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Abstract
We present DITTO, an automatic incrementalizer for dynamic, side-
effect-free data structure invariant checks. Incrementalization speeds
up the execution of a check by reusing its previous executions, check-
ing the invariant anew only on the changed parts of the data struc-
ture. DITTO exploits properties specific to the domain of invariant
checks to automate and simplify the process without restricting what
mutations the program can perform. Our incrementalizer works for
modern imperative languages such as Java and C#. It can incremen-
talize, for example, verification of red-black tree properties and the
consistency of the hash code in a hash table bucket. Our source-to-
source implementation for Java is automatic, portable, and efficient.
DITTO provides speedups on data structures with as few as 100 el-
ements; on larger data structures, its speedups are characteristic of
non-automatic incrementalizers: roughly 5-fold at 5,000 elements,
and growing linearly with data structure size.

Categories and Subject Descriptors D.m [Miscellaneous]

General Terms Algorithms, Languages, Performance

Keywords Automatic, dynamic optimization, incrementalization,
program analysis, data structure invariants, optimistic memoization

1. Introduction
Type safety of modern imperative languages such as Java and C#
eliminates many types of programming errors, such as buffer over-
flows and doubly-freed memory. As a result, algorithmic errors
present a proportionately greater challenge during the development
cycle. One such class of errors are data structure bugs. Many data
structures bugs can be detected as violations of high-level invariants
such as “the elements of this list are ordered”, “no elements in this
priority queue can be in that priority queue”, or “in a red-black tree,
the number of black nodes on any path from the root node to a leaf
is the same.” Verifying such invariants, however, remains non-trivial.
Data structure invariants are particularly difficult for static tools to
verify because static heap analysis scales poorly and current verifiers
require extensive annotations.

An alternative approach is dynamic verification of invariant
checks. Dynamic checks operate on the concrete data structure and
are thus typically simple to write and validate. Thanks to tools such
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as jmlc [6], dynamic checking has become more accessible to pro-
grammers. However, dynamic checks can incur a significant run time
overhead, hindering the development and testing. Since checks are
executed frequently and commonly traverse the entire data structure,
a program with checks may run 10–100 times slower, which may be
prohibitively slow for all but the most patient programmer. Conse-
quently, dynamic checks are rarely employed, even in debugging.

This paper introduces DITTO, an incrementalizer for a class of
dynamic-data structure invariant checks written in modern impera-
tive languages like Java and C#. We allow the programmer to write
these checks in the language itself. DITTO then automatically incre-
mentalizes such checks, rewriting them so that they only re-check
the parts of a data structure that have been modified since the last
check. Incremental checks typically run linearly faster than the orig-
inal (about 10-times faster on data structures with 10,000 elements).
We believe that the incrementalization makes dynamic checks prac-
tical in a development environment.

The goal of incrementalization is to modify an algorithm so that
it computes anew only on changed input data and reuses all repeated
subcomputations. Traditionally, incrementalization is designed and
implemented by hand: an algorithm is modified to be aware of data
modifications and to cache and reuse its previous intermediate re-
sults [20]. While hand-incrementalization can produce the desired
speedups of invariant checks, manual incrementalization has several
practical limitations:

• The programmer may overlook possible modifications to the data
structure (as in the infamous Java 1.1 getSigners bug [11])
and thus omit necessary incremental updates. The result is an
incorrect invariant check that may fail to detect bugs.

• Some invariant checks may be difficult to incrementalize by hand.
For example, after some effort, we gave up on incrementalizing
red-black tree invariants.

• Manual incrementalization does not appear economical, as each
data structure may require several checks. Programmers may also
want to obtain an efficient check rapidly, for example, when
writing “data-breakpoint” checks for explaining the symptoms of
a particular bug.

• Perhaps most importantly, incremental code is complex and scat-
tered throughout the program. The complexity of its maintenance
may defeat the purpose of relying on invariant checks that are
simple and verifiable by inspection.

Recent research by Acar et al. [1] developed a powerful general-
purpose framework for incrementalization of functional programs,
based on memoization and change propagation. This framework pro-
vides an efficient incrementalization mechanism while offering the
programmer considerable flexibility. To incrementalize a program,
the programmer (i) identifies locations whose changes should trigger
recomputation; and (ii) writes functions that carry out the incremen-



tal update on these locations. The actual memoization and recom-
putation are encapsulated in a library. Acar’s incrementalized algo-
rithms exhibit significant speedup, so it is natural to ask how one
could automate this style of incrementalization.

In this paper, we identify an interesting domain of computations
for which we develop an automatic incrementalizer. Our domain in-
cludes recursive side-effect-free functions, which cover many invari-
ants of common data structures such as red-black trees, ordered lists,
and hash tables. While we support only functional checks, the checks
can be executed from within arbitrary programs written in imperative
languages such as Java and C#. In these languages, checks are useful
to the programmer because manual verification of invariants is com-
plicated by the fact that data structure updates can occur anywhere
in the program. For the same reason, incrementalization is difficult,
which should make automatic incrementalization attractive.

Properties of invariant checks allow us not only to automate incre-
mentalization but also to offer a simple and effective implementation.

• Simplicity. An invariant check typically returns always the same
result (i.e., “the check passed”) and so do its subcomputations
that are recursively invoked on parts of the data structure. This
observation allows us to develop optimistic memoization, a tech-
nique that aggressively enables local recomputations to recon-
struct a global result.

• Effectiveness. The local properties that establish the global prop-
erty of interest are typically mutually independent and recompu-
tation of one does not necessitate recomputation of others. For
example, sortedness of a list is established from checking that
adjacent elements are ordered; if an element is inserted into the
list, we need to check its order only with respect to its neighbors.
Independence of local computations means that incremental com-
putation can produce significant speedups.

