
The Program Optimization Spectrum
A Research Statement

Rastislav Bodik

My current interests span programming languages, compilers and computer systems,
with emphasis on program optimization. Contrary to accepted views, the area of program
optimization is broad, multifaceted, almost interdisciplinary. Its spectrum extends from
compiler optimization to the more experimental processor architecture and to the more for-
mally treated program specialization. While my thesis focused on compiler optimization, I
have been exploring relationships among all three fields.

The Program Optimization Spectrum.

program specializationprocessor architecture

more experimental

compiler optimization

more formal

The breadth of program optimization offers two ingredients that fuel my research mo-
tivation. First, by learning from both empirical and formal methods, I am able to be a
balanced systems researcher, one that closely ties theory with practice. This balance is ev-
ident in my thesis, where several practical problems previously treated only heuristically
received a simple, clean theory. Second, by attacking a common goal—program execution
speedup, these three fields weave together insight into a fundamental computer science
question: how to efficiently execute programs.

Dissertation Thesis. I developed a compiler optimization framework for removing in-
structions that redundantly recompute values previously computed by the program. This
paradigm of redundancy removal is common to a large class of important optimizations.
My framework unifies them and improves their power and practicality. The improvement re-
sults from a path-sensitive approach: my algorithms focus closely on each possible program
execution path (power) without paying the price of treating each path individually (prac-
ticality). To remain practical, previous techniques merged paths, diluting their individual
optimization opportunities and sacrificing some power.

The first contribution of my thesis was distilling the independent issues of a redun-
dancy optimizer into three stages: representation, analysis, and transformation. First, the rep-
resentation exposes the redundancies in the program. The analysis then traverses the graph

Analysis

collect

expose

Representation

Transformation

exploit

Stretched
Loop

Use Region CMP Region

Value Name
Graph (VNG) Sparse VNG

EstimatorsHybrid
Analysis

Entry/exit
Splitting

Early
Termination

Approximate
Analysis

PLDI ’98

PLDI ’99

POPL ’98

IJPP ’96

PLDI ’97-a PLDI ’97-b

research statement Rastislav Bodik 2

representation and collects the exposed redundancies. Finally, the transformation exploits
collected optimization opportunities by transforming the program.

While these stages seem traditional, previous research in redundancy optimization blen-
ded them, hindering a formulation of a path-sensitive framework. For my thesis, the sep-
aration was consequential. With clear independent goals, I was able to deliver for each
stage state-of-the-art algorithms, often optimal under these goals. Each of these algorithms
is a contribution per se, as outlined below. As a whole, these algorithms make up a frame-
work that is parameterizable and powerful: the framework was used to formulate and im-
plement the removal of arithmetic instructions [7], conditional branches [5], and loads [8].
The power of the framework subsumes existing methods, and for the important problem
of redundant load removal, is close to ideal [8].

1. Representation. The first stage represents the program as a graph that exposes redundant re-
computations. An old instance of this general compiler problem is how to expose repeated array
accesses in scientific loops. For this instance, I developed Stretched Loop, a representation that works
as a domain transformer. It converts loops with arrays (vectors) into acyclic code with ordinary
variables (scalars). The simpler domain (acyclic and scalar) offers optimal algorithms for redun-
dancy removal. By applying them on the stretched loop, the array redundancy optimization became
efficient and optimal; the previous best algorithm was complex and heuristic [9].

The stretched loop is a successful domain transformer but is restricted to very regular loops. The
goal of a general framework is to accept arbitrary programs and expose redundancy of all instruc-
tions: arithmetic, loads, conditional branches, etc. My generalized representation, Value Name Graph
(VNG), has gone beyond that goal. It fused three orthogonal techniques that each exposed a dif-
ferent class of redundancies. Until VNG was developed, three separate algorithms were needed to
capture them all. My integration preserves their individual advantages in a mutually beneficial way,
within a single algorithm.

The VNG is powerful but does not scale well. To handle large programs, I developed a Sparse
VNG, which is up to 30-times smaller, without any loss of precision. Furthermore, being a derivative
of the popular SSA program form, the sparse version enables retrofitting the extra power of the VNG
into existing SSA-based implementations.

