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It all comes down to laziness

I’m lazy
Say I’m making a PowerPoint 
presentation…
I realize I need to cover a new topic
What do I do?

A) Do the entire presentation over
B) ???
C) Profit!!!



Okay, what have I done?

I used the work I had already done
And incrementally constructed a new 
presentation

That’s pretty much all finite 
differencing is

THE END



Okay, okay…

Things we still need to figure out:
What are the benefits of differencing?
When is it safe?

(and what do we mean by safe?)
Can I compute Go positions incrementally?

How does it work?
Can it be automated?
Does the content of this paper really 
justify its 50 page length?
And more…



First, a more relevant example

Goal: compute the successive sums of 
each m-element window in an n-
element array (with m < n) 

2 1 4 2 7 0 3 5 2

n = 9; m = 4



The simple way

for (int i = 0 ; i < n-m ; i++) { 
for (int j = i ; j < m ; j++) { 
sum[i] += ary[j]; 

} 
} 

Sum up each window independently



Using finite differencing

Compute a running sum

for (int j = 0 ; j < m ; j++) { 
sum[0] += ary[j]; 

} 
for (int i = 1 ; i < n-m ; i++) { 
sum[i] = sum[i-1] - ary[i-1] + ary[i+m-1]; 

} 

2 1 4 2 7 0 3 5 2

-2 +7



Benefits of differencing

Speedups
Possibly in asymptotic complexity

(What happened in the example?)

If done automatically, simple code 
can become efficient

Can stick to “the simple way”
No need to uglify it yourself



Sounds unbelievably good

This is going to revolutionize 
computing
We took that O(n2) algo to O(n)…
Let’s difference that O(n) algorithm to 
get an O(1) algorithm!
The fun never ends

(Sanity check…)



When is it safe to difference?

Must guarantee the transformation is 
semantics preserving

Just like any other optimization
Stay tuned…



Finite differencing overview

Derivative
The building block of differencing

Chain rule
Stringing differential expressions 
together

Tricks for initialization



Computable derivatives

“Differencing”: figuring out the 
difference between f(x) and f(y)
Derivative: how f changes with 
respect to x
We extend this notion to code



Computable derivatives

Let E = f(x1, …, xn)
E is the incremental replacement for f

Let dxi be an update to xi, e.g.
E = f(list) = length(list);
while (*) {

list = item :: list;  // dx0

}



Derivative example

Here, E = f(list) = length(list);
dlist is list = item :: list; 
Then dE(dlist) = E += 1

What should we expect of the 
derivative of E? dE(dx0)

What properties must hold?



Derivative: formal definition

Derivative is code blocks [B1, B2]:
B1
dxi

B2
With properties:

B1 and B2 only modify locals and E
Semantics of dxi are preserved
If E = f(x1, …, xn) before, then E = f(x1, 
…, xn) afterwards

Differenced code



Derivative questions

Why is this definition semantics 
preserving?
How broad is it? 

Can it be applied to our sliding window 
example?

Why do we need B1 and B2?
Where do these derivs come from?



Differentiable code

So we have derivatives of f… when 
can we apply them?
E = f() is differentiable w.r.t a code 
block C if:

We know the derivatives of f w.r.t. for 
each xi updated in C
f is known, or at least computable, at 
the start of C

This should intuitively make sense



Doing the differencing

To difference f w.r.t. C:
Replace all dxi in C by B1i; dxi; B2i;
Replace all uses of f with E
Initialize E properly

Does this preserve the semantics of 
C?
… Works for C1; C2 as well



Example

a := {};
while eof = false

read(i);
a with:= i;

end while;
print({x \in a | x mod 2 == 0});

f(a)

da (dx0)



Example

a := {}; E := {};
while eof = false

read(i);
if (i mod 2 == 0) then

E with:= i;
a with:= i;

end while;
print(E);

E = f(a)

da

dE(da)

dE(a := {})



Chaining

So we’ve got the whole program 
differenced on f
But what about g, h, etc? 
Just apply them in turn



Chaining, cont’d

We have E1 and E2. Can chain if 
E1 = f1 is differentiable w.r.t. B, 
transforming it to B’
And E2 = f2 is differentiable w.r.t. ???
B’

How does this preserve semantics?
What if all Ei were differentiable w.r.t. 
just B?



Computing speedups

There’s a lot of stuff in the paper 
about figuring out when differencing 
will produce a speedup
But: it’s pretty obvious stuff

Initial costs should be relatively low
Derivatives should be faster than 
recomputing f
…



Initialization tricks

We have a bunch of differenced code
But need to initialize Ei = fi(…) first

“setting up the invariant”

Doing each Ei separately wasteful
Jamming…



Vertical Jamming
Want to initialize c1, c2

for (x in s) {
if (k1(x))
c1 with: x;

}

for (x in c1) {
if (k2(x))
c2 with: x;

}



Vertical Jamming, cont’d

2 1 4 2 7 0 3 5 2

1 4 7 3 5c1

1 7 3c2

Remember, we’re lazy.

s



Vertical Jamming, cont’d

2 1 4 2 7 0 3 5 2

1 4 7 3 5c1

1 7 3c2

Wow, that saved a lot of effort.
Except for the effort it took me to make 
these slides.

s



The resulting code

for (x in s) {
if (k1(x)) {

c1 with: x;
if (k2(x))
c2 with: x;

}
}



Horizontal jamming
I’ll spare you the animations

for (x in s) {
if (k1(x))
c1 with: x;

}

for (x in s) {
if (k2(x))
c2 with: x;

}



Horizontal jamming, cont’d

Becomes
for (x in s) {

if (k1(x))
c1 with: x;

if (k2(xi))
c2 with: x;

}



Automating the process

What are the hurdles?
Picking an f
Coming up with a derivative

How comprehensive is the list in the paper?

What else?

“Already implemented a 
semiautomatic system”

“Results reported in near future”



Practical concerns

Are there any language hurdles?
What other problems are in the way?

(Why isn’t this system used now?)