The main contributions of this paper are:

1. The DITTO automatic incrementalizer for a class of data structure
invariant checks that are written in an object-oriented language.

2. A portable implementation of DITTO in Java.
3. An evaluation of Java DITTO on several benchmarks.

Section 2 outlines how a simple invariant check is incrementalized.
Section 3 describes DITTO’s incrementalization algorithms and Sec-
tion 4 provides some implementation details. Section 5 evaluates
DITTO on several small and large benchmarks. Section 6 discusses
related work and Section 7 concludes.

2. Definitions and Example
In this section, we give a high-level overview of DITTO’s incremen-
talization process. First, we define the class of invariant checks that
DITTO can incrementalize.

DEFINITION 1. The inputs to a function consist of its explicit ar-
guments, i.e., the values of its actual parameters; its implicit argu-
ments, i.e., values accessed on the heap; and its callee return values,
i.e., the results of function calls it makes.

Note that implicit arguments are defined not to include locations that
are read (only) by the callees of the function.

DEFINITION 2. A data structure invariant check is a set of (poten-
tially recursive) functions that are side-effect-free in the sense that
they do not write to the heap, make system calls, or escape address of
an object allocated in the invariant check. Furthermore, in each func-
tion, no loop conditional or function call can depend on any callee
return values.1

1 This technical restriction, described further in Section 3.5, is required to
ensure that the original functions and their incrementalized versions have the

class OrderedIntList {
IntListElem head;
void insert(int n) {

invariants();
...
invariants();

}
void delete(int n) {

invariants();
...
invariants();

}

void invariants() {
if (! isOrdered(head)) complain();

}
Boolean isOrdered(IntListElem e) {

if (e == null || e.next == null)
return true;

if (e.value > e.next.value)
return false;

return isOrdered(e.next);
}

}

Figure 1. The example class OrderedIntList and its invariant
check isOrdered.

Throughout this paper, we will often assume that a check is a single
recursive function. However, DITTO supports also checks composed
of multiple recursive functions, such as the one in Figure 9. When
the check contains multiple functions, we identify the check by the
“entry-point” function that is invoked by the main program.

The incrementalizer memoizes the computation at the level of
function invocations, so recursive checks are more efficient than it-
erative ones. Most iterative invariant checks can be rewritten without
loss of clarity into recursive checks.

The main program has no restrictions on its behavior. We assume
that invariant checks running in multithreaded programs either oper-
ate on thread-local data or are atomic to ensure data integrity during
the check.

To illustrate how DITTO works, we walk through the incremental-
ization of a simple invariant check, isOrdered, shown in Figure 1.
The invariant verifies that the list maintains its elements in sorted or-
der. The invariant is checked at method entries and exits. The former
ensures that the invariant is maintained by modifications performed
from outside the class. Such modifications could occur if, say, an
IntListElem object was mistakenly exposed to users of the class.
The latter ensures that the list operation itself maintains the invariant.

The invariant check is simple and readable, but it is inefficient. In
common usage scenarios, the unoptimized isOrdered will dominate
the performance of the program. However, the check is amenable
to incrementalization under most common modifications to the list.
For instance, if an element e is inserted into the middle of the list,
isOrdered needs to be re-executed only on e and its predecessor;
the success of the invocation of isOrdered preceding the change
guarantees the checked property for the remaining elements in the
list, as they have not changed since then. This incrementalization
reduces the cost of the check from the time linear in the size of the
list to constant time.

Incrementalizing isOrdered. DITTO automatically incremen-
talizes isOrdered using the following simple process.

same termination properties in the presence of optimistic memoization. This
restriction can be sidestepped but we have not found it to be an impediment
in practice.
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Figure 2. Before and after a list operation: an element is inserted,
and another is deleted. The elements modified during the operation
are dashed.

1. During the first execution of invariants, we record the se-
quence of recursive calls to isOrdered, their inputs, and their
results.

2. During the subsequent execution of the main program, we track
changes to memory locations that served as implicit inputs to a
check. The tracking is performed with write barriers.

3. The next time invariants is invoked, we re-execute only the
recursive invocations to isOrdered whose inputs have changed;
we reuse memoized results for the remaining invocations. We
update the memoized results so that further executions of the
check can be incrementalized.

We describe these steps in detail in the context of a modification
scenario, shown in Figure 2, where an element is inserted into the
list and another element, further down the list, is deleted. Note that
we assume that the invariant check is performed only after both
modifications, and not in between the two modifications.

DITTO stores all inputs for each (recursive) invocation of isOrdered.
The function isOrdered has five inputs: one explicit argument, the
formal parameter e; three implicit arguments, the fields e.next,
e.value, and e.next.value; and one callee return value, that of
the recursive call to isOrdered.

The modification shown in Figure 2 updates two fields already
in the list: A.next and D.next. Based on the inputs stored in
the previous execution of the check, DITTO determines that these
fields served as implicit inputs to invocations isOrdered(A) and
isOrdered(D). These two invocations must be re-executed on the
new input values. Since isOrdered(A) occurred first in the previous
execution, it is re-executed first.

The re-running of isOrdered(A) uses the new implicit argu-
ments, specifically the new value of A.next, which now points to
B. The execution thus continues to the invocation isOrdered(B).
Since DITTO has not yet encountered isOrdered with the explicit
argument B, it adds this new invocation to its memoization table and
continues executing, reaching the recursive call to isOrdered(C).

