion of additional request queues

•To evaluate each approach we must understand their
consequences
•Their pattern descriptions capture this information
•Good metrics to compare RT-CORBA implementations

Washington University, St. Louis
11

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

The Half-Sync/Half-Async Pattern
Sync
Service
Layer

Async
Service
Layer

Queueing
Layer

<<read/write>> <<read/write>>

<<read/write>>

<<dequeue/enqueue>> <<interrupt>>

Sync Service 1 Sync Service 2 Sync Service 3

External
Event Source

Queue

Async Service

Intent
The Half-Sync/Half-Async
architectural pattern
decouples async & sync
service processing in
concurrent systems, to
simplify programming
without unduly reducing
performance

• This pattern defines two service
processing layers—one async and
one sync—along with a queueing
layer that allows services to
exchange messages between the
two layers

• The pattern allows sync services,
such as servant processing, to run
concurrently, relative both to each
other and to async services, such as
I/O handling & event demultiplexing

work()

notification

: External Event
Source

: Async Service : Queue

notification

read()

enqueue()

message

: Sync Service

work()

message

read()

message Washington University, St. Louis
12

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Queue-per-Lane Thread Pool Design
Design Overview

• Single acceptor endpoint
• One reactor for each priority level
• Each lane has a queue
• I/O & application-level request
processing are in different threads

Pros
• Better feature support, e.g.,

• Request buffering
• Thread borrowing

• Better scalability, e.g.,
• Single acceptor = Smaller IORs
• Fewer reactors

• Easier piece-by-piece integration into
the ORB

Cons
• User has no control over I/O threads
• Queuing adds to overhead
• Predictability reduced without
_bind_priority_band() implicit
operation

Washington University, St. Louis
13

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Evaluation of Half-Sync/Half-Async Thread Pools
Criteria Evaluation

Feature Support Good: supports request buffering and
thread borrowing

Scalibility Good: I/O layer resources shared

Efficiency
Poor: high overhead for data movement,
context switches, memory allocations, &
synchronizations

Optimizations Poor: stack and TSS memory not
supported

Priority Inversion Poor: some unbounded, many bounded
Washington University, St. Louis

14

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

The Leader/Followers Pattern
Intent
The Leader/Followers architectural
pattern provides an efficient
concurrency model where multiple
threads take turns sharing event
sources to detect, demux, dispatch, &
process service requests that occur on
the event sources

TCP Sockets +
select()/poll()

UDP Sockets +
select()/poll()

Iterative
Handle Sets

TCP Sockets +
WaitForMultiple

Objects()

UDP Sockets +
WaitForMultiple

Objects()

Concurrent
Handle Sets

Iterative HandlesConcurrent Handles
Handles

Handle
Sets

Handle uses

demultiplexes

*

*

Handle Set
handle_events()
deactivate_handle()
reactivate_handle()
select()

Event Handler
handle_event ()
get_handle()

Concrete Event
Handler B

handle_event ()
get_handle()

Concrete Event
Handler A

handle_event ()
get_handle()

Thread Pool

join()
promote_new_leader()

synchronizer

Washington University, St. Louis
15

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Reactor-per-Lane Thread Pool Design
Design Overview
•Each lane has its own set of
resources
• i.e., reactor, acceptor, etc.

• I/O & application-level request
processing are done in the
same thread

Pros
•No priority inversions during
connection establishment

•Control over all threads with
standard thread pool API

Cons
•Harder ORB implementation
•Many endpoints = longer IORs

Washington University, St. Louis
16

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Evaluation of Leader/Followers
Thread Pools

Criteria Evaluation
Feature Support Poor: not easy to support request buffering

or thread borrowing
Scalibility Poor: I/O layer resources not shared

Efficiency
Good: little or no overhead for data
movement, memory allocations, or
synchronizations

Optimizations Good: stack and TSS memory supported
Priority Inversion Good: little or no priority inversion

Washington University, St. Louis
17

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Concluding Remarks & Future Work
• RT CORBA 1.0 specifies thread pool
creation & management
• Only thread pools are specified
• Thread-per-connection & thread-per-

request not specified
• Multi-threading previously done in CORBA

through proprietary mechanisms
• RT Thread pools can be used to:

• Leverage multi-processors hardware
• Increase performance by overlapping I/O

& computation
• Supports different levels of service:

differentiate between high & low-priority
tasks

• Supports preemption & prevent
unbounded priority inversion

• Supports scheduling by controlling
processor resources

• Spec compliance of different thread
pool implementations
• Multiple endpoints used as hints
• Connections for ORBs that don’t use

endpoint hint can be moved to
correct priority during the binding or
first request

• Portions of spec are under-specified
• Developers must be familiar with the

implementation decisions made by
their RT ORB because it effects
schedulability, scalability, &
predictability of their application

• Future work
• Complete Leader/Followers Thread

Pool implementation
• Carefully instrument code to make

sure there are no cases of
unbounded priority inversion

