
Optimizing Component Optimizing Component
Interaction Interaction

Karin Högstedt, Doug Kimelman, Karin Högstedt, Doug Kimelman,
VT Rajan, Tova Roth, Nan Wang, VT Rajan, Tova Roth, Nan Wang,
Mark Wegman Mark Wegman

Computer PerformanceComputer Performance

Time

M
I
P
S

Application PerformanceApplication Performance

Time

S
p
e
e
d

Application FunctionApplication Function

Time

T
h
i
n
g
s
D
o
n
e

Programmer ProductivityProgrammer Productivity

Time

Function
points
per
man-
month

Application EfficiencyApplication Efficiency

Time

function
per
CPU
cycles

Effects of Code OptimizationEffects of Code Optimization

Time

Amount
of
Speed
up
Over
Naive
Execution

Component integration is the Component integration is the
way people programway people program

Programmers have been writing at higher and higher Programmers have been writing at higher and higher
levels using vast librarieslevels using vast libraries
Separately written legacy code must be bound Separately written legacy code must be bound
togethertogether
Components that are designed separately will have Components that are designed separately will have
performance problems when integratedperformance problems when integrated

e. g. the library writer has no idea how his routines will e. g. the library writer has no idea how his routines will
be used and the user doesn't know the algorithm in the be used and the user doesn't know the algorithm in the
librarylibrary

We have studied this in the context of distributionWe have studied this in the context of distribution
It is a more general problemIt is a more general problem

Simple problem and complex Simple problem and complex
onesones

One choice of component effects only One choice of component effects only
itselfitself
Or it effects othersOr it effects others

e.g. where to place a component on a e.g. where to place a component on a
network effects where another network effects where another
component belongscomponent belongs

How do you write a library?How do you write a library?

Code multiple implementations of a classCode multiple implementations of a class
Write a set of instrumentation for each methodWrite a set of instrumentation for each method
Compose the instrumentation and implementations Compose the instrumentation and implementations
using a new composition rule with HyperJusing a new composition rule with HyperJ
HyperJ would make a new class for each allocation HyperJ would make a new class for each allocation
sitesite
Instrumentation computes values used after an initial Instrumentation computes values used after an initial
run and a formula is evaluated to determine which run and a formula is evaluated to determine which
implementation should be used for a given classimplementation should be used for a given class

Note that different Objects may need different implementations
 In the same program

Original MotivationOriginal Motivation

How do you distribute entities of a distributed program How do you distribute entities of a distributed program
to optimize its performance?to optimize its performance?
Two entities can communicate more efficiently if they Two entities can communicate more efficiently if they
share the property of being on one particular machineshare the property of being on one particular machine
Problem in several IBM products including VisualAge Problem in several IBM products including VisualAge
Generator, SF.Generator, SF.
Performance of a program written on top of SF can be Performance of a program written on top of SF can be
affected as much as an order of magnitude by affected as much as an order of magnitude by
placement of objects.placement of objects.
Programmers often do a poor job of placing the Programmers often do a poor job of placing the
objects.objects.
Provide help to the programmers or automate the Provide help to the programmers or automate the
process of object placement.process of object placement.

The Graph Cutting ProblemThe Graph Cutting Problem

10

1000

1000

80

30

50

300

500
1500

1200

1100

Partitioning Cut Cost (messages Between
machines)

Run Time
(ms)

Run Time/Cut Cost
(ms/message)

Naive 53 10.23 0.193
Manual 42 8.62 0.205
Automatic 23 4.75 0.206

VAGen Sample Program CostsVAGen Sample Program Costs
How do we define a How do we define a
component?component?

