
18 June 2001

Optimizing Distributed System
Performance via Adaptive

Middleware Load Balancing
Douglas C. Schmidt
schmidt@uci.edu

Ossama Othman
ossama@uci.edu

Department of Electrical and Computer Engineering
University of California, Irvine
Irvine, California 92697 USA

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Introduction

Network

Clients

R
eq

ue
st

s
R

ep
lie

s

IDC

Servers • Motivation
– Given a resource

intensive distributed
application

• Clients typically
greatly out number
servers

• Some servers can be
more loaded than
others

• Requests generated
by clients are often
“bursty” and
unpredictable

• Solution
– Adaptive load

balancing

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Basic Scenario and Concepts

Load
Balancer

Clients

R
eq

ue
st

s
R

ep
lie

s

Replicas Replica Groups

• Load balancing goals
– Use load balancing to

distribute client
requests equitably
among several replicas,
within a replica group

– Ensure differences in
replica loads are kept
to a minimum

• Common Problem
– Load balancing

algorithms in use may
be very good but
underlying mechanism
is often inefficient

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Load Balancing Strategies
• Client binding granularity

– Per-session
• Client permanently

forwarded to a replica
– Per-request

• Requests forwarded on
client’s behalf

– On-demand
• Client can be rebound to

another replica
whenever necessary

• Balancing policy
– Non-adaptive

• No load feedback used
when binding clients

– Adaptive
• Load feedback taken in

to account

: Client : Replica

: Load Balancer

1.
se

nd_
reque

st(
) 2. send_request()

: Client : Replica

: Load Balancer

1. s
end_request(

)

2.

LOCATIO
N_FORWARD()

3. send_request()

Per-session / On-Demand

`

Per-request

: Load Balancer

load_advisory()
report_load()

: Replica

Adaptive

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Load Balancing Architectures
• Load balancing

architecture comprised of
a combination of client
binding granularity and
balancing policy

• Given the strategies just
described, there are six
possible architectures

• Three common
architectures
– Non-adaptive per-

session
– Adaptive per-request
– Adaptive on-demand

: Client : Server Replica

: Load Balancer
1. se

nd_request()

2. LOCATION_FORWARD()

3. send_request()

: Client : Server Replica

: Load Balancer

1. se
nd_request()

2. send_request()

load_advisory()

report_load()

The front-end
server proxy.

: Client : Server Replica

: Load Balancer
1. se

nd_request()

2. LOCATION_FORWARD() load_advisory()

report_load()
3. send_request()

Non-adaptive Per-Session

Adaptive Per-request

Adaptive On-demand

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Load Balancing Experiment Testbed

Dual CPU
Replica Host

Dual CPU
Load Balancer

HostQuad CPU
Client Host

Dual CPU
Replica Host

100 MBps
Network Switch

• Testbed hardware
– Client host (1)

• Quad CPU 400 MHz
Pentium II Xeon, 1GB
RAM

– Replica hosts (2), and
load balancer host (1)

• Dual CPU 733 MHz
Pentium III, 512MB
RAM

• Testbed software
– Debian GNU/Linux 2.1

“potato” (glibc 2.1,
kernel 2.2.16)

– TAO “Latency”
performance test

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Latency Overhead
Latency Comparison

0

100

200

300

400

500

600

700

Classic Latency
Performance Test

Latency Test w/Per-
Session Load

Balancer

Latency Test w/Per-
Request Load

Balancer

Latency Test w/TAO
On-Demand Load

Balancer

La
te

nc
y

(u
se

cs
)

Latency - Jitter

Average Latency

Latency + Jitter

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Throughput Overhead
Throughput Comparison

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Classic Latency
Performance

Test

Latency Test
w/Per-Session
Load Balancer

Latency Test
w/Per-Request
Load Balancer

Latency Test
w/TAO On-

Demand Load
Balancer

Th
ro

ug
hp

ut
 (e

ve
nt

s
pe

r s
ec

on
d)

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Non-adaptive Per-session Effectiveness
Loads Under Non-Adaptive Per-Session

Strategy

0

5

10

15

20

25
1 40 79 11
8

15
7

19
6

23
5

27
4

31
3

35
2

39
1

43
0

Elapsed Time (seconds)

Lo
ad

 (r
eq

ue
st

s/
se

co
nd

)

Replica 1
Replica 2
Replica 3
Replica 4

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Adaptive On-demand Effectiveness
Loads Under Adaptive On-Demand Strategy

0
20
40
60
80

100
120
140
160
180
200

1 52 10
3

15
4

20
5

25
6

30
7

35
8

40
9

46
0

51
1

56
2

61
3

66
4

71
5

76
6

Elapsed Time (seconds)

Lo
ad

 (r
eq

ue
st

s/
se

co
nd

)

Replica 1
Replica 2
Replica 3
Replica 4

University of California, Irvine

O. Othman, D.C. Schmidt Optimization via Adaptive Load Balancing

Conclusion
• Load balancing can be performed at several levels

– The network level
– The operating system level
– The middleware level

• Network-based and OS-based suffer from several
limitations
– Inability to support application-defined load metrics at

run-time
– Lack of adaptability due to absence of load feedback,

and lack of control over replicas
• Middleware-based load balancing has a clear advantage

since it suffers from neither of these limitations

