
Finite Differencing of Computable
Expressions

AJ Shankar

It all comes down to laziness

I’m lazy
Say I’m making a PowerPoint
presentation…
I realize I need to cover a new topic
What do I do?

A) Do the entire presentation over
B) ???
C) Profit!!!

Okay, what have I done?

I used the work I had already done
And incrementally constructed a new
presentation

That’s pretty much all finite
differencing is

THE END

Okay, okay…

Things we still need to figure out:
What are the benefits of differencing?
When is it safe?

(and what do we mean by safe?)
Can I compute Go positions incrementally?

How does it work?
Can it be automated?
Does the content of this paper really
justify its 50 page length?
And more…

First, a more relevant example

Goal: compute the successive sums of
each m-element window in an n-
element array (with m < n)

2 1 4 2 7 0 3 5 2

n = 9; m = 4

The simple way

for (int i = 0 ; i < n-m ; i++) {
for (int j = i ; j < m ; j++) {
sum[i] += ary[j];

}
}

Sum up each window independently

Using finite differencing

Compute a running sum

for (int j = 0 ; j < m ; j++) {
sum[0] += ary[j];

}
for (int i = 1 ; i < n-m ; i++) {
sum[i] = sum[i-1] - ary[i-1] + ary[i+m-1];

}

2 1 4 2 7 0 3 5 2

-2 +7

Benefits of differencing

Speedups
Possibly in asymptotic complexity

(What happened in the example?)

If done automatically, simple code
can become efficient

Can stick to “the simple way”
No need to uglify it yourself

Sounds unbelievably good

This is going to revolutionize
computing
We took that O(n2) algo to O(n)…
Let’s difference that O(n) algorithm to
get an O(1) algorithm!
The fun never ends

(Sanity check…)

When is it safe to difference?

Must guarantee the transformation is
semantics preserving

Just like any other optimization
Stay tuned…

Finite differencing overview

Derivative
The building block of differencing

Chain rule
Stringing differential expressions
together

Tricks for initialization

Computable derivatives

“Differencing”: figuring out the
difference between f(x) and f(y)
Derivative: how f changes with
respect to x
We extend this notion to code

Computable derivatives

Let E = f(x1, …, xn)
E is the incremental replacement for f

Let dxi be an update to xi, e.g.
E = f(list) = length(list);
while (*) {

list = item :: list; // dx0

}

Derivative example

Here, E = f(list) = length(list);
dlist is list = item :: list;
Then dE(dlist) = E += 1

What should we expect of the
derivative of E? dE(dx0)

What properties must hold?

Derivative: formal definition

Derivative is code blocks [B1, B2]:
B1
dxi

B2
With properties:

B1 and B2 only modify locals and E
Semantics of dxi are preserved
If E = f(x1, …, xn) before, then E = f(x1,
…, xn) afterwards

Differenced code

Derivative questions

Why is this definition semantics
preserving?
How broad is it?

Can it be applied to our sliding window
example?

Why do we need B1 and B2?
Where do these derivs come from?

Differentiable code

So we have derivatives of f… when
can we apply them?
E = f() is differentiable w.r.t a code
block C if:

We know the derivatives of f w.r.t. for
each xi updated in C
f is known, or at least computable, at
the start of C

This should intuitively make sense

Doing the differencing

To difference f w.r.t. C:
Replace all dxi in C by B1i; dxi; B2i;
Replace all uses of f with E
Initialize E properly

Does this preserve the semantics of
C?
… Works for C1; C2 as well

Example

a := {};
while eof = false

read(i);
a with:= i;

end while;
print({x \in a | x mod 2 == 0});

f(a)

da (dx0)

Example

a := {}; E := {};
while eof = false

read(i);
if (i mod 2 == 0) then

E with:= i;
a with:= i;

end while;
print(E);

E = f(a)

da

dE(da)

dE(a := {})

Chaining

So we’ve got the whole program
differenced on f
But what about g, h, etc?
Just apply them in turn

Chaining, cont’d

We have E1 and E2. Can chain if
E1 = f1 is differentiable w.r.t. B,
transforming it to B’
And E2 = f2 is differentiable w.r.t. ???
B’

How does this preserve semantics?
What if all Ei were differentiable w.r.t.
just B?

Computing speedups

There’s a lot of stuff in the paper
about figuring out when differencing
will produce a speedup
But: it’s pretty obvious stuff

Initial costs should be relatively low
Derivatives should be faster than
recomputing f
…

Initialization tricks

We have a bunch of differenced code
But need to initialize Ei = fi(…) first

“setting up the invariant”

Doing each Ei separately wasteful
Jamming…

Vertical Jamming
Want to initialize c1, c2

for (x in s) {
if (k1(x))
c1 with: x;

}

for (x in c1) {
if (k2(x))
c2 with: x;

}

Vertical Jamming, cont’d

2 1 4 2 7 0 3 5 2

1 4 7 3 5c1

1 7 3c2

Remember, we’re lazy.

s

Vertical Jamming, cont’d

2 1 4 2 7 0 3 5 2

1 4 7 3 5c1

1 7 3c2

Wow, that saved a lot of effort.
Except for the effort it took me to make
these slides.

s

The resulting code

for (x in s) {
if (k1(x)) {

c1 with: x;
if (k2(x))
c2 with: x;

}
}

Horizontal jamming
I’ll spare you the animations

for (x in s) {
if (k1(x))
c1 with: x;

}

for (x in s) {
if (k2(x))
c2 with: x;

}

Horizontal jamming, cont’d

Becomes
for (x in s) {

if (k1(x))
c1 with: x;

if (k2(xi))
c2 with: x;

}

Automating the process

What are the hurdles?
Picking an f
Coming up with a derivative

How comprehensive is the list in the paper?

What else?

“Already implemented a
semiautomatic system”

“Results reported in near future”

Practical concerns

Are there any language hurdles?
What other problems are in the way?

(Why isn’t this system used now?)

