Evaluating and Optimizing Thread
Pool Implementations for RT-CORBA

Irfan Pyarali, Marina
Spivak, and Ron Cytron
{irfan,marina,cytron}@cs.wustl.edu
Computer Science Dept.
Washington University,

Douglas C. Schmidt

schmidt@uci.edu

Electrical & Computer Engineering Dept.

University of Irvine,

St. Louis, MO Irvine, CA

http://ww. cs. wust | . edu/ ~doc/

D -GG

Wednesday, June 13, 2001

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Presentation Outline
» Real-Time CORBA specification
» Thread Pools in Real-Time CORBA
» Requirements and features of Thread Pools

» Two strategies for implementing Thread
Pools

» Evaluation of the strategies
e Conclusions and future work

Washington University, St. Louis m 3

=

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Real-Time CORBA Overview

«RT CORBA adds QoS control to
regular CORBA improve the
application predictability, e.g.,

End-to-End Priority

Propagation « Bounding priority inversions &
clent inaras Object » Managing resources end-to-end
o8] _operatond (Servant) « Policies & mechanisms for
S°“r‘la’jsl*_’e’“’“ resource configuration/control in
i) RT-CORBA include:
||‘3|. IDL Thr;ad 1.Processor Resources
e SIREL Pools * Thread pools
Standard « Priority models

Explicit
Binding

Object Adapter « Portable priorities

2.Communication Resources
« Protocol policies
« Explicit binding

3.Memory Resources
« Request buffering

*These capabilities address some
important real-time application
development challenges

D0]

Synchronizers

Protocol Properties

Washington University, St. Louis

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Thread Pools in RT-CORBA

I T T Thiwnd Poed & Thresd Fesl B
AT |8 ax ; Leverage hardware
- [*% 1_5_"'1‘_"2 | _E'ﬁ':’ﬁ'_ « Multi-processors machines
e] [I™ET ™= A™ETY N ™R Increase performance
) _‘___ﬂ-f" = «Overlap computation and I/O
T rone) Improve response-time
] - u_”' o i '['_JII « Support long durations upcalls
L B i i
24 Eﬁi - A le_ferent Ievel; of service
(B Els el et «High vs low-priority tasks
e __"_:"_"'x.__ Support preemption
a5 | = || s || sl «Prevent unbounded priority
L5 —x inversion
y 5 L] .
- " Scheduling
| | menaras JI mranir || eoraeas | B EOA |-Strict control over processor
¥ resources essential for many

. R RARS RERVER Ofth COHE RT applications

D0 .

Washington University, St. Louis

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

Creating & Destroying Thread Pools

interface RTCORBA: : RTORB {
t ypedef unsigned | ong Threadpool | d;

RT-CORBA Thread Pool Strategies

Thread Pool
Thr eadpool | d create_t hreadpool (>
i n unsigned | ong stacksize, 2*& 2
unsi gned | ong static_threads, PRIORITY

unsi gned | ong dynam c_t hreads, 20
Priority default_priority,

bool ean al | ow request buffering,
unsi gned | ong max_buf f ered_requests,
unsi gned | ong nmax_request _buffer_size);

5 53 53 5 5 5

voi d destroy_t hreadpool (in Threadpoolld threadpool)
rai ses (lnvalidThreadpool);

Washington University, St. Louis .
g Y, E o

E
£ -

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

Creating Thread Pools with Lanes

RT-CORBA Thread Pool Strategies

i nterface RTCORBA: : RTORB Thread Pool with Lanes

struct Threadpool Lane { >, >S5 2 >
Priority lane_priority; >22 *22 2
i y —p . y’ PRIORITY PRIORITY PRIORITY
unsi gned | ong static_threads; 10 35 50

unsi gned | ong dynam c_t hr eads;

b

Threadpool I d create_t hreadpool _with_I anes (
i n unsigned | ong stacksi ze,

Thr eadpool Lanes | anes,

bool ean al | ow_borrow ng

bool ean al | ow_request _buffering,

unsi gned | ong max_buf fered_requests,

[
[
i
i
[
i n unsigned | ong max_request buffer_size);