At this point, DITTO determines that (i) isOrdered(C) has been
memoized and (ii) the implicit arguments to isOrdered(C) have
not changed since the previous execution of the check. However,
this is not sufficient to safely reuse isOrdered(C) because there
is no guarantee that the last input to isOrdered(C)—the callee
return value from isOrdered(C.next)—will return the same value
as in the previous execution of the check. The danger is quite real:
There is a modification to an implicit input of isOrdered(D) further
down the list; if isOrdered(D) returned a different value, this value
could ultimately affect the value returned by isOrdered(C.next).
So, a straightforward memoization algorithm cannot safely reuse
isOrdered(C); instead, it must continue the re-execution until it
is sure that no further callee return values might change. In our
example, it would have to re-execute past C all the way to D, re-
executing also all the intervening function invocations.

DITTO follows a more sophisticated algorithm. To deal with the
uncertainty of callee return values, DITTO optimistically assumes

that the recursive call to isOrdered(C) will return the same value
as it did previously. This is a sensible assumption since recursive
invariant check often do return the same value. (Typically, this is the
“success” value.) This optimistic memoization strategy allows DITTO

to reuse the cached result for isOrdered(C), which successfully
terminates the re-execution. The execution eventually returns back up
to isOrdered(A), which returns true — the same value it returned
last time. Thus, the function that invoked isOrdered(A) need not
be re-executed since all of its inputs are the same as last time; we are
now done with the re-execution of the modified portion of the data
structure around nodes A and B.

DITTO then re-executes isOrdered(D), the second call whose
implicit inputs have changed. The incrementalization then continues
to isOrdered(F), which is successfully reused, terminating the
recursive calls. The invocation of isOrdered(D) evaluates to true,
matching its previous result, so the entire recomputation ends. The
invocation isOrdered(E) is no longer reachable in the computation
and is ignored.

DITTO now returns the cached result of the entire invariant check,
true, to the caller, invariants().

Consider now the case when isOrdered(D) returns a value dif-
ferent than it did previously. (Note that our optimistic assumption is
not necessarily wrong yet, as we assumed only that isOrdered(C),
but not isOrdered(D), returns the same value as it did previously.)
The new return value would be propagated from isOrdered(D)
back up to its caller, which would be re-executed. This process
would continue until either (a) a caller is reached that returns the
same result that it did previously; or (b) the execution reaches
the first caller, isOrdered(head), and the new overall result is
cached and returned. Note that if this upward propagation reaches
isOrdered(B), the optimistic memoization decision made when
reusing isOrdered(C) is shown to be incorrect. In this case,
isOrdered(B) is re-executed like the other calls during this propa-
gation phase.

Whether the optimistic assumptions turned out wrong or not, the
incrementalizer stores the new inputs and the result for each re-
executed call; the memoization data for isOrdered(E) is garbage
collected. This maintenance ensures that DITTO will be able to in-
crementalize the invariant check during its next execution.

Of course, data structure modifications can take on more complex
forms than simple inserts and deletes. The next section describes how
all possible modifications are handled in a general way, and Section 5
examines the performance of DITTO on invariants of considerably
greater complexity.

3. Incrementalization Algorithm
This section presents details of our incrementalization algorithm.
We start by describing the memoization cache and continue with
a straightforward incrementalization algorithm. The inefficiency of
this algorithm will motivate our optimistic incrementalizer, presented
next. We will conclude by explaining the steps taken when optimistic
assumptions fail.

3.1 Computation graph

On the first invocation of an invariant check, DITTO caches the com-
putation of the check in a computation graph, which records the com-
putation at the granularity of function invocations. Between invoca-
tions of the invariant check, the graph is used to track how the main
program changes the check’s implicit arguments. On the subsequent
invocation of the invariant check, the graph is used to identify mem-
oized function invocations whose inputs have been changed. These
function invocations are re-executed and the graph is updated; the
remaining function invocations are reused from the graph. The in-
crementally updated graph is equivalent to re-running the invariant
check from scratch on the current program state.



The computation graph contains a node for each (dynamic) func-
tion invocation performed during the execution of the check. Di-
rected edges connect a caller with its callees. DITTO stores the graph
in memory in the form of a table. A table entry, shown below, rep-
resents one node of the graph, i.e., one function invocation. We will
use the terms function invocation and computation node (or node)
interchangeably as appropriate.

f explicit args implicit args calls return val dirty

The entry contains six fields: f is the invoked function; ex-
plicit args is a list of values passed as actual arguments to f ; im-
plicit args is a list static and heap locations read by the invocation;
calls is a list of function invocations made by this function invoca-
tion, represented as links to other entries in the table; return val is
the return value of this invocation; and dirty is used during the incre-
mental computation to mark invocations whose implicit inputs have
been modified. Recall that implicit args includes only the locations
read by this invocation, not by its callees. The table is indexed by a
pair (f, explicit args).

DITTO constructs the computation graph by instrumenting the
invariant check. The offline instrumentation diverts all invocations
of an invariant check c — i.e., all calls to a functions in c from a
function not in c — to the catch-all incrementalize runtime library
function, described in detail later in this section (see Figure ??).
For instance, the call to isOrdered(head) in invariants() in
Figure 1 is rewritten to invoke incrementalize() instead.

DITTO instruments each function f in the invariant check c to
record the data necessary to construct a memoization table entry. The
instrumented version of the isOrdered function in Figure 1 is shown
in Figure 3. The transformation inserts code at the beginning of f to
check if this invocation has been memoized. If a table entry with
the same explicit arguments already exists, the function returns with
the cached result value; if not, a new entry is created and implicit
arguments and the return value are recorded. The try and catch are
required by optimistic memoization; their purpose is described later
in this section.

In addition to recording the implicit arguments used by each
function invocation, a reverse map, from heap locations (implicit
arguments) to table entries, is created. This reverse map is used
to determine which function invocations depend on modified heap
values. See Figure 4 for an example initial computation graph.

