Karin Hogstedt, Doug Kimelman, Computer Performance
VT Rajan, Tova Roth, Nan Wang,

Mark Wegman

Optimizing Component
Interaction &

i .-!Iw

4
BE iai mem

wate T

Application Performance Application Function

mlisiiol il v« 3| M =

Programmer Productivity

Effects of Code Optimization

_74-

Application Efficiency

Component integration is the
way people program

® Programmers have been writing at higher and higher
levels using vast libraries

m Separately written legacy code must be bound
together

m Components that are designed separately will have
performance problems when integrated

® e. g. the library writer has ne-idea-how-his-routines will
beused and the user doesn't knew: the -algoerithm in the
lilbrary;

m \We have studied this;in the context of distribution
® |t ISsia more general problem

Simple problem and complex
ones How do you write a library?

m One Cho|ce of Component effects Only m Code multiple implementations of a class
itself m \Write a set of instrumentation for each- method

= m_Compose the instrumentation and implementations
m Or it effects others using a new composition rule with HyperJd

site
network effects where another : ——
m |nstrumentation computes values used afteran initial

component belongs run and a formula is evaluated: te determine which
implementation should be used for a given;class

Note that different Objects may need different implementations
In the same program

Original Motivation The Graph Cutting Problem

m How do you distribute entities of a distributed program
to optimize its performance?
Two entities can communicate more efficiently if they
share the property of being on one particular machine
Problem in several IBM products including VisualAge
Generator, SF.
Performance ofia program written on top of SE can be
affected as: muchras an order of magnitude by
placement of objects.
Programmers often doja poor: jobrofi placing; the
objects.
Provide help torthe programmers or autemate the
process;ofi ohject placement:

How do we define a
VAGen Sample Program Costs component?

RUNtmeSS @ Components have entities
bundled together which
Many Component have many ways of

things (this def is interacting
— . - bundled much like a
Partitioning | Cut Cost (messages Between Run Time Run Time/Cut Cost together module) L Th e Code from one

machines) (ms) (ms/message)

Naive 10.23 b
Mant el g2 : One thing [Class Entity component produces

Automatie A7 - Definition | (much like entities that are used: by,
an

instance) the code of anether

i Run time wants terbundle
entities that interact most
ofiten

Example: two components that
Notation share string entities

m Components interact through entities m One Component
® via either push or pull interactions - = :
m_Entities have properties requires strings Unicode c,d;

® two-entities with the same properties can interact more be Unicode String e, f;
cheaply than those with different ones m The other
o \Which machine an entity resides on Is a property.
m- Some entities must have certain properties
m Others can be determined based on efficiency. c=e+f:

d=f+e;

Ascii a,b;

. . e=a;
requires Ascli f=D:

Cost of e and f being Ascii is the conversion of
e+f and f+e to Unicode

Additional Motivation

m Data structures in different representation
® Unicode Vs EBCDIC Vs ASCII
» variables are nodes in the graph
> Unicode, ASCII, EBCDIC are terminals
» edges are assignment statements
® Different Collection: Class
m EJB's inrdifferent containers

m Message format in Publish-Subscrilbe
Setting?

Remainder of this Talk

m A Priori optimization of a program

m A Posteriori optimization of a run of a
program

m Flights of fancy over where we can go
from: here

Our Approach

® Run the program with a "typical” input.

m Trace the program using tools such-as Jinsight to
obtain the objects and their communications.

- Obtain the-communication graph-and find the
optimal placement of:the objects.

W Characterize the objects to allow for optimal or near
optimal placement of objects during future runs.

m Help Programmer Visualize where remaining
problems: are.

Graph Cutting is NP hard

m In our work we look for heuristics
which simplify the graph, but preserve
the minimum cut.

m \We will ignore other constraints such
as load factor - which may be
important In some instances.

m \We canicombine our heuristics with
existing algerithms.

Reprise: How to simplify this
problem?

Dominant Edge w/Terminals

W>= W o+ W+ max(w,, W)

Dominant Edge heuristic

Dominant Edge Application

m \When we discover a dominant edge we collapse the
edge, and combine the nodes.

m Reduces the graph size by one - and can create new
dominant edges.

W |n-some graphs-we-see over 90% reduction-in
graph size - by repeated application of dominant
edge.

- Canibe implemented torruntin time-O(min(degrees
of the nodes)) per collapse.

m_This.can be donerin O(E log E) time for therwhole
graph;, E the-number ofi edges In the graph.

Machine Cut Zeroing

_~optimal cut

cut with cost W,

Zeroing Heuristic: The weight of edges to the Terminals 1..m can be reduced by the
min(w(e"1), w(e"2), ..., we"m)). It helps Dominant edge and Machine Cut

If w(e) > W, (second largest machine cut), it cannot be in-min-cut. heuristics.