Components have entities Components have entities
bundled together which bundled together which
have many ways of have many ways of
interactinginteracting
The code from one The code from one
component produces component produces
entities that are used by entities that are used by
the code of anotherthe code of another
Run time wants to bundle Run time wants to bundle
entities that interact most entities that interact most
oftenoften

Code Run time

Many
things
bundled
together

Component
 (this def is
much like a
module)

One thing Class
Definition

Entity
(much like
an
instance)

NotationNotation

Components interact through Components interact through entitiesentities
via either push or pull interactionsvia either push or pull interactions

Entities have Entities have propertiesproperties
two entities with the same properties can interact more two entities with the same properties can interact more
cheaply than those with different onescheaply than those with different ones
Which machine an entity resides on is a propertyWhich machine an entity resides on is a property

Some entities must have certain propertiesSome entities must have certain properties
Others can be determined based on efficiency Others can be determined based on efficiency

Example: two components that Example: two components that
share string entitiesshare string entities

One component One component
requires strings requires strings
be Unicodebe Unicode
The other The other
requires Asciirequires Ascii

Ascii a,b;
Unicode c,d;
String e,f;

e=a;
f=b;
c=e+f;
d=f+e;

Cost of e and f being Ascii is the conversion of
e+f and f+e to Unicode

Additional MotivationAdditional Motivation

Data structures in different representationData structures in different representation
Unicode Vs EBCDIC Vs ASCIIUnicode Vs EBCDIC Vs ASCII

variables are nodes in the graphvariables are nodes in the graph
Unicode, ASCII, EBCDIC are terminalsUnicode, ASCII, EBCDIC are terminals
edges are assignment statementsedges are assignment statements

Different Collection ClassDifferent Collection Class
EJB's in different containersEJB's in different containers
Message format in Publish-Subscribe Message format in Publish-Subscribe
setting?setting?

Run the program with a "typical" input.Run the program with a "typical" input.
Trace the program using tools such as Jinsight to Trace the program using tools such as Jinsight to
obtain the objects and their communications.obtain the objects and their communications.
Obtain the communication graph and find the Obtain the communication graph and find the
optimal placement of the objects.optimal placement of the objects.
Characterize the objects to allow for optimal or near Characterize the objects to allow for optimal or near
optimal placement of objects during future runs.optimal placement of objects during future runs.
Help Programmer Visualize where remaining Help Programmer Visualize where remaining
problems are.problems are.

Our ApproachOur Approach

Remainder of this TalkRemainder of this Talk

A Priori optimization of a programA Priori optimization of a program
A Posteriori optimization of a run of a A Posteriori optimization of a run of a
programprogram
Flights of fancy over where we can go Flights of fancy over where we can go
from herefrom here

In our work we look for heuristics In our work we look for heuristics
which simplify the graph, but preserve which simplify the graph, but preserve
the minimum cut.the minimum cut.
We will ignore other constraints such We will ignore other constraints such
as load factor - which may be as load factor - which may be
important in some instances.important in some instances.
We can combine our heuristics with We can combine our heuristics with
existing algorithms.existing algorithms.

Graph Cutting is NP hardGraph Cutting is NP hard

Reprise: How to simplify this Reprise: How to simplify this
problem?problem?

10

1000

1000

80

30

50

300

500
1500

1200

1100

Dominant Edge heuristic Dominant Edge heuristic

A

B

C

D

W
2

W

W

3

1
w >= w + w2 3

1

Dominant Edge w/TerminalsDominant Edge w/Terminals

A

B

C

D

W
2

W

W

3

1

T1

T2

W

T1

W

T21
w >= w + w + max(w , w)

2 3

T1 T2

Dominant Edge ApplicationDominant Edge Application

When we discover a dominant edge we collapse the When we discover a dominant edge we collapse the
edge, and combine the nodes.edge, and combine the nodes.
Reduces the graph size by one - and can create new Reduces the graph size by one - and can create new
dominant edges.dominant edges.
In some graphs we see over 90% reduction in In some graphs we see over 90% reduction in
graph size - by repeated application of dominant graph size - by repeated application of dominant
edge.edge.
Can be implemented to run in time O(min(degrees Can be implemented to run in time O(min(degrees
of the nodes)) per collapse.of the nodes)) per collapse.
This can be done in O(E log E) time for the whole This can be done in O(E log E) time for the whole
graph, E the number of edges in the graph.graph, E the number of edges in the graph.

Machine CutMachine Cut

e

optimal cut

cut with cost Wj

cut with cost Wi

mi

mj

If w(e) > W (second largest machine cut), it cannot be in min cut.
2

ZeroingZeroing

e''m

e''1

e''(m-1) e''2

...