Instrumentation is also used to track updates to implicit inputs.
These updates can occur anywhere in the main program, so DITTO
places write barriers into statements that might write those locations.
The write barriers are described in further detail in Section 4. When
an update to an implicit location is detected, function invocations
whose implicit arguments have been modified are marked as dirty,
which prevents reuse of their memoized results (see Figure 5).

3.2 Naive incrementalizer

DITTO can reuse the cached result of a function invocation if the
function is invoked with identical inputs as the cached invocation.
However, checking whether all inputs are identical is non-trivial. Re-
call that, for the purpose of memoization, a function has three kinds
of inputs: explicit inputs (i.e., actual arguments); implicit inputs (i.e.,
values read by the function from the heap and static variables); and
return values from its callees. Ideally, we want to reuse the cached
result at the time when the function is invoked; but at this point we
know only that the explicit arguments are identical. We may also
know that the values of implicit input locations have not changed
since the last invocation, but is the function going to read the same
set of locations? The answer depends on the return values from the
function’s callees; if they differ from the previous return values, the
function may read different locations and clearly cannot be reused.

Boolean isOrdered(IntListElem e) {
try {

// creates a new entry if one doesn’t exist
MemoEntry n = getMemoEntry(isOrderedId, [e]);
if (n.hasResult) return (Boolean) n.result;

n.addImplicit(addressOf(e.next));
if (e == null || e.next == null) {

n.setResult(true);
return true;

}
n.addImplicit(addressOf(e.value));
n.addImplicit(addressOf(e.next.value));
if (e.value > e.next.value) {

n.setResult(false);
return false;

}
n.addCall(isOrderedId, e.next);
n.setResult(isOrdered(e.next));
return n.result;

} catch (Exception e) {
throw new OptimisticMemoizationException();

}
}

Figure 3. The instrumented version of isOrdered().
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Figure 4. Part of the computation graph after an initial run. The
dotted lines from items on the heap to computation nodes (function
invocations) indicate the implicit arguments used by those nodes. Not
all dotted lines are shown.
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Figure 5. Memory locations with dashed outlines have been modi-
fied since the last execution of the invariant. All computation nodes
that used these memory locations are marked as dirty.



function incrementalize(f, initial_args)
return memo(f, initial_args)

function memo(f, x)
if (t[f,x] == null || // never been run before

t[f,x].hasModifiedImplicitArgs())
return exec(f, x)

foreach (c in t[f,x].calls)
// did the call return the same value as last time?
old_return_val = c.return_val
if (memo(c.f, c.explicit_args) != old_return_val)

// memo lookup failed somewhere in c.f’s call tree
return exec(f, x)

// conditions described in Lemma 1 hold; reuse allowed
return t[f,x].return_val

function exec(f, x)
// invoke f’, the instrumented version of f
return f’(x)

Figure 6. The naive incrementalizer.

A conservative rule for reuse of memoized results is to ensure
that (i) the explicit arguments are identical and that there has been no
change to (ii) implicit input values as well as to (iii) callee return
values. (To confirm that the return values are identical, the naive
incrementalizer will incrementally execute the calls, meaning that it
will try to reuse as much of the calls as possible.)

LEMMA 1. Consider an invocation of function f that (i) has explicit
arguments e, (ii) accesses the set of heap locations I , and (iii) invokes
functions g1(a1), . . . , gn(an), which return values r1, . . . , rn. The
cached result for this invocation is identical to the value of f(x)
invoked in the current program state if the following conditions hold:
(1) x = e; (2) the locations in I have not been modified since
the memoized invocation was executed; (3) g1(a1), . . . , gn(an), if
invoked on the current program state, would return the same values
r1, . . . , rn as at the time of the previous invocation of f(e).

The proof involves showing that the current function invocation
(1) accesses the same set of locations as the cached invocation; and
(2) makes identical function invocations as the cached invocation. It
is easy to show that if the previous implicit locations have not been
changed, the first call made by the function is identical to the first
call made by the cached invocation. If this call returns the same value
as previously, the function will continue accessing the same implicit
input locations. Since their values have not been changed, the second
call made by the function will be identical to the second call in the
cached invocation. The proof then proceeds by induction.

The naive incrementalization algorithm is shown in Figure 6. In
this code, initial args are the arguments provided to the first,
entry-point function call of the invariant check. t[f,x] represents
a lookup in the memoization table of an entry with function f and
explicit arguments x.

The naive incrementalizer is simple: starting from the first func-
tion invocation of the invariant check, it recursively follows the path
of the computation, reusing memoized results where appropriate.
However, it is very costly: in order to ascertain that child calls do
in fact return the same values as in the previous execution, it requires
a memoization table lookup for every function invocation in the com-
putation, even those that are unaffected by any input modifications.

3.3 Optimistic incrementalizer

Ideally, the incrementalizer should recompute only function invo-
cations whose inputs have changed. But how do we determine that
calls made by f would return the same values if executed in the cur-

rent program state? The naive incrementalizer does so by “replaying”
the sequence of all calls indirectly made by f and ensuring that all
these transitive callees of f can be memoized. This process is ex-
pensive. A constant-time memoization check can be performed by
time-stamping the invocation of each function and checking if any
transitive callee of f had its implicit arguments modified. Such a
time interval mechanism was used by by Acar et al. [1] to aid in
identifying relevant functions with changed inputs.

DITTO develops what we think is a simpler mechanism based on
the common property that invariant checks usually succeed. When
a check succeeds, it returns a success code; the same is true for all
recursive function invocations made by the check. Our optimistic as-
sumption thus is that a function invocation in an invariant check typi-
cally returns the same value. This observation holds even when some
of the transitive callees had their implicit inputs changed because in-
variants usually hold even after the data structure is modified.