2. Analysis. The data-flow analysis stage traverses the representation and groups instructions that
compute the same value. One research challenge is to reduce the cost of analyzing a large represen-
tation. For the stretched loop, I developed a Hybrid Analysis that combines elimination and iteration
analyzers: elimination partitions the representation; iteration analyzes the smaller parts in parallel.

Early Termination is another novel cost-reducing method. It terminates the analysis prematurely,
before all redundancies are collected. Ideally, we want to stop the analysis when additional in-
formation cannot benefit the subsequent transformation stage. I developed a simple heuristic that
provided an order of magnitude analysis speedup, at a small loss of optimization opportunities.
Approximate Analysis replaces the heuristic with a discipline that steers the analysis effort towards
frequently executed paths. Based on run-time program profile, the technique guarantees that the
imprecision due to early termination is below a predetermined degree.

In addition to collecting the redundancies, the analysis estimates their optimization benefit, by
computing their run-time amount for a given program profile. Unfortunately, such benefit estimates
are impaired by profiles’ inherent inability to precisely reconstruct frequencies of program paths.
While existing profile-directed optimizations disregarded the profiling error, my Estimators compute
its bounds. The estimators form a hierarchy: the more complex, the tighter its bounds. In practice,
even the intermediate ones provide profile-directed optimization with high level of confidence.

research statement Rastislav Bodik 3

3. Transformation. The final goal is to completely remove redundancies collected by the analysis.
However, for several classes of redundancies, completeness was beyond prior techniques. One such
class were instructions whose results may never be used in the remainder of the program, depend-
ing on subsequent program decisions. Their optimization thus depends on the unknown future of
the program, rather than on its known past. Based on a new abstraction called Use Region, my algo-
rithm is able to reorder statements so that the future program path is sufficiently known before the
potentially redundant statement is executed, thus enabling its complete optimization.

The next class were redundancies that cross program procedures, for example error checks in
library procedures. These checks are performed in each call, often redundantly. To reuse computed
values across procedures, the Entry/exit Splitting transformation creates additional procedure entry
and exit points. Through each such entry, the procedure obtains a known value which can be reused,
rather than recomputed. Exits have similar function. Previously, complete interprocedural removal
had to use procedure inlining. My transformation is applicable even when inlining fails, enabling
optimizations of object-oriented virtual calls, which may often be uninlinable.

Unfortunately, complete removal involves code duplication, which may inflict harmful code-size
bloat. To achieve practical completeness, I developed a transformation method that resorts to code
duplication merely to enable the more economical code motion, minimizing code growth. The ex-
tent of duplication is indicated by code-motion-preventing (CMP) region, an abstraction for integrating
transformations. When an execution profile is available, the CMP region can fuse duplication and
motion with speculation, optimally balancing their orthogonal characteristics. The result is a very suc-
cessful profile-directed redundancy elimination: a near-complete removal at near-zero code growth.

4. Experimental Evaluation. I formulated and implemented several instances of the framework.
For redundant loads, I performed a simulation-based limit study which showed that as much as
55% of executed loads are redundant. My framework removed more than 80% of this ideal amount.

Future Research Plans. My plans emerge from the observation that compiler optimization
is just one technology for program optimization. Other related technologies are processor
architecture and program specialization. For redundancy removal, the three offer comple-
mentary solutions. My goal is to explore relationships among these solutions and develop
new ones, building on contributions of my thesis and architecture background. As out-
lined below, such new solutions are both enabled and demanded by emerging computer
technologies.