Zeroing Heuristic: The weight of edges to the Terminals 1..m can be reduced by the
min(w(e"1), w(e"2), ..., w(e"m)). It helps Dominant edge and Machine Cut
heuristics.

Independent NetIndependent Net

A graph consisting of two independent nets. One net consists of all the filled nodes, and the other net
consists of all the non-filled nodes.

Articulation PointArticulation Point

n

set S

Node n is an example of an articulation point, since all nodes in S will be separated from the rest of the graph
if n is removed.

Computational Experience 1Computational Experience 1

For several smaller graphs (20-100 nodes) from VA Gen. For several smaller graphs (20-100 nodes) from VA Gen.
applications - these heuristics gave complete reductionsapplications - these heuristics gave complete reductions
One large example from pBOB (predecessor of SPECjBB2000) One large example from pBOB (predecessor of SPECjBB2000)
gave a large graph with 13,915 nodes, 32,221 edges, 404,737 gave a large graph with 13,915 nodes, 32,221 edges, 404,737
messages between objects.messages between objects.
The program traced with Jinsight.The program traced with Jinsight.
Dominant edge (w/terminals) heuristic reduced the graph to Dominant edge (w/terminals) heuristic reduced the graph to
1695 nodes and 7494 edges.1695 nodes and 7494 edges.
Zeroing and machine cut heuristic reduced the graph to 1597 Zeroing and machine cut heuristic reduced the graph to 1597
nodes and 3990 edges.nodes and 3990 edges.
Dominant edge heuristic reduced the graph to 39 nodes and Dominant edge heuristic reduced the graph to 39 nodes and
110 edges.110 edges.
Articulation point heuristic reduced the graph to 6 nodes and 5 Articulation point heuristic reduced the graph to 6 nodes and 5
edges (5 terminal nodes).edges (5 terminal nodes).
Dominant edge reduced the graph to 5 terminal nodes.Dominant edge reduced the graph to 5 terminal nodes.

Computational Experience 2Computational Experience 2

Another run of pBOB, focusing on the transaction part of it.Another run of pBOB, focusing on the transaction part of it.
Graph with 3543 nodes and 5485 edges.Graph with 3543 nodes and 5485 edges.
Dominant edge heuristic reduced it to 198 nodes and 774 edges.Dominant edge heuristic reduced it to 198 nodes and 774 edges.
Articulation Point heuristic reduced it to 161 nodes and 660 edges.Articulation Point heuristic reduced it to 161 nodes and 660 edges.
Then had to use randomized reduction or branch and bound Then had to use randomized reduction or branch and bound
technique.technique.
Typically 6-20 collapses using random - and then these heuristics Typically 6-20 collapses using random - and then these heuristics
reduced the graph completely.reduced the graph completely.
Randomized reduction gave a probable minimum.Randomized reduction gave a probable minimum.
Distribution of nodes was more uniform - 672, 1055, 689 and, 1127 Distribution of nodes was more uniform - 672, 1055, 689 and, 1127
nodes on each of the four machines.nodes on each of the four machines.
The randomized algorithm converged significantly more rapidly The randomized algorithm converged significantly more rapidly
when we combined it with our heuristics.when we combined it with our heuristics.

2000

2200

2400

2600

2800

3000

3200

Results of Randomized: With Results of Randomized: With
and without new heuristicsand without new heuristics

Randomized without the new heuristics

Randomized with the new heuristics

data Spec1 Spec2 Spec3 Spec4
Number of entities 1,972 3,317 6,197 11,478

Number of edges 2,844 4,896 9,444 17,878

Number of messages 29,323 53,954 109,503 210,889

Weight of optimal cut 1,418 2,611 5,288 10,901

Weight w/o Dalhouse 1,418 2,642 5,437 10,914

Weight Schloegel's algorithm
gets

2,061 3,710 5,754 13,070

Comparison of our Partitioning Comparison of our Partitioning
AlgorithmAlgorithm

Related WorkRelated Work

Distributed Application partitioning problem Distributed Application partitioning problem
is related to Graph cutting - H. Stone 1977.is related to Graph cutting - H. Stone 1977.
There has been work using various heuristics There has been work using various heuristics
to obtain approximate solution, e.g. Stoyenko to obtain approximate solution, e.g. Stoyenko
et. al. et. al.
When there is only two terminals we can When there is only two terminals we can
solve the problem using max-flow solve the problem using max-flow
(Ford-Folkerson).(Ford-Folkerson).
When there are more than two terminals, the When there are more than two terminals, the
problem is NP-hard - Dahlhaus et. al.1994.problem is NP-hard - Dahlhaus et. al.1994.