The optimistic memoization employed by DITTO simplifies the
naive incrementalizer: we optimistically reuse a cached invocation
if the explicit and implicit arguments are the same; the callee return
values are assumed to return the same values. The optimistic memo()
function is shown here:

function optimistic_memo(f, x)
if (t[f,x] == null || // never been run before

t[f,x].hasModifiedImplicitArgs())
return exec(f, x)

// optimistically assume that conditions
// described in Lemma 1 hold and allow reuse
return t[f,x].return_val

Optimistic memoization breaks dependencies of an invocation on its
callees, whose return values are not yet known at the time when reuse
of the invocation is attempted. This frees DITTO from having to per-
form the memoization lookup on many function invocations whose
inputs have not changed. In other words, the benefit of optimistic
memoization is that, in the common case of a successful check, we
recompute only the local properties of those data structure nodes that
have changed.

DITTO must of course handle the case of an incorrectly predicted
optimistic value. The steps for doing so are detailed in Section 3.5.

3.4 The complete algorithm

The complete incrementalization algorithm, shown in Figure ??,
needs to take care of two more issues: pruning of unreachable com-
putations and recomputation in response to changed return values.

Pruning. If a computation of a check has two function invoca-
tions with modified inputs, f(x) and g(y), and g(y) is a transitive
callee of f(x) then we should recompute f(x) before g(y). The rea-
son is that the new computation of f(x) may or may not lead to an
invocation of g(y). Invoking g(y) could result in an exception or it
could be costly (for example, node y could have moved to a different
data structure on which the evaluation of the invariant check could
be expensive). Thus, DITTO re-executes dirty nodes (i.e., nodes with
modified implicit inputs) in a breadth-first search order (i.e., nodes
closest to the root are executed first). After each node is re-executed,
the incrementalizer prunes nodes that are no longer in the computa-
tion graph; these nodes will not be re-executed.

Changed return values. When a re-execution of an invocation
evaluates to a return value that differs from the cached return value,
the changed value must be propagated to the caller of the recomputed
invocation. DITTO tracks all nodes with differing return values and
re-executes their callers in reverse breadth-first-search order, which
ensures that a node is re-executed only after all its children have
been re-executed (if that was necessary). This re-execution along a
path continues up the graph until either (i) the return value of a re-



function incrementalize(f, initial_args)
to_propagate = {}
// identify memoized executions that have modified
// implicit arguments (detected by write barriers)
changed = get_changed_implicit_locations()
changed_fns = map_locs_to_memo_table_entries(changed)
// need to re-run root if arguments have changed
if (t[f,initial_args] == null)
changed_fns.add((f, initial_args))

changed_fns.sort_bfs_order()
foreach((f,x) in changed_fns)
t[f,x].dirty = true

foreach ((f,x) in changed_fns)
// only re-execute if still in graph (not pruned)
// and dirty (hasn’t already been re-executed)
if (t[f,x] != null && t[f,x].dirty)

exec(f, x)
propagate_return_vals()
return t[f,initial_args].return_val

function memo(f, x)
if (t[f,x] == null || // never been run before

t[f,x].dirty) // changed implicit_args
return exec(f, x)

// thanks to optimistic memoization, don’t
// need to check callee return values
return t[f,x].return_val

function get_callers(f, x)
// returns nodes that call f(x)

function exec(f, x)
oldentry = t[f,x]
// f’ is the instrumented version of f
newresult = f’(x)
if (newresult != oldentry.return_val)
to_propagate.add((f,x))

foreach (c in oldentry.calls)
if (get_callers(c.f, c.explicit_args).size() == 0)

prune(c.f, c.explicit_args)
return newresult

function propagate_return_vals()
to_propagate.sort_reverse_bfs_order()
while (to_propagate.size() > 0)
e = to_propagate.remove(0)
f, x, oldval = e.f, e.explicit_args. e.return_val
newval = f’(x)
if (oldval != newval)

to_propagate.insert_reverse_bfs_order(
get_callers(f,x))

function prune(f, x)
var calls = t[f,x].calls
t[f,x] = null
foreach(c in calls)
if (get_callers(c.f, c.explicit_args).size() == 0)

prune(c.f, c.explicit_args)

Figure 7. Pseudo-code for the main incrementalizing algorithm.

executed ancestor evaluates to the cached value; or (ii) the root node
is reached, which changes the overall result of the invariant check.

The DITTO incrementalizer is shown in Figure ??. In the imple-
mentation, the graph is not traversed using BFS; instead, the nodes
are kept ordered using the order maintenance algorithm due to Ben-
der, et al. [5].

An example of the algorithm in action (with pruning, optimistic
memoization, and return value propagation) is shown in Figure 8.

3.5 Optimistic mispredictions

Recall that when the optimistic incrementalizer encounters a call to
(a non-dirty) invocation g(y), the incrementalizer reuses its old re-
turn value without first ensuring that the g(y) would return the same
value in the current program state. When this optimistic assumption
is wrong, the re-execution of f(x), the caller of g(y), may go wrong
in one of three ways:

The invocation f(x) finishes evaluation but yields an incorrect
result. In this scenario, no remedial action is needed. The correct
return value will reach f(x) during the propagation described in
Section 3.4 and f(x) will thus be re-executed with the correct return
value and will produce the correct result.

The incorrect return value causes f(x) to throw an exception.
For example, g(y) may return an object that is no longer in the
data structure and may thus have invalid field values. When f(x)
reads those values, it may throw a divide-by-zero error or a null-
pointer deference. Since this exception would not be raised in the
non-incremental check, it must be prevented from reaching the main
program. The code transformation described in Section 3.1 encloses
the entire function in a try-catch block. If an exception is thrown
due to a wrong optimistic assumption, the exception is caught and
the execution of the function is stopped. The function will eventually
be re-executed with correct inputs, as in the previous scenario. If an
exception still occurs at this stage, the exception is forwarded on to
the main program.