5 53 3 3 O

Washington University, St. Louis TR
DG

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

Thread Borrowing

Borrowing
*Lane borrows thread
from a lower priority lane
when it exhausts its
maximum number of
Priority Priority | | Priority static and dynamic
10 35 50 threads

RT-CORBA Thread Pool Strategies

Thread Pool with Lanes

Restoring

*Priority is raised when
thread is borrowed

*When there are no more
requests, borrowed
thread is returned and
priority is restored

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

Buffering Client Requests

Thead Pool A Thead Pool B

RT-CORBA Thread Pool Strategies

Handle “bursty” client traffic

_)é—)é _>é _)é_)é _)i ’é_)é « Some applications need more

buffering than is provided by
the OS /O subsystem

PRIORITY 10 PRIORITY 35 PRIORITY 20

AY X

Flexible configuration
« Buffer capacities can be
configured according to:
1. Maximum number of
bytes and/or
2. Maximum number of
requests

1L,

(TTI1]

110
THREADS

SERVER ORB CORE

Washington University, St. Louis .
g Y, EC‘E

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt

Evaluating Thread Pools Implementations

* RT-CORBA spec under-specifies many quality of implementation issues
* e.g.: Thread pools, memory, & connection management
» Maximizes freedom of RT-CORBA developers
» Requires application developers to understand ORB implementation
« Effects schedulability, scalability, & predictability of their application
« Examine patterns underlying common thread pool implementation strategies

* Evaluate each thread pool strategy in terms of the following capabilities
Capability Description

Feature support Request buffering and thread borrowing

RT-CORBA Thread Pool Strategies

Scalability Endpoints and event demultiplexers required

Efficiency Data movement, context switches, memory allocations, &
synchronizations required

Optimizations Stack & thread specific storage memory allocations

Priority inversion | Bounded & unbounded priority inversion incurred in each
implementation

L-O-& 0

Washington University, St. Louis

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Thread Pools Implementation Strategies

*There are two general strategies to implement RT CORBA thread
pools:
1.Use the Half-Sync/Half-Async pattern to have 1/O thread(s)
buffer client requests in a queue & then have worker threads in
the pool process the requests
2.Use the Leader/Followers pattern to demultiplex I/O events into
threads in the pool without requiring additional I/O threads

«Each strategy is appropriate for certain application domains
*e.g., certain hard-real time applications cannot incur the non-
determinism & priority inversion of additional request queues
*To evaluate each approach we must understand their
consequences
»Their pattern descriptions capture this information
*Good metrics to compare RT-CORBA implementations

I_-"}E‘ ":-_‘ 10

Washington University, St. Louis

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

The Half-Sync/Half-Async Pattern

Sync
Intent Service

The Half-Sync/Half-Async Layer
architectural pattern \
decouples async & sync

Sync Service 1 | | Sync Service 2 | | Sync Service 3 |
T

: \l'/ <<read/write>> ‘
<<read/write>>

Queueing L= = — — 1

service processing in Layer Queue <<read/write>>

concurrent systems, to

S|_mpI|fy programmlng Async <<dequeue/enqueue>> <<interrupt>>

without unduly reducing Saviee _ -

performance Layer | Event Source
—Async Service

* This pattern defines two service i
processing layers—one async and Saucce |
one sync—along with a queueing
layer that allows services to
exchange messages between the
two layers

* The pattern allows sync services,
such as servant processing, to run
concurrently, relative both to each
other and to async services, such as
I/0 handling & event demultiplexing

| “Quene |

~Sync Service ‘

notification

-— |
—_——— = work()
message =
message | notification
L

enqueue()

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Queue-per-Lane Thread Pool Design

Design Overview

(POA A) (POAB] [POAC) .Single acceptor endpoint
POA THREAD POA THREAD *One reactor for each priority level
ROC PooL «Each lane has a queue

LANE1| [LANE2]| [LANE3 LANE1| [LANE2] [LANE3 +1/O & application-level request
5 10 15 10 15 20 processing are in different threads
sss| ss|less| |less s lessl| TE
« Better feature support, e.g.,
* Request buffering
* Thread borrowing

« Better scalability, e.qg.,
« Single acceptor = Smaller IORs

% E % E % E » Fewer reactors
« Easier piece-by-piece integration into

the ORB

Swx SSS8 sSSw 555t SSSw Cons
(accepTor) (REACTOR) (REACTOR | (REACTOR | (REACTOR] ° User has no control over I/O threads
*Queuing adds to overhead

