

Finite Differencing of Computable Expressions

AJ Shankar

It all comes down to laziness

I'm lazy

- Say I'm making a PowerPoint presentation...
- I realize I need to cover a new topic
 What do I do?
 - A) Do the entire presentation over
 - B) ???
 - C) Profit!!!

Okay, what have I done?

I used the work I had already done
 And *incrementally* constructed a new presentation

That's pretty much all finite differencing is

THE END

Okay, okay...

- Things we still need to figure out:
 What are the benefits of differencing?
 - When is it safe?
 - (and what do we mean by safe?)
 - Can I compute Go positions incrementally?
 - How does it work?
 - Can it be automated?
 - Does the content of this paper really justify its 50 page length?
 - And more...

First, a more relevant example

 Goal: compute the successive sums of each m-element window in an nelement array (with m < n)

The simple way

for (int i = 0 ; i < n-m ; i++) {
 for (int j = i ; j < m ; j++) {
 sum[i] += ary[j];</pre>

Sum up each window independently

Using finite differencing

Benefits of differencing

Speedups

- Possibly in asymptotic complexity
 (What happened in the example?)
- If done automatically, simple code can become efficient
 - Can stick to "the simple way"
 - No need to uglify it yourself

Sounds unbelievably good

- This is going to revolutionize computing
- We took that O(n²) algo to O(n)...
- Let's difference that O(n) algorithm to get an O(1) algorithm!
- The fun never ends

(Sanity check...)

When is it safe to difference?

Must guarantee the transformation is *semantics preserving* Just like any other optimization
 Stay tuned...

Finite differencing overview

- Derivative
 - The building block of differencing
- Chain rule
 - Stringing differential expressions together
- Tricks for initialization

Computable derivatives

"Differencing": figuring out the *difference* between f(x) and f(y)
Derivative: how f changes with respect to x

We extend this notion to code

Computable derivatives

Let E = f(x₁, ..., x_n)
E is the incremental replacement for f
Let dx_i be an update to x_i, e.g.
E = f(list) = length(list);
while (*) {
list = item :: list; // dx₀

Derivative example

Here, E = f(list) = length(list);
dlist is list = item :: list;
Then dE(dlist) = E += 1

What should we expect of the derivative of E? dE(dx₀)
 What properties must hold?

Derivative: formal definition

- Derivative is code blocks [B1, B2]:
 B1
 dx_i
 Differenced code
- With properties:

B2

- B1 and B2 only modify locals and E
- Semantics of dx_i are preserved
- If $E = f(x_1, ..., x_n)$ before, then $E = f(x_1, ..., x_n)$ afterwards

Derivative questions

- Why is this definition semantics preserving?
- How broad is it?
 - Can it be applied to our sliding window example?
- Why do we need B1 and B2?
- Where do these derivs come from?

Differentiable code

- So we have derivatives of f... when can we apply them?
- E = f() is *differentiable* w.r.t a code block C if:
 - We know the derivatives of f w.r.t. for each x_i updated in C
 - f is known, or at least computable, at the start of C
- This should intuitively make sense

Doing the differencing

- To difference f w.r.t. C:
 Replace all dx_i in C by B1_i; dx_i; B2_i;
 Replace all uses of f with E
 Initialize E properly
 Does this preserve the semantics of C?
- Works for C1; C2 as well

Example

a := {}; while eof = false $da(dx_0)$ read(i); a with: = i; f(a)end while; print({x \in a | x mod 2 == 0});

Example

a := {}; E := {}; dE(a := {}) while eof = falsedE(da) read(i); if (i mod 2 = = 0) then E with: = i; da a with: = i; end while; E = f(a)print(E);

Chaining

So we've got the whole program differenced on f

But what about g, h, etc?

Just apply them in turn

Chaining, cont'd

- We have E₁ and E₂. Can chain if
 - E₁ = f₁ is differentiable w.r.t. B, transforming it to B'
 - And E₂ = f₂ is differentiable w.r.t. ???
 B'

How does this preserve semantics?
 What if all E_i were differentiable w.r.t. just B?

Computing speedups

- There's a lot of stuff in the paper about figuring out when differencing will produce a speedup
- But: it's pretty obvious stuff

- Initial costs should be relatively low
- Derivatives should be faster than recomputing f

Initialization tricks

We have a bunch of differenced code
But need to initialize E_i = f_i(...) first

"setting up the invariant"

Doing each E_i separately wasteful
Jamming...

Vertical Jamming

■ Want to initialize c₁, c₂

for (x in s) {
 if (k₁(x))
 C₁ with: x;

}

for (x in c₁) {
 if (k₂(x))
 C₂ with: x;

Vertical Jamming, cont'd

Remember, we're lazy.

Vertical Jamming, cont'd

Wow, that saved a lot of effort.

Except for the effort it took me to make these slides.

The resulting code

for (x in s) {
 if (k₁(x)) {
 C₁ with: x;
 if (k₂(x))
 C₂ with: x;

Horizontal jamming

I'll spare you the animations for (x in s) { if (k₁(x)) c₁ with: x;

for (x in s) {
 if (k₂(x))
 C₂ with: x;

Horizontal jamming, cont'd

Becomes
for (x in s) {
if (k₁(x))
C₁ with: x;
if (k₂(x_i))
C₂ with: x;

Automating the process

- What are the hurdles?
 - Picking an f
 - Coming up with a derivative
 - How comprehensive is the list in the paper?
 - What else?
- Already implemented a semiautomatic system"
 - "Results reported in near future"

Practical concerns

Are there any language hurdles?
What other problems are in the way?
(Why isn't this system used now?)