The incorrect value causes non-termination. Similar to the previ-
ous case, an incorrect return value may cause a loop or a recursion to
iterate forever. The return value did not cause non-termination when
f(x) was executed previously because the explicit or implicit inputs
were different. We offer two alternative remedial actions.

The first one, currently used by DITTO, imposes a restriction on
the way DITTO-incrementalizable invariant checks must be written:
No loop conditional or function call can depend on a callee return
value. Here, depends includes both control- and data-dependence.
Under this restriction, each loop and each call in the re-executed
f(x) uses only (correct) values from the current state, and thus will
not cause a spurious non-termination.

Our practical experience is that this restriction is more of a tech-
nicality than a real burden. We have yet to write a loop of any sort
inside an invariant check function, and we have found it easy to over-
come the function call restriction by avoiding short-circuit boolean
evaluation.

To ensure that programmers are unable to violate this restriction,
we have written a simple static analysis that checks for such a viola-
tion. The analysis is fairly trivial because aliasing is impossible in a
side-effect-free function.

The second solution for this situation is to implement a timeout
that would trigger when an optimistic execution takes far longer
than it has taken historically. In this case, the invariant check would
be re-executed from scratch. A benefit of this approach is that no
programming restrictions are made on the function, though a cost is
that its behavior may be unpredictable.

4. Implementation
DITTO is implemented as a Java bytecode transformation and accom-
panying runtime libraries. This approach does not allow for an opti-
mized runtime implementation. For instance, the write barriers are
implemented in Java, which requires two null checks and one array
bounds check per barrier; an efficient JVM implementation would
require far less overhead, as the barriers could be inserted at a lower
level, circumventing these Java safety checks. However, the byte-
code transformation approach offers the strong advantage of being
as portable as Java is. It can be used with any JVM on any platform.
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memoization table entries are added or modified for the functions invoked in this step. The resulting computation graph reflects the changes
made to the heap in Figure 5. (c) The results of re-executed nodes are compared with their old cached values. If they differ, the new results are
propagated up through the graph. In this example, let the invariant check be a test for the presence of a special object S. Assume that S has
moved from the left branch of the tree to the right; as a result, some node results differ (”F/T” indicates an old result of false and a new result of
true), and are propagated up the graph. However, the propagation stops soon because an ancestor node’s new result matches its old one.

The implementation of DITTO supports multiple invariants per
class instantiation, multiple class instantiations per class, and mul-
tiple classes. Below are specifics about some aspects of the imple-
mentation. The bytecode transformation is implemented using the
excellent Javassist package [7].

Hashing of objects. In previous work on incrementalization [1],
the definitions of object equality are left to the programmer. This
flexibility allows the programmer to equate two objects if they differ
only in fields that she knows are irrelevant to the incremental compu-
tation. Since DITTO is automatic, an all-purpose strategy is required.

DITTO’s memoization table, which maps a list of explicit argu-
ments, stored in an Object[], to a particular entry that represents
a function call on those arguments, is implemented as a hash ta-
ble. This requires a notion of argument array equality and hash-
ing. In terms of equality, pointer equality of Object[] is obvi-
ously insufficient. Instead, equality is defined as the conjunction of
pointer equality for the elements (arguments) that are object ref-
erences, and semantic equality for the elements that are primitive
types; the hash code is defined analogously, as a combination of
System.identityHashCode(), or Object.hashCode() for prim-
itive types like Integer or Boolean. This strategy conservatively
preserves semantic equality of all arguments, while preventing shar-
ing of non-primitive types (if the same computation node were to
operate on two objects, semantically equal but in different locations
on the heap, and only one was updated, then the node’s cached re-
sult could be incorrect for one set of arguments.) In theory, semantic
equality and hashing could be applied to any immutable type.

Our benchmarks indicate that this conservative notion of equality,
though not optimally flexible, performs well in practice on DITTO’s
target domain.

Efficient implementation of write barriers. Since the write bar-
riers are implemented in Java, some care must be taken to ensure rea-
sonable performance. DITTO employs two main optimization tactics.
First, during the offline bytecode transformation phase, DITTO gath-
ers the set of fields accessed by the invariant checks it is optimizing.
Write barriers are only inserted on updates to these fields, since only
writes to these fields could possibly affect the implicit arguments to
the invariant checks.

Secondly, each memory address caught by the barriers incurs a
hash table lookup to determine what computation nodes are affected
by its mutation, even if the object at that address is unrelated to

any invariant checks and affects no computation nodes at all. If
there are many such other writes (or if the first optimization did not
sufficiently reduce the number of barriers inserted), these lookups
can cause significant overhead. To combat this phenomenon, the
runtime portion of DITTO keeps a reference count of dependent
invariant checks in the header of each object. The write barriers are
constructed to first check that the reference count is greater than zero,
and only then to add its field to the list of mutated ones. The reference
count for a particular object is decremented when an invariant’s hash
table lookup is done and the dirty nodes identified. This way, if any
of its dirty nodes accesses the object again, its reference count will
be incremented. If not, since the dirty nodes are the only ones that
accessed it beforehand, it is no longer relevant to that invariant check
and does not need to be monitored further.

In practice, the inclusion of a ‘header’ reference count is im-
plemented by creating a new class IncObject that inherits from
java.lang.Object, and contains an integer field corresponding to
the reference count. DITTO then sets the penultimate class in the
class hierarchy of each object type used by invariant checks to in-
herit from this class instead of java.lang.Object.

Optimizing leaf calls. If a function f is invoked with arguments
a that do not lead to recursion, it is often faster to compute f(a)
outright than to memoize it. This situation commonly occurs at
the ends of data structures, when a final null value is reached.
Thus, if all the non-primitive arguments to a function call are null,
DITTO does not perform any cache lookups and instead runs f(a) to
determine the return value. In addition, small commonly used non-
recursive functions, such as hashCode() and size(), are special-
cased as well. In all cases, the implicit arguments to these functions,
if any, are still recorded.