These three methods differ in how they divide optimization work between compile time
(static work) and run time (dynamic work). The division has a profound influence: static
methods cannot exploit the program input available only at run time, but can be more
complex and slower than dynamic ones. Compiler optimizations are static: the program is
analyzed and rebuilt. The architecture is dynamic: on the fly, the processor “learns” about
the program and predicts future results of its instructions, effectively removing predictable
(redundant) ones [12, 13]. Dynamic versions of program specialization are hybrids: static
analysis finds values unchanging during the execution; once the concrete values are known
at run time, they are hardcoded into the program, specializing it for its current input [11].

dynamic (run the program),
exploit program input input independent

static (analyze the program),

compiler optimizationprocessor architecture dynamic program specialization

research statement Rastislav Bodik 4

Each method has unique strengths, none can subsume the others. Therefore, their in-
tegration is mutually beneficial [1]. This observation is not widely recognized, and the
respective communities do not cooperate enough. Yet, fueled by technology changes, the
integration will eventually take place. My goals is to complement the impact of technol-
ogy on shaping the integration with a careful consideration of fundamental optimization
principles. Specifically, my goal is to understand the static-dynamic nature of optimization
and, next, exploit it with properly balanced techniques. My ultimate quest is a suitable
paradigm for efficiently executing computer programs. Below are projects leading towards
these goals, listed from more static to more dynamic approaches.

1. Redundancy removal of loops and procedures. My thesis focused on redundancy of indi-
vidual statements. Redundant loops or procedure calls were not recognized. Extending the
optimization to such larger program constructs will benefit programs written using object-
oriented technology, where large-grain redundancy may occur frequently.

2. New paradigms for dynamic optimizations. The advent of mobile Java code necessitates
optimizing programs as they are running. While up to a ten-fold speedup can be gained
with dynamic program specialization [11], the same holds for instruction-level parallelism
methods (ILP), which are static [10]. These two approaches are orthogonal and should both
be exploited. Unfortunately, ILP methods are too costly for run time. A careful combination
of compiler optimizations and dynamic program specialization may help by planting into
run time only optimizations that are uniquely dynamic.

3. Observational analysis. Static compiler analysis examines the program abstractly, with-
out executing it. Current dynamic optimizers analyze the same way, only faster. To prove
program properties, they examine only the code, not the values it computes. This is a
waste of run-time possibilities: besides examining an abstracted execution, they could also
observe the concrete one. My goal is to design such a dynamic analysis. Based on observa-
tion of computed values, it may find opportunities invisible in the program code alone and
also be cheaper than pure abstract analysis.

4. Hybrid hardware-software optimizations. Hardware prediction of values is efficient for
simple redundancies. To find correlations between instructions, much hardware is needed
[12]. A hybrid with compiler technology may help. A static analysis will find correlated
pairs and the hardware will carry out the transformation, by remembering the generated
value sequence.

Thanks to embedded computing, hybrid optimizations can be brought to life and to the
market. Through the emerging hardware-software co-design technology, we can smuggle
onto the chip non-traditional features to support the optimization. As a result, the low cost
embedded processors might enjoy some of the server-class power.

5. Redundancy-centric processors. The dependence of successful modern processors on
hardware prediction indicates huge amounts of redundancy in programs: what can be pre-
dicted is redundant! Future processors should perhaps be redundancy-centric. Instead of
learning and predicting, they could analyze the program, avoiding the penalty paid at each
misprediction.

research statement Rastislav Bodik 5

The Program Optimization Spectrum by M.C. Escher.

The picture shows program optimization, its various characters, and their metamorphosis. Op-
timization techniques have contrasting characters but no borders. They morph into one another,
allowing a fusion that is mutually supportive. Exploring the spectrum between and beyond the
existing technologies may produce a spectrum of new techniques whose implementation may
be biased either to hardware or software, resulting in different properties.
Left: dynamic (run time) optimizations. Performed by the processor, they adapt on the fly to
changes in program behavior. By observing computed values, they also exploit the input.
Right: static (compile time) optimizations. They have zero run-time cost but no run-time adapt-
ability. Furthermore, at compile time only the program code (but not the input) is exploited.

compiler
static (analyze the program)

input-insensitive (input not available)

processor
dynamic (run and learn the program)
input-sensitive (input known and exploited)

EXISTING TECHNOLOGIES

Dynamic: learn and
predict values on the
fly. Instructions (birds)
quickly adapt to chang-
ing program patterns.

processor
architecture

#

Mixed: static analy-
sis, dynamic rebuild
shaped (specialized) by
the input. The rebuild
is simpler, cheaper.

dynamic program
specialization

#

Static: analyze and
rebuild the program
before it runs. During
execution, its structure
remains fixed, static.

compiler
optimization
#

"

redundancy-centric
processors

Processor paradigm
shifts: instructions
aren’t birds, but a
different kind of
animal, hopefully
smarter.

