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Introduction
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Servers • Motivation
– Given a resource 

intensive distributed 
application

• Clients typically 
greatly out number 
servers

• Some servers can be 
more loaded than 
others

• Requests generated 
by clients are often 
“bursty” and 
unpredictable

• Solution
– Adaptive load 

balancing
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Basic Scenario and Concepts

Load
Balancer
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Replicas Replica Groups

• Load balancing goals
– Use load balancing to 

distribute client 
requests equitably 
among several replicas, 
within a replica group

– Ensure differences in 
replica loads are kept 
to a minimum

• Common Problem
– Load balancing 

algorithms in use may 
be very good but 
underlying mechanism
is often inefficient
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Load Balancing Strategies
• Client binding granularity

– Per-session
• Client permanently 

forwarded to a replica
– Per-request

• Requests forwarded on 
client’s behalf

– On-demand
• Client can be rebound to 

another replica 
whenever necessary

• Balancing policy
– Non-adaptive

• No load feedback used 
when binding clients

– Adaptive
• Load feedback taken in 

to account

: Client : Replica

: Load Balancer

1. 
se

nd_
reque

st(
) 2. send_request()

: Client : Replica

: Load Balancer

1. s
end_request(

)

    
2. 

LOCATIO
N_FORWARD()

3. send_request()

Per-session / On-Demand

`

Per-request

: Load Balancer

load_advisory()
report_load()

: Replica

Adaptive
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Load Balancing Architectures
• Load balancing 

architecture comprised of 
a combination of client 
binding granularity and 
balancing policy

• Given the strategies just 
described, there are six 
possible architectures

• Three common 
architectures
– Non-adaptive per-

session
– Adaptive per-request
– Adaptive on-demand

: Client : Server Replica

: Load Balancer
1. se

nd_request()

2. LOCATION_FORWARD()

3. send_request()

: Client : Server Replica

: Load Balancer

1. se
nd_request()

2. send_request()

load_advisory()

report_load()

The front-end
server proxy.

: Client : Server Replica

: Load Balancer
1. se

nd_request()

2. LOCATION_FORWARD() load_advisory()

report_load()
3. send_request()

Non-adaptive Per-Session

Adaptive Per-request

Adaptive On-demand
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Load Balancing Experiment Testbed

Dual CPU
Replica Host

Dual CPU
Load Balancer

HostQuad CPU
Client Host

Dual CPU
Replica Host

100 MBps
Network Switch

• Testbed hardware
– Client host (1)

• Quad CPU 400 MHz 
Pentium II Xeon, 1GB 
RAM

– Replica hosts (2), and 
load balancer host (1)

• Dual CPU 733 MHz 
Pentium III, 512MB 
RAM

• Testbed software
– Debian GNU/Linux 2.1 

“potato” (glibc 2.1, 
kernel 2.2.16)

– TAO “Latency” 
performance test
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Latency Overhead
Latency Comparison
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Throughput Overhead
Throughput Comparison
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Non-adaptive Per-session Effectiveness
Loads Under Non-Adaptive Per-Session 

Strategy
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Adaptive On-demand Effectiveness
Loads Under Adaptive On-Demand Strategy
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Conclusion
• Load balancing can be performed at several levels

– The network level
– The operating system level
– The middleware level

• Network-based and OS-based suffer from several 
limitations
– Inability to support application-defined load metrics at 

run-time
– Lack of adaptability due to absence of load feedback, 

and lack of control over replicas
• Middleware-based load balancing has a clear advantage 

since it suffers from neither of these limitations