5. Evaluation
All measurements were performed on a Pentium M 1.6 GHz com-
puter with 1 gigabyte of RAM, running the HotSpot 1.5 JVM.

5.1 Data structure benchmarks

We measured DITTO on several data structure benchmarks. Each data
structure is instantiated at several sizes and then modified 10,000
times. We measured only small sizes (from 50 to 3,200) to reflect
what we believe is common real-world usage. (Incrementalization



Boolean checkHashBuckets(int i) {
if (i >= buckets.length) return true;
boolean b1 = checkHashElements(buckets[i], i),

b2 = checkHashBuckets(i+1);
return b1 && b2;

}
Boolean checkHashElements(HashElement e, int i) {

if (e == null) return true;
return (e.key.hashCode() % buckets.length == i) &&

checkHashElements(e.next, i);
}

Figure 9. Invariant for the hash table. The invariant is invoked as
checkHashBuckets(0).

void invariants() {
if (!isRedBlack(root) || checkBlackDepth(root) == -1 ||
! isOrdered(root, Integer.MIN_VALUE, Integer.MAX_VALUE))
complain();

}
Boolean isOrdered(Node n, int lower, int upper) {

if (n == nil) return true;
if (n.key <= lower || n.key >= upper)
return false;

if (n.key <= n.left.key || n.key >= n.right.key)
return false;

boolean b1 = isOrdered(e.left, lower, n.key),
b2 = isOrdered(e.right, n.key, upper);

return b1 && b2;
}
Boolean isRedBlack(Node n) {

if (n == nil) return true;
Node l = n.left, r = n.right;
if (n.color != BLACK && n.color != RED)
return false;

if ((l != nil && l.parent != n) ||
(r != nil && r.parent != n))

return false;
if (n.color == RED && (l.color != BLACK ||

r.color != BLACK))
return false;

boolean b1 = isRedBlack(l), b2 = isRedBlack(r);
return b1 && b2;

}
Integer checkBlackDepth(Node n) {

if (n == nil)
return 1;

int left = checkBlackDepth(n.left);
int right = checkBlackDepth(n.right);
if (left != right || left == -1)
return -1;

return left + (n.color == BLACK ? 1 : 0);
}

Figure 10. Invariants for the red-black tree. nil is a special dummy
node in the implementation that is always black.

generally produces asymptotic improvement, so arbitrary speedups
can be had at large data structure sizes.) In each case, wall-clock time,
including GC and all other VM and incrementalization overheads,
is measured. The data structures and their modification patterns are
described below.

If an operation requires a “random” element, it is selected at
random from the set of elements guaranteed to fulfill the operation.
For instance, the element for a deletion is chosen at random from the
elements already in the data structure.

Ordered List. The OrderedIntList and its invariant isOrdered
were described in Section 2. The modifications were 50% insertion

of a random element, 25% deletion of a random element, and 25%
deletion of the first element in the list (as in a queue).

Hash Table. The HashTable data structure maps keys to val-
ues, using chaining to store multiple entries in the same bucket. The
invariant check, shown in Figure 9, verifies that no entry is in the
wrong bucket. Note that the single invariant encompasses two func-
tions. The modifications were 50% random insertions and 50% ran-
dom deletions.

Red-Black Tree. We used the open-source GNU Classpath ver-
sion of TreeMap, which implements a red-black tree in 1600 lines
of Java. The invariants verify the required properties of a red-black
tree, and check the following properties: (i) the tree is well-ordered
(ii) local red-black properties (e.g. a red node has black children) (iii)
the number of black nodes along any path from the root to a leaf is
the same. See Figure 10 for the code. The modifications consisted of
50% random insertions and 50% random deletions.

A red-black tree is particularly well suited to dynamic invariant
checks because

1. It is a data structure with nontrivial behaviors for even simple
operations such as insert and delete that are hard to “get right”.

2. It has several invariants that are difficult to analyze statically but
are relatively easy to write as code.

However, its complexity also challenges DITTO: a single op-
eration can alter the data structure layout significantly, reordering,
adding, and removing nodes. Additionally, two of the invariants en-
force global constraints, requiring nontrivial incremental updates to
the computation graph. For these reasons, we considered the red-
black tree an acid test for the feasibility of DITTO.

5.1.1 Analysis

The results of incrementalization for these data structures at vari-
ous sizes are presented in Figure 11. In each case DITTO success-
fully incrementalized the invariant, producing an asymptotic speedup
over the unincrementalized version. The average speedup at 3200 el-
ements is 7.5x.

DITTO performs well for medium to large sized data structures.
However, there is some baseline overhead due to write barriers and
the incrementalization data structures that have to be maintained. To
more closely analyze behavior on smaller data structures, for each
structure we measured the crossover size, the data structure size at
which it is faster to run DITTO’s incrementalized version of a check
than the original, all overheads considered.2

Crossover size
Ordered list ≈ 250
Hash table ≈ 100
Red-black tree ≈ 200

These crossover sizes suggest that DITTO can be used as part of
the development process for programs with relatively small data
structures as well.

5.2 Sample applications

Netcols is a Tetris-like game written by a colleague in 1600 lines
of Java. Jewels fall from the sky through a rectangular grid and must
be made to form patterns as they land. The program keeps an array
top of the position of the highest landed jewels in each column, and
maintains the invariant that no jewels are floating – i.e. there are no
empty squares below the highest spot in each column, and there are
no bejeweled squares about it; see Figure 12 for the code.