Conclusion about A Priori Conclusion about A Priori
optimizationoptimization

Even though the multi-terminal graph cutting problem Even though the multi-terminal graph cutting problem
is NP-hard, these heuristics can significantly reduce is NP-hard, these heuristics can significantly reduce
the graph.the graph.
In many cases they yield optimal results.In many cases they yield optimal results.
Even when they do not completely reduced the graph, Even when they do not completely reduced the graph,
they enhance the performance of other algorithms.they enhance the performance of other algorithms.
We would like to explore the applicability of these We would like to explore the applicability of these
heuristics to other graph cutting problems, such as heuristics to other graph cutting problems, such as
the ones from network problems.the ones from network problems.

Using Dynamic Information to Using Dynamic Information to
Distribute OO ProgramsDistribute OO Programs

Components are assembled but their Components are assembled but their
developers often know nothing about what developers often know nothing about what
the components will be connected tothe components will be connected to
We have experimented with automatic We have experimented with automatic
distribution involving:distribution involving:

Running the program determining how often Running the program determining how often
one object communicates with anotherone object communicates with another
Partitioning the resulting graphPartitioning the resulting graph
Characterizing the objects which end up on the Characterizing the objects which end up on the
different machinesdifferent machines

Characterization: Basic IdeaCharacterization: Basic Idea

For each class of objects or each allocation For each class of objects or each allocation
site, construct a strategy for determining site, construct a strategy for determining
properties for entities at create timeproperties for entities at create time
Possible strategiesPossible strategies

All objects of that a given class have the same All objects of that a given class have the same
propertyproperty
Use machine that the creation was done on to Use machine that the creation was done on to
determine where it should be allocated (has determine where it should be allocated (has
same property as the creator)same property as the creator)

Characterization Greedy Characterization Greedy
AlgorithmAlgorithm

Partition the entities optimallyPartition the entities optimally
For each class determine cost of For each class determine cost of
moving all instances of the class to a moving all instances of the class to a
terminalterminal
For each class determine cost of For each class determine cost of
putting the instances of a class on the putting the instances of a class on the
same terminal as their creatorsame terminal as their creator
Unify elements of the most obvious Unify elements of the most obvious
class with either terminal or creating class with either terminal or creating
entity entity

Experience with Experience with
CharacterizationCharacterization

Class objects and factories need to be replicatedClass objects and factories need to be replicated
Benchmarks don't contain all the information neededBenchmarks don't contain all the information needed

Creator information is not present during the part of Creator information is not present during the part of
the run that is the benchmarkthe run that is the benchmark

If we have four warehouses and four customers, class If we have four warehouses and four customers, class
is not enoughis not enough
Except when information lost during benchmarks we Except when information lost during benchmarks we
have succeeded in the few cases we have attemptedhave succeeded in the few cases we have attempted

Greedy has worked optimallyGreedy has worked optimally

Flights of Fancy Section Flights of Fancy Section

Other important techniquesOther important techniques

Replication -- If an entity is not going to be Replication -- If an entity is not going to be
modified, just make a copy with the alternate modified, just make a copy with the alternate
propertyproperty
Caching -- convert it from one property to the Caching -- convert it from one property to the
other only on demand and keep it with that other only on demand and keep it with that
property until needed with the otherproperty until needed with the other

Data structure caching instead of data Data structure caching instead of data
motion cachingmotion caching
This is one way of discussing data movementThis is one way of discussing data movement
David Bacon has looked at this for stringsDavid Bacon has looked at this for strings

Characterization needed to determine if the Characterization needed to determine if the
overhead is worth it.overhead is worth it.