"

hybrid hw-sw
optimizations

Hardware remem-
bers repeating
value sequences,
compiler directs
their exploitation.

 !
observational

analysis

Analyze running pro-
gram by observing its
values, not only by
examining its code.
Cheaper and input-
sensitive.

"

new dynamic
optimizations

Maximize static
work, leaving only
uniquely dynamic
optimizations to
run time.

"

redundant loop
elimination

Extend the rebuild.
Besides statements,
achieve removal of
redundant loops—a
holy grail of compiler
optimization.

"

alias analysis
done by others

Loop removal
must carefully
consider each
move, calling
for a good alias
analysis.

MY FUTURE PLANS

M.C.Escher’s “Metamorphosis II” (detail) c1999 Cordon Art B.V. - Baarn - Holland. All rights reserved.

research statement Rastislav Bodik 6

References
[1] Sarita V. Adve, Doug Burger, Rudolf Eigenmann, Alasdair Rawsthorne, Michael D. Smith, Cather-

ine H. Gebotys, Mahmut T. Kandemir, David J. Lilja, Alok N. Choudhary, Jesse Z. Fang, and Pen-
Chung Yew. Theme feature: Changing interaction of compiler and architecture. Computer, 30(12):51–
58, December 1997.

[2] Rastislav Bodik and Sadun Anik. POPL’98 , Path-sensitive value-flow analysis. In Conference Record
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 237–251,
January 1998.

[3] Rastislav Bodik and Rajiv Gupta. IJPP’96 , Array data flow analysis for load-store optimizations in
fine-grain architectures. International Journal of Parallel Programming, 24(6):481–512, December 1996.

[4] Rastislav Bodik and Rajiv Gupta. PLDI’97-a , Partial dead code elimination using slicing transforma-
tions. In Proceedings of the ACM SIGPLAN ’97 Conf. on Prog. Language Design and Impl., pages 159–170,
June 1997.

[5] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. PLDI’97-b , Interprocedural conditional branch
elimination. In Proceedings of the ACM SIGPLAN ’97 Conf. on Prog. Language Design and Impl., pages
146–158, June 1997.

[6] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Refining data flow information using infeasible
paths. In ACM SIGSOFT Symposium on Foundations of Software Engineering. LNCS Nr. 1301, Springer–
Verlag, September 1997.

[7] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. PLDI’98 , Complete removal of redundant ex-
pressions. In Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language Design and
Implementation, pages 1–14, June 1998.

[8] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. PLDI’99 , Load-reuse analysis: Design and evalu-
ation. In Proceedings of the ACM SIGPLAN ’99 Conference on Programming Language Design and Imple-
mentation (to appear), May 1998.

[9] Steve Carr and Ken Kennedy. Scalar replacement in the presence of conditional control flow. Software
Practice and Experience, 24(1):51–77, January 1994.

[10] W.W. Hwu et al. Compiler technology for future microprocessors. IEEE, 83:1625–1640, 1995.

[11] B. Grant, M. Mock, M. Philipose, C. Chambers, and S.J. Eggers. The UW Dynamic Compi-
lation Project. Technical Report http://www.cs.washington.edu/research/projects/-
unisw/DynComp/www , University of Washington, 1998.

[12] Y. Sazeides and J. E. Smith. The predictability of data values. In Proceedings of the 30th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-97), pages 248–258, 1997.

[13] Avinash Sodani and Gurindar S. Sohi. Understanding the differences between value prediction and
instruction reuse. In Proceedings of the 31th Annual International Symposium on Microarchitecture, pages
205–215, Dallas, TX, 1998.