NETWORK * Predictability reduced without
_bind_priority_band() implicit
operation

L-O-& 12

Washington University, St. Louis

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies
Evaluation of Half-Sync/Half-Async Thread Pools The Leader/Followers Pattern
demultiplexes
. . Thread Pool >
Criteria Evaluation Intent Sz
) - The Leader/Followers architectural oin0 §<
thread borrowing concurrency model where multiple <\ o Htmdler
— threads take turns sharing event @uses handle_event 0
Scalibility Good: I/O layer resources shared sources to detect, demux, dispatch, & get_handie(
Poor: high overhead for data movement process service requests that occur on)* A
o _ _ ' the event sources e L
Efficiency context swtghes, memory allocations, & —— o cve Concrete Event
Synchr0n|zat|ons gan a Concurrent Handles | Iterative Handles reer'?ct?i%itee__h :nndl ee(g) hapdile_z\lle(r;t 0
ets selec get_handle
o Poor: stack and TSS memory not T E—
Opt|m|zat|0ns Concurrent | " For Ml ti pl e | Wai t For Mil ti pl e Concrete Event
SUppOﬂEd Handle Sets Obj ect s() bj ect s() Handler A
. . . " N ockets + handle_event ()
Priority Inversion [Poor: some unbounded, many bounded erative | qaBp Sockets s | ooh Sockers get handie(
Washington University, St. Louis m f‘.‘., {T‘ 13 Washington University, St. Louis m f‘.‘., {" 14
I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies
Reactor-per-Lane Thread Pool Design Evaluation of Leader/Followers
Design Overview
POA A J [POA B] [POA C J «Each lane has its own set of Thread POO'S
resources B c
POA THREAD POA THREAD «i.e., reactor, acceptor, etc. Crlte“a Eva|ua'[I0n
POOL POOL +1/O & application-level request . i
LANE1| [LANE2| [LANE3 LANE1| (LANE2]| [LanEa]| —Processing are done in the Feature SUppOI‘t Poor: not easy to SUppOﬂ requeSt bUﬁermg
5 10 | 15 || 10 || 16 || 20 | samethread or thread borrowing
*No priority inversions during ihili .
S8 | S &1 |88 |1288] | S & | |&&s]| Nopriority inversions duri Scalibility Poor: I/O layer resources not shared
*Control over all threads with Good: little or no overhead for data
standard thread pool API o ')
Cons _ _ Efficiency movement, memory allocations, or
REACTOR REACTOR REACTOR REACTOR REACTOR | | REACTOR * Harder ORB Implementatlon . .
{ } [s } [&] { B } [&) M o } *Many endpoints = longer IORs synchronlzatlons
NETWORK Optimizations |Good: stack and TSS memory supported
Priority Inversion |Good: little or no priority inversion
Washington University, St. Louis m f‘.‘., {T‘ 15 Washington University, St. Louis m f‘.‘., {" 16

I. Pyarali, M. Spivak, R. Cytron, D. Schmidt RT-CORBA Thread Pool Strategies

Concluding Remarks & Future Work

*«RT CORBA 1.0 specifies thread pool » Spec compliance of different thread
creation & management pool implementations
» Only thread pools are specified « Multiple endpoints used as hints
 Thread-per-connection & thread-per- » Connections for ORBs that don’t use
request not specified endpoint hint can be moved to
« Multi-threading previously done in CORBA correct priority during the binding or
through proprietary mechanisms first request
*RT Thread pools can be used to: « Portions of spec are under-specified
« Leverage multi-processors hardware * Developers must be familiar with the
« Increase performance by overlapping I/O implementation decisions made by
& computation their RT ORB because it effects

schedulability, scalability, &
predictability of their application
* Future work

« Complete Leader/Followers Thread
Pool implementation

 Carefully instrument code to make
sure there are no cases of
unbounded priority inversion

 Supports different levels of service:
differentiate between high & low-priority
tasks

» Supports preemption & prevent
unbounded priority inversion

* Supports scheduling by controlling
processor resources

Washington University, St. Louis I?,_ {'.'-., {T_‘ 17