2 In [1], a crossover point is also mentioned, often occurring at size 1. Though
our attempt to contact the author failed, we imagine that this point is mea-
suring a different phenomenon, perhaps a theoretical crossover point without
runtime overheads.
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Figure 11. Results for data structure benchmarks. Each graph compares the performance of code with (i) no invariant checks (ii) standard
invariant checks (iii) incrementalized invariant checks on different sizes of the data structure.

Boolean checkTop(int col) {
if (col == width) return;
boolean b1 = checkEmpty(col, top[col]),

b2 = checkFull(col, top[col]-1),
b3 = checkTop(col+1);

return b1 && b2 && b3;
}

Boolean checkFull(int col, int row) {
if (row == 0) return true;
return jewels[col][row] != nullJewel &&

checkFull(col, row-1);
}

Boolean checkEmpty(int col, int row) {
if (row == height) return true;
return jewels[col][row] == nullJewel &&

checkEmpty(col, row+1);
}

Figure 12. The invariant check that verifies that a netcols grid has
no floating jewels.

Boolean goodMapping(JList names) {
if (names == null) return true;
String s = (String) names.value;
if (Character.isUpperCase(s.charAt(0)) ||

Character.isDigit(s.charAt(0)))
return false;

boolean b1 = ! inReserved(s, 0),
b2 = goodMapping(names.next);

return b1 && b2;
}

Boolean inReserved(String s, int off) {
if (off == reserved_names.length) return false;
return s.equals(reserved_names[off]) || inReserved(s, off+1);

}

Figure 13. Invariant check for JSO that ensures that a protected
function is not renamed.

The main event loop averaged 80ms end-to-end time with the
invariant check running, noticeably sluggish. With DITTO, the event
loop averaged 15ms.

JSO [13] is a JavaScript obfuscator written in 600 lines of Java.
It renames JavaScript functions, and keeps a map from old names
to new so that if the same function is invoked again, its correct new
name will be used. However, functions whose names have certain
properties or that are on a list of reserved keywords should not be
renamed. Thus, we check the invariant that keys in the renaming map

do not meet any exclusionary criteria. See Figure 13. To enable this
invariant, we maintain an auxiliary list of map keys, names.

Figure 14 shows the results of feeding JSO JavaScript inputs of
varying sizes. DITTO’s incrementalized version of the check is able
to mitigate much of the overhead.

6. Related Work
Languages such as JML [14] and Spec# [4] provide motivation for
this work. These languages enable the user to write data structure in-
variant checks (among other specifications) directly into their code.
In some cases, these checks are statically verifiable, in which case
DITTO provides a complimentary solution: very small offline over-
head followed by a moderate runtime overhead and verification for
testing inputs, as opposed to a larger offline overhead, no runtime
overhead, and verification for all inputs. On the other hand, the cases
where the checks must be verified at runtime are perfectly suited to
DITTO.

Software model checking [3, 10, 22] is a powerful technique for
static verification. However, most model checkers do not perform
well when required to maintain a precise heap abstraction, such
as when verifying red-black tree invariants, often failing to verify
structures of depth greater than five. Recent work by Darga et al. [8]
has made progress toward verification of complex invariants, but the
depth bound is still small for complex data structures and ghost fields
and programmer annotations are required.

Algorithm incrementalization has been the subject of consider-
able research [9, 17, 18, 19, 12]; see [21] for a comprehensive bib-
liography of early work. Initial research often focused on hand-
incrementalizing particular algorithms [20].

Liu et al. began to devise a systematic approach to incremen-
talization [16], culminating with recent work [15] that presented a
semi-automated incrementalizer for object-oriented languages. This
work differs from DITTO in two respects. First, it incrementalizes
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algorithms primarily through memoization (rather than a hybrid de-
pendence/memoization solution), which may require recomputation
even though true dependencies have not been modified. Second, it
requires a library of hints, one for each type of input modification,
that describe how the modification pertains to the incrementalization;
DITTO allows for arbitrary updates.

Most recently, Acar et al. [1, 2] have developed a robust frame-
work for incrementalization that uses both memoization and change
propagation. This framework offers a number of library functions
with which a programmer can incrementalize functional code func-
tions and achieve considerable speedups. Acar’s work and DITTO
differ in several respects.

Acar’s incrementalizer operates in the context of a purely func-
tional program in ML. Input changes and computation dependences
must be specified explicitly by the programmer. The framework is
general and, thanks to the functional environment, can incremental-
ize computations that return new objects. Dependencies are tracked
at the statement level, which allows for very precise change propa-
gation. However, to achieve this granularity, functions must be stati-
cally split into several components, so that individual statements can
be executed directly. These sub-functions must then be converted to
continuation-passing style.

In contrast, DITTO operates in Java. Incrementalization is done
automatically via write barriers and automatic instrumentation.
DITTO operates on the domain of data structure invariant checks:
recursive, side-effect-free functions. Because the rest of the program
may be arbitrarily imperative, functions that return new objects are
not allowed (such objects may be modified and thus are unsuitable
for memoization). However, many common invariant checks can be
written despite this restriction. Dependencies are tracked at the func-
tion level, which obviates the need for function splitting and CPS
conversion (as well as optimizations required to elicit good CPS
performance from Java VMs). The suitability of optimistic memo-
ization for invariant checks further enables a simple implementation.
Though the function-level granularity can require more code to be re-
executed than necessary, invariant check functions tend to be small,
and executing an entire function is often nearly as fast as identify-
ing the few statements in that function that actually have modified
dependences and rerunning just those.

7. Conclusion
In this paper we have presented DITTO, a novel incrementalizer tar-
geted towards a valuable set of functions, data structure invariant
checks. By limiting its domain to a class of these checks and ex-
ploiting their common properties, DITTO is able to incrementalize
automatically, for imperative languages like Java and C#, and sim-
ply, via optimistic memoization.
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