Language and Compiler Support for
Adaptive Distributed Applications

Vikram Adve, Vinh Vi Lam, Brian Ensink
Computer Science Department

University of lllinois at Urbana-Champaign
www.cs.uiuc.edu/~vadve/adaptive.html

Thanks: NSF (NGS99, OSC99)

@lllllllll UNDER CONSTRUCTION llllllll@

Adaptive Distributed Applications: 2 Examples
Limitations of current programming strategies

Our Approach: Program Control Language (PCL)
PCL Language
PCL compiler support
A general framework for describing adaptation

Current and Future work

Adaptive = change runtime behavior to meet
performance, availability, or QoS goals

This is the future!

¢ Parallel computing on shared cluster or the Grid where
#processors changes dynamically

¢ Distributed multimedia or commercial codes using shared
networks, routers, servers, and clients

* Mobile applications where user devices, network
connections, and power change rapidly




ATR: Parallel Stochastic Optimization
[Wright & Linderoth, U.Wisc.]

Long-running Master-Worker Code
- real problems use 100s - 1000 processors for 1-2 days

- higher parallelism O slow convergence, lower efficiency

Platform: Condor + Grid (PVM)
- #processors varies widely during execution

0 must adapt

Distributed Video Tracking
[Nahrstedt et al., UTUC ]

Client-Server Code
- Client runs multiple tracking algorithms per frame

Platform: Open network using TCP
- Middleware allocates bandwidth, CPU among applications

QoS Metric: Tracking Precision
- Network bandwidth: affects frame rate
- CPU load at client: affects cost of trackers

O must adapt

Middleware: Odyssey, Agilos, TIMELY, GrADS

Adaptation code is deeply embedded within application
- Complex applications become more complex
- Understanding and changing adaptive behavior difficult
- Compilers cannot identify adaptation behavior

User must do performance estimation and modeling
- Middleware provides measurement support only
- Each application uses its own modeling strategies

No framework to reason about and describe adaptation

1. Separates adaptation from base application
2. Exposes adaptation metrics, interfaces

Extensions to C++ or Java (PCLC or PCLJ):

Adaptor <name> targets <base-class-name> {
ControlParameters { ... <list> ... }
ControlMethods ~ { ... <list> ... }

Metric ... /I Timedinterval, RateMetric, SampledEvent
Event ... 1/l e.g., Metric M crosses threshold X%

/I EventHandler: asynchronous adaptation
Adapt(); 1l synchronous adaptation




Source-to-Source: PCLC - C++or PCLT - Java

1. Implement Adaptor as subclass of target class
» Enforce access rights to base-class and superclasses
+ Enable inheritance of adaptors

2. Insert instrumentation for each Metric
+ Timedinterval: insert timer code around interval
+ RateMetric: insert counter and program timers
« SampledMetric: insert counter and program timers

Adaptor ATRAdaptor targets LShapedDriver {

ControlParameters {
LShapedDriver :: numinBasket; 1B
LShapedDriver :: tasks_per_iterate; // T
k
Metric iterateRate (LShapedWorker::numlterates, RateMetric);
Metric tTask (LShapedWorker::execute_task, Timedinterval);
Adapt() {
if (smallNumProcsChange.TestEvent()) {
AdaptNumTasksPerlterate();
} else if (largeNumProcsChange. TestEvent()) {
AdaptBasketSize();
Yelse ...
1}

Metric AdaptedCpu (CpuAdaptor::AdaptedCpu, SampledMetric);
Adaptor TrackerAdaptor targets TrackerManager {

ControlMethods {
TrackerManager::AddTracker();
TrackerManager::RemoveTracker();

I

Metric duration (TrackerManager::trackingTime, TimedInterval);
Event adaptedCpuChanged (AdaptedCpu, Changed, changedProc);

void changedProc() {
/I Add or remove trackers to meet new AdaptedCpu value

Describe adaptation as changes to a task graph

Static task graph captures sequential flow and
distributed structure

Adaptation operations:
- Add/ delete tasks
- Modify task parameters (control-flow or computation)
- Modify semantics of edges

Implementation techniques:
- Reflection: task graph drives execution
- Dynamic compilation via code templates




Adaptations:
- B: change IF parameter

- T: add/delete tasks
(PEval, UpdMod)

Adaptations:
- Change tracker list:
add / delete tasks
5= - Change video format:
add / delete tasks

Task Graph Drives Overall Model
Automatic Prediction of Total Performance

Automatic Instrumentation of Task, Comm Parameters
- E.g., Task times, message latency in ATR
- E.g., Tracker costs, video latency in Video Tracking

Manual Models for Algorithmic Behavior
- E.g., How does B affect convergence?
- E.g., How do frame rate, tracker cost affect precision?

Manual Specification of Adaptation Goal

Current work:
- PCL versions of ATR, Video Tracking
- PCLC — C++ Compiler
- Language syntax for task graph framework

Future Work
- Compiler and runtime for task graph framework
- Performance prediction framework
- Other application codes