Independent Net Articulation Point

A graph consisting of two independent nets. One net consists of all the filled nodes, and the other net

consists of all the non-filled nodes.
Node nis an example of an articulation point, since all nodes in S will be separated from the rest of the graph
if n'is removed.

Computational Experience 1

For several smaller graphs (20-100 nodes) from VA Gen.
applications - these heuristics gave complete reductions

One large example from pBOB (predecessor of SPECjBB2000)
gave a large graph with: 13,915 nodes, 32,221 edges, 404,737
messages between objects.

The program traced with Jinsight.

Computational Experience 2

Another run of pBOB, focusing on the transaction part of it.

Graph with 3543 nodes and 5485 edges.

Dominant edge heuristic reduced it to 198 nodes and 774 edges.
Articulation Point heuristic reduced it to 161 nodes and 660 edges.
Then had to use randomized reduction or branch and bound
technigue.

Dominant edge (w/terminals) heuristic reduced:the graph to Typically 6-20 collapses using random - and then these heuristics
1695, nodes, and! 7494 edges. reduced the graph completely.

Zeroing and machine-cut heuristic reduced the-graph to 1597 R?ndpm'?ed e liicli Ry oS prob_able T
nodes and 3990 edges. Distribution:of nedes was more uniform - 672, 1055, 689 and, 1127

5 = nedes: on;each;of the four machines.
Deminant edgerheuristic reduced the graph to 39 nedes and = = —— =
110 edges The randomized algorithm converged significantly more rapidly:

: = = — when we:combined it withrour- heurstics.
Articulationrpoint:heuristic reduced the graph to 6 nedes and 5
edges (5 terminal nedes):
Pominant edge reduced the graph tors terminal nedes:

Results of Randomized: With
and without new heuristics

Comparison of our Partitioning
Algorithm

data Spec2 Spec3 Spec4
Number of entities 3,317 6,197 11,478

Number of edges 4,896 9,444 17,878

Number of messages 53,954 109,503 210,889

Weight of optimal cut 2,611 5,288 10,901

oy
AN

m.m..mumA...unmnm Weight w/o Dalhouse 2,642 5,437 10,914

A

= Weight Schloegel's algorithm 3,710 5,754 13,070
gets

Randomized with the new heuristics

Related Work

m Distributed Application partitioning problem
is related to Graph cutting - H. Stone 1977.

m There has been work using various heuristics
to obtain approximate solution, e.g. Stoyenko
et al.

m When there is only two terminals we can
solve the problem using max-flow.
(Ford-Folkerson).

m \Whenrthere are more than two terminals, the
problemiis NP=hard - Dahlhaustet. al-1994.

Conclusion about A Priori
optimization

m Even though the multi-terminal graph cutting problem
is_NP-hard, these heuristics can significantly reduce
the graph.

m_|n-many:cases they yield optimal results.

m Even when they do not completely reduced the graph,
they enhance the performance of other algorithms.

m \We would like to explore the applicability of these
heuristics to other graph cutting problems, such as
the ones, from network problems.

Using Dynamic Information to
Distribute OO Programs

m Components are assembled but their
developers often know nothing about what
the components will be connected to

m We have experimented with automatic
distribution involving:
® Running the program determining how: often

one object communicates with another
® Partitioning the resulting graph

® Characterizing the objects whichiend up: on; the
different machines

Characterization: Basic Idea

m For each class of objects or each allocation
site, construct a strategy for determining
properties for entities at create time
m Possible strategies
® All objects of that a given class have the same
property.

® Use machine that the creationiwas done onito
determine where it should be allocated (has
same pPropertyas the creator)

Characterization Greedy
Algorithm

m Partition the entities optimally
B _For each class determine cost of

moving all instances of the class to a
terminal

m For each class determine cost of
putting the Instances of a class on the
same terminall as their creator

m Unify elements of the most ebvious
class with either terminal or creating
entity,

Experience with
Characterization

m _Class objects and factories need to be replicated

m Benchmarks don't contain all the information needed
® Creator information is not present during the part of

the run:that is the benchmark

m_|f we have four warehouses and four customers, class
is not enough

m_Except when information lost during benchmarks we
have succeeded in the few:cases we have attempted
® Greedy has worked optimally’

©

Py

P

::.;--L-n._r" A
o

Flights of Fancy Section

Other important techniques

m Replication - If-an entity-is not going to be
modified, just make a copy with the alternate
property

m Caching -- convert it from one property to the
other only on demand and keep; it with:that
property until needed with the other

» Data structure caching instead ofi data
motionrcaching

> Thisiisione way. oft discussingrdata movement:
» David Bacon has lecked at this:for strings

W Characterization needed tordetermine: ifi the
overheadis Worthrit.

